Generation of Graphs Embedded on the Torus
by

Matthew Adam Skala
B.Sc., University of Victoria, 1999

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

We accept this thesis as conforming
to the required standard

Dr. Wendy Myrvold, Supervisor (Dept. of Computer Science)

Dr. Ulrike Stege, Departmental Member (Dept. of Computer Science)

Dr. Gary MacGillivray, Outside Member (Dept. of Mathematics and Statistics)

Dr. Richard Anstee, External Examiner (Dept. of Mathematics, University of
British Columbia)

(© Matthew Adam Skala, 2001
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by
photocopy or other means, without the permission of the author.

i

Supervisor: Dr. Wendy Myrvold

ABSTRACT

An algorithm is presented and proved to generate one representative from every
isomorphism class of embeddings on the torus of graphs with certain properties.
Implementation issues, possible applications, and experimental results from an im-
plementation of the algorithm are described, including the determination of all bi-
connected topological obstructions to torus embeddability containing ten or fewer

vertices.

Examiners:

Dr. Wendy Myrvold, Supervisor (Dept. of Computer Science)

Dr. Ulrike Stege, Departmental Member (Dept. of Computer Science)

Dr. Gary MacGillivray, Outside Member (Dept. of Mathematics and Statistics)

Dr. Richard Anstee, External Examiner (Dept. of Mathematics, University of
British Columbia)

Contents

Abstract

Contents

List of Tables

List of Figures

Acknowledgments
1 Introduction

2 Definitions and notation
2.1 Graphs.
2.2 Surfaces and embeddingso
2.3 Target embeddings oL
2.4 Moves and sets of moves

2.5 The generation algorithm

3 Choosing a set of moves
3.1 A three-move sufficient set
3.2 The three-move set is minimal

3.3 A two-move minimal sufficient set

il

ii

iii

vi

viii

© =~ R

10
12

Diamonds
4.1 Some notes on diamonds
4.2 Only one diamond is necessary

4.3 Twisted diamonds

Other aspects of the algorithm

5.1 A canonical form for embeddings
5.2 Move labels
5.3 Edgemarking Lo

Experimental results
6.1 Implementation of the algorithm

6.2 Diamond-free targets upton =10

Applications and future work

7.1 A lookup-based toroidality tester
7.2 Searching for torus obstructions
7.3 Othersurfaces

7.4 Conclusions,

List of Tables

6.1
6.2
6.3
6.4

7.1

Counts of diamond-free target embeddings on the torus. 78
Counts of diamond-free target graphs on the torus. 79
Maximum numbers of torus embeddings for diamond-free target graphs. 80

Mean number of torus embeddings per diamond-free target graph. . 81

Biconnected topological obstructions for the torus with up to ten

VErtiCeS. 88

List of Figures

21 Adiamond. 5
2.2 Some representative graphs.o L 6
2.3 A drawing of a graph on the plane, and a corresponding combinato-

rial embedding.o 8
2.4 Some examples of moves 11
2.5 The eight seed embeddings for our algorithm. 14
3.1 Asuper-diamond. 20
3.2 Adding a diamond without changing the genus. 21
3.3 Vertex names for the proof of Theorem 3.1.4.. 24
3.4 Finding a path from w to v containing w, in Hy. 28
3.5 Kyminusanedge. Lo 28
3.6 Removal of the cut vertex v must split C' — e into exactly two con-

nected components: one planar, and one nonplanar. 31
3.7 The biconnected component H. 32
3.8 Vertex names when u is on three triangles. 33
3.9 Exploding a vertex to create degree three vertices each adjacent to

two others. 40
3.10 Chord moves as sequences of Cp; and &;; moves. 44
3.11 Diamond moves as sequences of Cp; and &7 moves. 44

3.12 Slmulatlng 6273 with CLQ and 71,1. 45

vi

3.13 Simulating D35 and Dyg with Doy and Tiq. oo oL L. 46
4.1 The two situations where a reverse Dy 4 move would create a diamond 50
4.2 How a reverse 7;; move can create a diamond. 51
4.3 How a reverse 7;; move can create two diamonds. 52
4.4 Why contracting (u, w) does not change the genus. 52
4.5 How a reverse Cp; move can create a diamond. 53
4.6 Some twisted diamonds. oL 51
4.7 A diamond-free target embedding that cannot be generated without

a twisted diamond.o 57
4.8 Illustration of the general Doy move. 57
5.1 A D, 4 move can be applied to any of four edges in this parent to

give the same child. o oo 65
5.2 How tolabel moves. o oo 66
5.3 A potential Cy; move, which could be labelled in four different ways. 67
5.4 Two different moves may create the same child from the same parent. 68
6.1 One of the 9,748 torus embeddings of the unique ten-vertex diamond-

free target graph with maximum number of torus embeddings. . . . 82
7.1 The graph K73, a topological obstruction to torus embeddability. . 87
7.2 The obstruction not found by Neufeld and Myrvold [34, 33]. 88

vil

Acknowledgments

The author’s work was supported by an NSERC Postgraduate Scholarship (PGS
A) from May 2000 onwards, and by a University of Victoria Fellowship prior to
that. Thanks also to the author’s academic supervisor, Wendy Myrvold, for all her
help and support; to Staszek Radziszowski for computer processing resources; and

to Meredith Tanner for some words of wisdom.

Viil

Chapter 1

Introduction

Graphs describe patterns of connections between things, in an abstract and powerful
way. We can deal with graphs mathematically as purely abstract entities, without
invoking any concept of space. But as soon as we try to visualise a graph, we have
to place it in a physical space, and immediately we encounter topological questions.
One of the simplest topological questions we can ask about a graph is whether or
not we can draw the graph on a given surface without any of the edges crossing.
That is the central question considered in this work.

Embedding problems appear in many real-world situations. For instance, if we
use a graph to represent a network of rail lines between cities, we may wish to
know whether we can lay out the tracks to maintain the pattern of connections
without needing any bridges. A similar situation occurs on a smaller physical scale
in the design of electronic circuits. There, each chip may contain many components,
and each board may contain many chips, and in both cases there is a pattern of
connections between them which must be maintained. In these kinds of situations
we may be allowed to use some limited number of crossings between connections,
but such crossings are expensive and may not always be available.

Graphs embedded on surfaces are of interest in more purely theoretical situations

also. Some things we would like to do with graphs are easier to do when the graphs

are embedded. For instance, the graph isomorphism problem, which is not known to
be polynomial-time in the general case [36], can be solved in linear time for graphs
embedded on the plane [18, 23]. Since graphs that embed on specific surfaces appear
especially desirable both for physical applications and in more abstract situations,
it becomes natural to ask how we can find such graphs. Perhaps we could even
hope for exhaustive lists of them.

The plane is naturally the first surface on which we might want to embed graphs,
and many results are known on planar graphs. The graph isomorphism problem
is easier for planar graphs than for general graphs, as mentioned above. Several
algorithms are known for testing whether a graph is planar [10, 11, 14, 15]. Some
work has also been done on generation of planar graphs [12]. The projective plane is
interesting as the simplest non-orientable surface. Graphs known to be projective
planar can have their orientable genus computed in polynomial time [16]. Some
algorithms are known for embedding graphs on the projective plane [29, 32, 35] and
for generating limited classes of projective planar graphs [6, 7.

In this work we consider graphs embedded on the torus. More specifically, we
generate all embeddings of diamond-free target graphs (defined in Section 2.3) on
the torus. The torus appears to be the next logical step after examination of the
plane and projective plane, and this work began with the question of generating
randomly-chosen test cases for the “practical torus embedding” code of Neufeld
and Myrvold [34]. We expanded the project to cover exhaustive generation of
target embeddings. It then gave a method for obtaining torus obstructions (see
Section 7.2) without needing a separate torus embedding algorithm.

Algorithms to embed graphs on the torus have been studied by Juvan, Marincek,
and Mohar [24] as well as by Neufeld and Myrvold [34, 33]. There is an algorithm
by Filotti [17] for embedding cubic graphs on the torus. Some general results for
embedding on arbitrary surfaces, for instance the linear-time embedding algorithm
of Mohar [30], could be applied to the torus. Unfortunately, that algorithm has not

been implemented and appears difficult to implement practically. The generation

results of Barnette [7] for 4-connected graphs can also be applied to the torus as
well as the projective plane. In our generation work, we have chosen a set of target
graphs intended to make the resulting lists as useful as possible for study of the
embedding problem, while still being easy to generate.

We have also chosen to generate embeddings of toroidal graphs rather than
merely the graphs themselves. This choice appears to make the generation algo-
rithm easier, but it also allows us to study how many embeddings exist for each
graph. The equivalent question on the plane has been studied by Chiba, Nishizeki,
Abe, and Ozawa [14], and Cai gives a simplified algorithm for counting planar em-
beddings [13]. Because we generate embeddings exhaustively, we can find how many
torus embeddings any given graph has simply by counting them in the output.

The next chapter contains definitions of terms and notation used in this work.
We then discuss in Chapter 3 the operations we perform on embeddings, and prove
that our algorithm can generate all target embeddings. In Chapter 4 we discuss
the effect of a subgraph called a “diamond” (defined in Section 2.1) and special
diamond-related considerations for our algorithm. After that, we discuss some
implementation issues in Chapter 5, and present experimental results in Chapter 6.

We conclude in Chapter 7 with proposed applications and future work.

Chapter 2

Definitions and notation

Before discussing our results, we define some terms and notation used throughout
the work. First we describe basic concepts of graphs and graph theory in Section 2.1.
In Section 2.2 we introduce the concept of a surface and discuss graphs embedded on
surfaces. In Sections 2.3 and 2.4 we describe the class of embeddings we generate,
and the moves and starting points used to generate them. Then in Section 2.5, we

describe the generation algorithm.

2.1 Graphs

A graph G consists of a finite set V' of vertices and a finite set E of edges where
each edge in F is associated with an unordered pair (u,v) of elements of V; the
edge (u,v) is incident to or has as endpoints the vertices u and v. We disallow
multiple edges (more than one edge with the same endpoints), and loops (edges of
the form (u,u)).

The number of edges incident to a vertex is the degree of the vertex. The vertices
w and v are adjacent if there is an edge (u, v) in the graph, and the vertices adjacent
to a vertex u are called the neighbours of w.

Two graphs G; and G are called isomorphic if there is a bijection ¢ from the

Figure 2.1: A diamond.

vertices of Gy to the vertices of G5 such that (u,v) is an edge in G if and only if
(¢(u), #(v)) is an edge in Go.

To subdivide an edge (u,v) in a graph means to introduce a new vertex w, add
edges (u,w) and (w,v), and remove the edge (u,v). Two graphs are homeomorphic
if there is a graph G such that they each can be obtained from G by relabelling
vertices and subdividing edges.

A graph G is called a subgraph of a graph H if the edge and vertex sets of GG
are subsets of the edge and vertex sets, respectively, of H. Let V be the vertex set
of G, a subgraph of H. If G contains every edge in H whose endpoints are both in
V, then G is called the subgraph of H induced by V.

If two adjacent degree three vertices u and v share the same other two neigh-
bours, in other words the neighbours of v are {v, w, z} and the neighbours of v are
{u,w, x}, then the resulting subgraph, shown in Figure 2.1, is called a diamond and
the edge between u and v is a diamond edge. There may or may not be an edge
between w and x. A graph is diamond-free if it contains no diamond edges.

Consider a graph with vertices {vy,vs,...,v,} and edges

{(v1,v2), (v2,03), .-+, (Un_1,0p), (Vn,v1)}

for some n greater than or equal to three. A graph isomorphic to this one is called
a cycle of length n. Similarly, a graph with n vertices, all pairwise adjacent to each
other, but no multiple edges or loops, is called the complete graph on n vertices

and denoted by K,. Observe that K3 is a cycle of length three, which we will

(a) Ks (b) K33 (c) A five-vertex

wheel

Figure 2.2: Some representative graphs.

call a triangle. We also refer to K33, obtained by taking two disjoint sets X and
Y of three vertices each, using their union as the vertex set, and adding an edge
from each vertex in X to each vertex in Y. The graphs K5 and K33 are shown in
Figure 2.2.

If we start with a cycle of at least three vertices and add one more vertex with
edges from the new vertex to each vertex of the cycle, the resulting graph is called a
wheel. A five-vertex wheel is shown in Figure 2.2. Observe that the smallest wheel
is isomorphic to Kjy.

A sequence of distinct vertices (vy,vs,...,vx), where each pair of consecutive
vertices is adjacent, is called a path with endpoints v; and v,. Two paths are called
internally verter disjoint if they have no vertices in common except possibly the
endpoints. A graph G is connected if for every pair of vertices ¢ and b in G, G
contains a path from a to b. A graph G is biconnected if it is connected, and the
graph obtained by deleting any one vertex is still connected. More generally, G is
k-connected if G has greater than £k vertices and we can remove any set of fewer
than k vertices and the edges incident to them and always have the remaining graph
be connected.

A k-connected component of a graph G is a subgraph H of G such that H is

k-connected but is not a proper subgraph of any other k-connected subgraph of G.
A set of k vertices whose removal increases the number of connected components is
called a k-cut, and the single vertex in a 1-cut is called a cut vertex. Note that our
k-cuts can be described more precisely as k-vertex cuts; it is also possible to define
a k-edge cut of edges which can be removed to disconnect a graph, but we do not
use that concept in this work.

To contract an edge (u,v) means to remove the edge (u,v), then identify u and
v. The reverse operation of contracting an edge is called splitting a vertex. We say
that a graph G is a minor of a graph H if G can be obtained from H by the minor
operations of removing edges, removing vertices of degree zero, and contracting

edges.

2.2 Surfaces and embeddings

Although we will not discuss the topology of surfaces extensively, except as it applies
directly to this graph-theoretic work, we will define a surface as a topological space
in which any two distinct points have disjoint neighbourhoods, and every point has a
neighbourhood topologically equivalent to a two-dimensional open disc. Intuitively,
a surface is a space that looks like a plane, when examined within a small enough
neighbourhood.

The classification of surfaces is well known, and described in detail in intro-
ductory textbooks on topology, such as that by Kinsey [25]. Surfaces are uniquely
determined by the properties of genus and orientability. The genus may be any
nonnegative integer, and if the surface has genus greater than zero, it may be ori-
entable or non-orientable. The plane, equivalent to the sphere, is the only surface
of genus zero, and is orientable. Genus may be thought of intuitively as describing
the number of handles or bridges on the surface, and orientability as describing
whether or not the surface has a well-defined sense of clockwise.

After the plane the remaining orientable surfaces are called the torus, with genus

one, and the k-handled torus for each k greater than one, with genus k. We call
the non-orientable surface with genus one the projective plane, and with genus two
the Klein bottle.

In this work we deal with combinatorial embeddings, which represent drawings
of graphs on orientable surfaces. A combinatorial embedding consists of a list, for
each vertex in the graph, of the neighbours of that vertex in clockwise order. An
example of a combinatorial embedding is shown in Figure 2.3. The adjacency lists
are cyclic, in that we can start at any neighbour; the lists (u, v, w, z) and (v, w, z, u)
are equivalent. Reversing a list would violate the clockwise ordering and is not
allowed. Two combinatorial embeddings are isomorphic if one can be obtained
from the other by relabelling vertices, choosing a starting point for each adjacency
list, and possibly reversing all adjacency lists at once (which can be imagined as

mirror-reversing the embedding).

0:(1,4,2)
1:(0,2,3,4)
2:(1,0,3)
3:(4,1,2)
e 9 4:(0,1,3)

Figure 2.3: A drawing of a graph on the plane, and a corresponding combinatorial

embedding.

Drawing a graph on a surface divides the surface into regions called faces, and
a simple algorithm applied to a combinatorial embedding can count the faces and
find the sequence of vertices around each face [3, Section 2.5]. If every face contains
three vertices, then the embedding is called a triangulation. From the combinatorial
embedding of a connected graph with n vertices, m edges, and f faces, we can
calculate the genus of the embedding ¢ with the formula ¢ = (m —n — f + 2)/2
22].

A combinatorial embedding describes a drawing of a graph on the orientable
surface with the corresponding genus. The existence of combinatorial embeddings
allows us to define embeddability: a graph G is said to be embeddable on an ori-
entable surface S if there exists an embedding of G with genus no greater than
the genus of S. The orientable genus of a graph is the least genus of an orientable
surface on which the graph is embeddable. Graphs with orientable genus zero are

called planar and with genus one toroidal.

2.3 Target embeddings

A move is an operation we can perform on a combinatorial embedding to produce
another combinatorial embedding with more edges. The generation algorithm (de-
scribed in Section 2.5) starts from a set of embeddings called seeds (defined below)
and applies moves from a fixed set of types to generate target embeddings. We
describe our choices for the target embeddings here, and move types and seeds in

the next section.

Definition 2.3.1 A target graph is a graph G such that:
e (G has orientable genus one;
e (G has no vertices of degree less than three; and

o (G is biconnected.

A target embedding is a combinatorial embedding of a target graph on the torus.
The complete algorithm as we eventually implemented it uses an additional restric-
tion, generating diamond-free target embeddings, because we consider diamond-free
embeddings more topologically interesting. We define target embeddings as above
to simplify the discussion in Chapter 3. We then build the more specific results

applicable to the final form of our software, in Chapter 4.

The seeds for a given set M of moves are those target embeddings that cannot
be generated from other target embeddings by moves in M. Since a move increases
the number of edges in an embedding, it follows that any target embedding may be

generated from some seed by a sequence of moves in M.

2.4 Moves and sets of moves

Here we define all the types of moves we consider in this work. All these moves
maintain the genus of an embedding and affect at most a constant number of ver-
tices and edges, and all our moves increase the number of edges in the embedding.
With one exception, all the moves also preserve the other conditions on target em-
beddings: biconnectivity and no vertices of degree less than three. The expection
is that that the &) ; move introduces a degree two vertex. Although moves formally
take place on embeddings, we often discuss the corresponding graph operations
using the same symbols.

We denote types of moves with symbols like M,, ,,,, where M is a mnemonic
letter representing the general kind of move, n is the number of vertices added by
this move, and m is the number of edges added by this move, which is always at
least one. We also define reverse moves, as the inverses of the forward moves. Re-
verse moves do not always preserve the constraints preserved by the corresponding
forward moves; for instance, removing an edge can reduce the connectivity of the
graph in an embedding, whereas adding an edge can never reduce the connectivity.

An 81 move consists of subdividing an edge (u,v) into two edges by adding a
new vertex. The edge (u,v) is removed, a new vertex w is introduced, and edges
(u,w) and (w,v) are added. Note that the new vertex has degree two, so the
resulting embedding is not a target embedding. The S;; move type is used in
defining other moves that do preserve the target properties.

A Cp,1 move consists of adding an edge in a face of the embedding, between two

vertices not already adjacent to each other. To make a C; » move, we first subdivide

10

EDTC()9]6(
KHHX ED—C(

> icﬁiiiﬁ
ﬁqi? W

o «
| X

oo o g

(8) Das (h) Tia

Figure 2.4: Some examples of moves

11

an edge as with an &;; move, then add a new edge from the new vertex to some
other vertex on a face containing the divided edge. The move type Cs3 consists of
using two S ; moves to subdivide two edges on the same face, then adding an edge
through the face, between the two new vertices.

Move types D4, D35, and Dyg each consist of removing an edge of the em-
bedding and replacing it with a subgraph including a diamond, as shown in Fig-
ures 2.4(e), 2.4(f), and 2.4(g). If the edge being removed appears twice on the
same face, or if it is incident to a vertex that appears more than once on the same
face, then there may be two or more inequivalent ways to embed the newly-added
subgraph while maintaining the rest of the embedding. This issue is discussed in
detail in Chapter 4.

A 71, move consists of splitting a vertex into two adjacent vertices, in such
a way that at least one of the new vertices has degree three. The restriction to
creating a degree three vertex may seem mysterious, but the only occasions where
we have a reason to make a vertex-splitting move are those where we are creating
a degree three vertex anyway. Making the restriction explicit allows us to simplify
the computer software based on these results.

We say that a set of move types M is sufficient with a given set of seeds if every
target embedding can be generated from one of the seeds by a sequence of moves
from M. Obviously, if M is sufficient then every superset of M is also sufficient,
and if M is not sufficient, then no subset of S is sufficient. We call a set of moves

minemal if it is sufficient but has no proper subset that is sufficient.

2.5 The generation algorithm

Although many of the details involve concepts that have yet to be discussed, we
present the overall generation algorithm here, to motivate the details presented in
subsequent chapters. We follow a general algorithm of orderly generation similar to

that described by McKay [28]. Our goal is to generate one representative for each

12

isomorphism class of diamond-free target embeddings, up to a chosen number of
vertices and/or edges.

We use the move set {Cp 1, D24, 71,1} and the set of seeds consisting of all embed-
dings on the torus of K5 or K3 5. There are eight embeddings (up to isomorphism) in
that set, enumerated by Argyle [5], and they are shown in Figure 2.5. In Chapter 3
we show that these moves and seeds are sufficient to generate all target embeddings,
and in Chapter 4 we show that they continue to be sufficient when we introduce a
limit of at most one diamond in each embedding.

Any target embedding C' either is one of the seeds, or has a parent P which is
another target embedding with fewer edges than C', such that C' can be obtained
from P by a Cy 1, Dag, or Ty move. If P is the parent of C, then C is a child of
P. The existence of parents is proved in Chapter 3, along with some discussion of
other sets of moves and seeds we considered using.

In order to generate all diamond-free target embeddings, we sometimes need to
examine target embeddings containing one diamond, as discussed in Chapter 4. It
is not clear which target embeddings with one diamond are necessary to generate
all diamond-free target embeddings. Rather than spending computation time in a
complicated test for whether a diamond is really necessary, we examine all target
embeddings with at most one diamond. We do not, however, need to consider
embeddings containing more than one diamond. For any target embedding with at
most one diamond, other than a seed, we can find a parent with fewer edges and at
most one diamond (proved in Theorem 4.2.1); therefore we can eliminate all target
embeddings with more than one diamond.

There are a few more details necessary to make sure we generate exactly one
representative for each isomorphism class of diamond-free target embeddings. A
canonical form for an embedding is an object representing the embedding such
that two embeddings are isomorphic if and only if they have the same canonical
form. The particular canonical form we use is discussed in Section 5.1. When we

consider an embedding as a possible parent for a given child, we generate a copy

13

14

A A A A A A
= = =
= = =

(a) K3 (b) Ks (c) Ks

A A A A A A
— — —
— — —

(d) Ks (e) K5 (f) Ks
A A A A
= =
= =
(8) K33 (h) K333

Figure 2.5: The eight seed embeddings for our algorithm.

of the child’s parent by a reverse move, and use the canonical form to compare the
possible parent with the parent. We also define mowve labels in Section 5.2, which
are sequences of vertex labels expressing where in a parent embedding we can make
a move to get to the child embedding. Sometimes two different moves can generate
the same child from the same parent; move labels, along with the automorphism
group calculated during the canonical labelling, allow us recognize that situation
and generate the child exactly once.

The following pseudocode describes our algorithm for finding a parent, with
all the applicable restrictions. Note that the parent-finding algorithm returns two
things: the parent P itself, and a canonical move label for a move to make on P to
give the child C'. Since every C' we will pass into this code has some parent meeting
the conditions we test, the algorithm must return some parent and move label. We
never attempt to find the parent for a seed. It is important that PARENT(C}) and
PARENT(C3) be the same for any isomorphic C and Cy; in our implementation, we

achieve that by calling PARENT only with canonically labelled input embeddings.

PARENT(C) :
for each reverse move M we can apply to C, in some deterministic order
apply M to C to obtain P
if P is a target embedding containing at most one diamond
canonically label P, finding its automorphisms as a side effect
R < move label for the inverse of M
R < least image of R under any automorphism of P
return (P, R)
end if

end for

Note that because every target embedding with at most one diamond has a
parent which is a target embedding with at most one diamond (except seeds, which

are never used as inputs to PARENT), PARENT must return some parent before the

15

16

loop terminates. The subroutine PARENT is written with care to make its return
value a deterministic function of the canonically-labelled input. As a result, even if
the same child could be reached from the same parent by two inequivalent moves,
the move from parent to child will only match the move label R once, and so we
will still generate the child exactly once.

We use PARENT in a recursive algorithm to do the actual generation. The follow-
ing pseudocode describes an algorithm called GENERATE, which takes a target em-
bedding P with at most one diamond as an argument, and writes out all diamond-
free target embeddings descended from P, including P if it is itself diamond-free, up
to some preset limit on the number of edges and vertices. To generate an exhaustive

list, we simply call GENERATE once with each of the eight seeds.

GENERATE(P) :
if P has more vertices or edges than the preset limits
return
end if
if P is diamond-free
output P
end if
for each move label M describing a move from {Cp1, D24, 71,1} that
we can apply to P
if M is the lexically least image of itself under any automorphism of P
find C' by applying the move to P described by M
canonically label (', finding its automorphisms as a side effect
if C' contains at most one diamond and (P, M) = PARENT(C)
GENERATE(C)
end if
end if

end for

Examination of this pseudocode will reveal a few potential inefficiencies; for
instance, if P already contains one less edge than the limit, then there is no point
even considering Dy 4 moves which would create children too large to output. In
our C language implementation of the algorithm we address many of these kinds of
issues; the description here is intended to explain the algorithm as clearly as possible

rather than provide an exhaustive guide to the features of the implementation.

17

Chapter 3

Choosing a set of moves

The question of which moves to use was central to the design of our generation
algorithm, and in the course of our work we tried several different sets. In this
chapter we first describe the set we finally settled on, consisting of the three move
types {Co1, D24, 711} In Section 3.1 we prove this set to be sufficient to generate
all target embeddings, then in Section 3.2 we prove it minimal and discuss why it
is an especially attractive minimal move set. Finally, in Section 3.3, we describe
some of the other choices we considered, because the process of evolution from the
original concept to this three-move set may be of interest.

In this chapter we discuss target graphs: biconnected graphs with genus one
and all vertices of degree at least three. We discuss target graphs first, rather than
beginning with the restricted class we eventually considered, so as to simplify the
proofs. We use the term target graphs for these graphs, rather than for the more
restricted graphs output by our software, so as not to have to make exceptions
throughout this chapter. Making this definition does require us to make exceptions
later, when we discuss diamond-free target graphs, but in those contexts we also
need to discuss target graphs containing at most one diamond, target graphs con-
taining exactly one diamond, and so on. In this chapter, it is useful to be able to

ignore diamonds as far as possible.

18

3.1 A three-move sufficient set

Before beginning the proofs relating to existence of parents, we note that all the
properties defining a target embedding are actually properties of the underlying
target graph. The only way an embedding of a target graph could fail to be a
target embedding would be if the genus of the embedding (not the graph) were not
equal to one. None of the moves defined in Section 2.4 can increase the genus of
an embedding, and although a reverse move in general can decrease the genus of
an embedding, it cannot do so if the embedding was already genus one and the
graph remains toroidal. An embedding of a toroidal graph cannot have genus zero.
Therefore, we will generally talk about the existence of target graph parents for
target graph children, rather than discussing embeddings. If a target graph C' has
a reverse move to a target graph P, then any torus embedding of C' has a reverse
move to some torus embedding of P, so the results apply equally well to target
embeddings.

Fundamentally, what are the moves we need in our set? Since the graph minor
hierarchy is central to the embedding problem, and the set of embeddable graphs on
a surface is easily characterized in terms of forbidden minors [37], it seems natural
that we should use moves resembling the reverse minor operations: splitting a
vertex, or adding an edge. As long as we consider only connected graphs, there is
no need to insert degree zero vertices.

Adding an edge seems simple enough, and corresponds to our Cy; move. Split-
ting a vertex is a more complicated operation. It would be nice to restrict it in some
way, to make computer implementation easier. It would also be nice to disallow
splits that create degree two vertices, since degree two vertices clearly make no dif-
ference to the topological properties of the graph. Note that S;; can be imagined
as splitting one of the neighbours to create a degree two vertex, instead of our usual
description of it as subdividing an edge. In our three-move set, we restrict the split

operation to always create a degree three vertex.

19

Figure 3.1: A super-diamond.

But with the split operation so restricted, we face the question of how to create
diamonds, which are the subject of Chapter 4. We could disallow diamonds, as
we disallowed degree two vertices, but then we would have no obvious way to
create an infinite number of larger “banana-like” kinds of subgraphs, including the
super-diamond of five vertices and seven edges, shown in Figure 3.1. We could
perhaps disallow all such structures, by requiring that target embeddings be 3-
connected, but then we might be faced with testing for 3-connectedness frequently
in the software, as well as possible theoretical complications. Our decision was to
require only biconnectedness from target embeddings, and have a special move, the
D, 4 move, for creating diamonds.

The above intuitive description argues for why each of the moves in our three-
move set may be necessary, but does little to justify the claim that they are sufficient
to generate all target embeddings. Indeed, the sufficiency of this move set is far from
obvious. The following obvious theorem is the beginning of our formal argument
for sufficiency of the three-move set; we then complete the proof, and explore other

features of this move set and its ability to generate target embeddings.

Theorem 3.1.1 If a graph C can be obtained from a graph P by a Dy 4 move, then

P and C have the same orientable genus.

Proof. If P is embeddable on a surface S, and (u,v) is the edge we can replace
with a diamond to obtain C', then we can start with an embedding of P on S and

introduce two new vertices w and x. We replace v with the subsequence (w,x) in

20

Figure 3.2: Adding a diamond without changing the genus.

the clockwise adjacency list of u, and replace u with the subsequence (z,w) in the
clockwise adjacency list of v. We also give w the clockwise adjacency list (u,v,x)
and z the list (u,w,v). The result of these operations is illustrated in Figure 3.2;
the dashed line shows the position of the original edge (u,v). The resulting graph
is C'. We have added four edges, two faces, and two vertices; by the formula in the
definition of genus for embeddings, we have not changed the genus of the embedding.
So if P is embeddable on S, then so is C'.

Although there may also be other ways to add a diamond to the embedding of
P (see Section 4.3), it suffices that we can make the replacement in this one way
and maintain the genus of the embedding. This proof concerns the genus of graphs,
and the existence of any embedding of C' on the torus shows that the genus of C' is
at most one.

Conversely, if C' is embeddable on a surface S, we can start with an embedding
of C'on S and reverse the D, 4 move, removing four edges, two vertices, and up
to two faces. The number of faces removed may be less than two because we may
sometimes remove an edge that appeared twice on a face. Thus, the genus of the
resulting embedding of P may be less than the genus of the embedding of C, but is
certainly no greater; so P is also embeddable on P. Recall that “P embeddable on
S” is true if there is an embedding of P with genus less than or equal to the genus
of 5.

Therefore for any surface S, P is embeddable on S if and only if C' is embeddable

on S; the graphs are embeddable on the same surfaces, and have the same orientable

21

genus. [l

By the result known as Kuratowski’s Theorem [26, 19, cited in [3]], any graph
that is not planar must contain a subgraph homeomorphic to K5 or K3 3; we call
that subgraph the Kuratowski subgraph. Thus, any target embedding must contain
a subembedding of a graph homeomorphic to K5 or K33. We make use of that
property in proving the existence of parents for target embeddings. Given a target
embedding E, we can always find a subembedding of £ which is an embedding of
a graph homeomorphic to K5 or K33. We colour the chosen subembedding red,
and define the red-degree of a vertex in E to be the number of red edges incident
to that vertex. The vertices in the red subgraph with red-degree not equal to two
are called main vertices [29]. Note that no vertex can have red-degree one, because
then the red subgraph could not be homeomorphic to K5 or K3 3. We may change
the colouring later, but will always preserve the property that the red subgraph
is homeomorphic to K5 or K33, and therefore nonplanar. The following lemma is

useful in manipulating the red colouring.

Lemma 3.1.2 If a graph G with a red-coloured subgraph homeomorphic to Ks or
K;3 contains a triangle with vertices {u,v,w} and edges e = (u,v), f = (v,w),
and g = (w,u), and no edges incident to u are red except possibly e and g, then
the set of red edges in the triangle must be {e, g}, {f}, or the empty set, and we
can freely exchange the two nonempty possibilities while keeping the red subgraph

homeomorphic to Ky or K 3.

Proof. Since no other edges incident to u are red and the red-degree of u cannot
be one, e and g must be both red or both not red. All three edges in the triangle
cannot be red because then u would have red-degree two and by eliminating u the
red subgraph would contain a multiple edge and not be homeomorphic to K5 or
K3 3. That leaves only the listed possibilities for the set of red edges in the triangle.

If H, is the red subgraph when f is the only red edge in the triangle, and H,
is the red subgraph when e and g are red but f is not, then the graph obtained by

22

starting from H; and subdividing f is isomorphic to Hy. Recall that no other edges
incident to u can be red. Then H; is homeomorphic to H, and so if one of them is

homeomorphic to K5 or K33, the other must also be. [

The red colouring allows us to prove results about edges that can safely be
removed or contracted without making the graph planar, because as long as we do
not disturb the red subgraph too much, the graph must remain nonplanar. There
will be times when we change the colouring, to make certain edges red or not, but
in all cases, we preserve the property that the red subgraph is homeomorphic to K

or K3,3.

Lemma 3.1.3 Let C be a target graph containing a red-coloured subgraph homeo-
morphic to K5 or K3, as described above. If we contract an edge e in C' with a
degree three endpoint u by a reverse Ty move, where e may or may not be red but
the other two edges incident to u are not both red, and assuming that the reverse

71,1 move does not create a multiple edge, then the resulting graph P is not planar.

Proof. Since C' contains a red subgraph homeomorphic to K5 or Kj 3, the graph P
can only be a planar graph if the edge contraction makes the red subgraph planar.
We can also change the colouring as described in Lemma 3.1.2 without changing the
homeomorphism of the red subgraph to K5 or K3 3. Contracting an edge can make
the red subgraph not homeomorphic to K5 or K33 in only two ways: by identifying
two main vertices, or by identifying a vertex u that is not a main vertex with a
neighbour v that is red, but where the edge (u,v) is not red.

Because the two edges other than e incident to u are not both red and w has
degree three, the red-degree of v can be at most two. It cannot be one because no
vertex has red-degree one, so it must be zero or two. Then wu is not a main vertex
of the red subgraph. If the red-degree of u is zero then contracting the edge cannot
make the red subgraph planar because all the red vertices and edges are unchanged

by the operation. If the red-degree of u is two, that also means that e is red, and

23

Figure 3.3: Vertex names for the proof of Theorem 3.1.4.

then we are contracting a red edge with an endpoint that is not a main vertex, and

so the red subgraph is still homeomorphic to K5 or K3 3. [

With Lemma 3.1.3 providing a sufficient condition under which we can make a
reverse 71 ; move and preserve nonplanarity, we are ready to begin finding possible
parents for target graphs. The following theorem shows that if we can generate all
diamond-free target embeddings, then we can generate all target embeddings with
one or more diamonds. This theorem does not place any restrictions on the number

of diamonds in the parent.

Theorem 3.1.4 Any target graph C that contains a diamond can be obtained from
a target graph P with fewer edges by some move in the set {Co 1, D24, T1}-

Proof. Let (u,v) be the diamond edge, and w and z be the two neighbours
shared by u and v, as shown in Figure 3.3. If there is an edge (w,z) then we can
remove that edge with a reverse Cp; move. The graph P has fewer edges than
C. The graphs P and C' must have the same genus because by Theorem 3.1.1 we
can replace the diamond with an edge in each one, without affecting the genus, to
obtain two graphs that are the same except for the presence of a multiple edge and
so have the same genus.

The graph P is biconnected because there are still two internally vertex disjoint
paths between w and x, namely (w,u,z) and (w,v,z). Finally, P has all vertices
of degree at least three. Only w and x have their degrees reduced by the reverse

move. If w had its degree reduced to two, then either x was a cut vertex of C', or

24

C was Ky; similarly, if « had its degree reduced to two, then either C' was K, or w
was a cut vertex of C'.

If there is no edge (w,x) in C, we consider the degrees of w and z. If one
of them (we say without loss of generality w) has degree three, we call its third
neighbour (besides u and v) y. We will contract the edge between w and y with a
reverse 711 move to get a target graph P with fewer edges than C'. The contraction
of (w,y) cannot create a multiple edge because then y and w would have to be
part of a triangle, and the third vertex would have to be u or v. But we already
know three distinct neighbours for each of those already; the only way {w,y,u} or
{w,y,v} could be a triangle would be if x and y were the same vertex, in which
case there would be an edge (w, z), and that possibility was considered above. Since
both endpoints have minimum degree three, the edge contraction cannot reduce the
degree of any vertex. Contracting (w,y) could only reduce the connectivity of the
graph if {w,y} were a two-vertex cut, and then each of them would also be a cut
vertex, contradicting the biconnectedness of C'. Contracting an edge cannot increase
the genus of a graph. Thus, it only remains to show that contracting (w,y) does
not reduce the genus of the graph.

Suppose we eliminate the diamond with a reverse D, 4 move to create a graph
H, which contains at least one degree two vertex (namely w) and so is not a tar-
get graph, but is nonplanar by Theorem 3.1.1. We can colour a red subgraph of
H homeomorphic to K5 or K33 as above, then replace the diamond to obtain a
colouring of C'. If the edge (w,z) was red in H then we colour red the edges (w, u)
and (u, z); other than that, all the edges introduced when we replace the diamond
remain uncoloured. Then (w,u) and (w,v) are not both red, so by Lemma 3.1.3
the graph P is nonplanar and therefore P is a target graph.

The only remaining case for the theorem occurs if w and x both have degree
greater than three, with no edge (w, x). In that case, we can perform a reverse Dy 4
move to eliminate the diamond, giving a graph P. A reverse Dy 4 move must leave

the genus of the graph unchanged, by Theorem 3.1.1. The reverse move does not

25

create a multiple edge because there is no edge (w,z) in C. Because w and x have
degree greater than three in C' and each has its degree reduced by one, their degrees
in P are still are least three. The graph P must be biconnected because if there
were a pair of vertices y and z which had two paths between them and distinct at
the endpoints in C' but not in P, then both those paths must have passed through
w and x. Then x or y would have to be a cut vertex in C', unless they each had no
other neighbours besides u and v; either choice contradicts the definition of C' as
a target graph. Therefore P has genus one, is biconnected, and has all vertices of

degree at least three, and so is a target graph. [J

When looking for a parent of a diamond-free target embedding, our reverse move
must necessarily be a reverse Cy; or 7;; move, because the reverse D, 4 move can
only be applied to a target embedding containing a diamond, and sometimes not
even then. It is easy to find edges that can be removed while preserving nonpla-
narity; any non-red edge will do. Finding edges we can contract while preserving
nonplanarity is also easy.

We can only apply a reverse Cp; move when both endpoints of the edge we
removed have degree greater than three, or else the resulting embedding would
have vertices of degree two and would not be a target embedding. We can only
apply a reverse 77, move to contract an edge with at least one endpoint of degree
three, and only when the edge is not part of a triangle, to avoid creating multiple
edges. With either reverse move, we must preserve the biconnectedness of the graph.
The following lemma gives a sufficient condition for changes in a graph to preserve

biconnectedness.

Lemma 3.1.5 Let G be a biconnected graph. Let Hy be a biconnected subgraph of
G joined to the rest of Gy by exactly two distinct vertices u and v; that is, u and v
are the vertices of Hy adjacent to vertices of G not in Hy. Let Hy be a biconnected
subgraph of Hy containing u and v, and let Gy be the graph formed from G by
replacing H, with Hy. Then G5 is biconnected.

26

Proof. Let w and z be any two distinct vertices in G5. If both w and x are in Hj,
then there must be a cycle including these two vertices in Hy and so in G, by the
biconnectedness of Hy. If each of w and x either is not in Ho, or is one of u and v,
then we can find a cycle including both of them in G;. If that cycle includes any
edges of Hy, then its intersection with H; must consist of a path from v to v. Then
we find a path from u to v in H,, and replace the path from u to v in H; with the
path from u to v in Hy, to give us a cycle including w and x in Gb.

The remaining case is where one of w and x is not in Hs, and the other is in
Hs and is not u or v. Say without loss of generality that w is in Hs and is not u or
v. Then we find a cycle C] including w and x in GG;. The intersection of C'; with
H, must consist of a path between v and v. We find a cycle C5 in Hs that includes
both u and w. If v is in C5 then we can split C5 into two internally vertex disjoint
paths from u to v, choose one that includes w, and use that to replace the part of
(', that passed through H;, giving a cycle in G5 that includes both w and =x.

If v is not in Cy, we find two internally vertex disjoint paths from w to v through
H,. Let P, be one of those that does not contain u. Let y be the last vertex in P;
that is in C; since w is in the path and in Cy, y must exist. We split C, into two
internally vertex disjoint paths from u to y, choose one that includes w, and take
the union of that with the segment of P; from y to v, to find a path P, from u to v
contained in Hy and containing w. We replace the intersection of €} and H; with
P,, to give a cycle in G, containing w and z. See Figure 3.4.

Therefore, for all distinct w and = in G5 we can find a cycle in G5 containing w
and x; we can split that cycle into two internally vertex disjoint paths from w to z,

and so GGy is biconnected. [

The next lemma shows that under some conditions which target graphs happen

to satisfy, we can find an edge whose removal leaves the graph biconnected.

Lemma 3.1.6 Any biconnected graph G containing at least three vertices and at

most two vertices of degree two, must contain some edge whose removal leaves the

27

I — H2 B

Figure 3.4: Finding a path from u to v containing w, in Hs.

Figure 3.5: K4 minus an edge.
graph biconnected.

Proof. By examination of all smaller graphs (there are only a few), K, minus
one edge, shown in Figure 3.5, is the unique biconnected graph with at least three
vertices, at most two vertices of degree two, and the smallest possible number of
edges. We can remove the edge between that graph’s two vertices of degree three,
and leave a biconnected graph.

If G has more than five edges, we find a cycle F' in G containing all the degree
two vertices, if any. This must be possible because there are at most two degree
two vertices, GG is biconnected, and in a biconnected graph we can find a cycle
containing any pair of vertices. Since G has at least three vertices, they cannot all
be degree two, and any vertex can only have zero or two incident edges in F', so

there must be an edge (u,v) in G that is not in F', and its endpoints v and v must

28

each have degree at least three in G. If removal of (u, v) leaves the remaining graph
G — (u,v) biconnected, then we are done.

Otherwise, there must be at least one vertex w of G which is a cut vertex in
G — (u,v). Removal of any cut vertex w must split G — (u,v) into exactly two
connected components, because otherwise w would be a cut vertex in GG also. Then
v and v must be in two different biconnected components of G' — (u, v), and all the
edges of F' must be in one biconnected component of G — (u, v) because F is itself
a biconnected subgraph; recall that (u,v) was chosen not to be in F. Then one of
u and v, say without loss of generality «, must be in a biconnected component of
G — (u,v) which contains no edges in F' and is attached to the rest of G — (u,v)
only at one cut vertex; we call that biconnected component H and that cut vertex
z. Note that x need not be the same as w because w is any cut vertex of G — (u, v)
whereas x is the particular cut vertex joining H to the rest of G — (u,v).

The subgraph H cannot consist only of u because then u would be a cut vertex
of G, and H cannot consist only of v and one other vertex with an edge between
them, because then u would have degree two in G. So H must contain at least
three vertices. The subgraph H cannot include any vertex that had degree two in
G, because H has no edges in F'; and all edges incident to vertices with degree two
in G were edges in F'. The only vertices in H which have smaller degree in H than
they had in GG, are u and x; H includes all edges from G incident to any of the other
vertices in H. So the vertices u and x are the only ones that could have degree two
in H.

Then H is a biconnected graph with at least three vertices, at most two vertices
of degree two, and fewer edges than G because it does not contain the edge (u,v).
We can look recursively for an edge e to remove from H that will leave H — e
biconnected. Then by Lemma 3.1.5, removing e from G leaves G — e biconnected.

O

Preserving nonplanarity as well as biconnectedness is only a little more difficult.

29

In the following proof, we use a similar technique to split the graph into two pieces,
but instead of finding a cycle and using it to remove part of the graph, we remove the
red subgraph from consideration at the first stage of the recursion. After that, we
know that any remaining edges can be removed while keeping the graph nonplanar,
and so we simply apply Lemma 3.1.6. Note that Lemma 3.1.7 does not necessarily
provide a useful reverse move from C', because the edge selected could have a degree
three endpoint, resulting in a degree two vertex in P. However, in that case the
edge still provides a useful starting point for the search for reverse moves in the

sufficiency theorem.

Lemma 3.1.7 If C is a target graph with a red-coloured subgraph homeomorphic
to K5 or Ks3, then either C is K5 or K33, or C contains an edge e that is not red
and can be removed to give a graph P which is a target graph except for possibly

containing degree two vertices.

Proof. If C is a target graph other than K5 or K33, then it must contain an edge
e that is not red. Otherwise, it would contain at least one degree two vertex. If
we remove e from C, the genus of the resulting graph C' — e must be the same
as the genus of C, because removing an edge cannot increase the genus and the
red subgraph is preserved. Removing e cannot create a multiple edge in C' — e. If
C — e is biconnected, then it satisfies all conditions for P; otherwise, we will find a
different edge to remove.

Suppose removing the edge e would render C'—e not biconnected, by creating one
or more cut vertices. Removal of any one cut vertex u splits C'—e into two connected
components. Removal of u cannot split C' — e into more than two components,
because then (as shown in Figure 3.6), u would be a cut vertex in C' also. The
graph C'— e then contains at least two biconnected components. Because the genus
of a graph is the sum of the genera of its biconnected components [8], exactly one
biconnected component of C' — e is nonplanar. Since the two endpoints of e are

in different biconnected components of C' — e, one of them must be in a planar

30

(=

Figure 3.6: Removal of the cut vertex u must split C'— e into exactly two connected

components: one planar, and one nonplanar.

biconnected component of C' — e. Let H be a planar biconnected component of
C — e containing an endpoint of ¢, and v be the endpoint of e contained in H.

Just as in Lemma 3.1.6 above, the biconnected component H cannot consist
only of v because then v would be a cut vertex of C', and H cannot consist of v and
one other vertex with an edge between them, because then v would have degree
two in C. When considered as a subgraph of C', H is connected to the rest of C'
only though the vertices v and w, where w is some cut vertex of C'— e, as shown in
Figure 3.7. The vertices v and w must each have degree at least two in H because
otherwise H would not be biconnected. Any other vertices in H have the same
degree in H that they had in C, necessarily at least three because C' is a target
graph.

So H is a biconnected graph with at least three vertices and at most two vertices
of degree two. By Lemma 3.1.6 we can remove an edge of H and leave H — ¢
biconnected. Then by Lemma 3.1.5, P is biconnected. Since H contains no red
edges, that edge must not be red, and its removal does not change the genus of C.

Therefore P is a target graph except for possibly containing degree two vertices. [J

If the edge e of Lemma 3.1.7 has a degree three endpoint then we cannot use a

31

Figure 3.7: The biconnected component H.

reverse Cp; move to remove it. It could be that the edge from Lemma 3.1.7 is on a
triangle, or that any degree three endpoint of this edge also has both other incident
edges red, so Lemma 3.1.3 might not allow us to contract it with a reverse 7; ; move
either. The following theorem shows that even in such cases, we can always find

some reverse move to use.

Theorem 3.1.8 Any target graph C either is K5, Ks3, or can be obtained by mak-
ing a move in {Co1,Das, T 1} on a target graph P with fewer edges.

Proof. 1f C contains a diamond, Theorem 3.1.4 provides a reverse move to P and
we are finished. Otherwise, we find a subgraph of C' homeomorphic to K5 or Kj 3,
and colour that subgraph red. By Lemma 3.1.7, there is an edge e which is not red,
such that removal of e would leave the graph biconnected and toroidal.

If both endpoints of e have degree greater than three, then we can remove e
with a reverse Cp; move; the only remaining condition for P to be a target graph
is for all vertices to have degree at least three, and removing an edge between two
vertices of degree greater than three preserves that. If one endpoint of e has degree
three, we call it u. The other endpoint, which we call v, may also have degree three.

The other two neighbours of u we call w and x. Now, how many distinct triangles

32

Figure 3.8: Vertex names when u is on three triangles.

in C can contain u? The answer is at most three because any triangle containing
u is uniquely determined by u and two of its neighbours; there are only three ways
to choose two of the three neighbours of u.

If v is not in any triangle in C: then we can contract one of the edges
incident to w, other than e, with a reverse 7;; move to find P. Since e is not red,
by Lemma 3.1.3 the resulting graph P has genus greater than one. The graph P
must be biconnected, every vertex in P must have degree at least three, and the
genus of P must be at most one, because the reverse 7;; move always preserves
those properties. Since no edge incident to u was on a triangle, contracting one of
them cannot create multiple edges. Therefore, P is a target graph.

If u is in three distinct triangles in C": then we have the situation shown in
Figure 3.8, where the vertices u, v, w, and x induce a subgraph isomorphic to K.
If any neighbour of u had degree three, then C' would contain a diamond, and we
already handled that case. So all of v, w, and x have degree at least four.

If any edge between two neighbours of u is not red, we say without loss of
generality that it is (w, x) and eliminate it with a reverse Cy; move to find P. Since
the edge is not red and has both endpoints of degree greater than three, we know
that we can remove it while preserving the genus and keeping the minimum degree
at least three. The graph P is also biconnected, because there are still two internally
vertex disjoint paths between w and x, namely (w, u, z) and (w, v, z). Therefore P

is a target graph.

33

If all edges between neighbours of u are red, then because the edge (u,v) is not
red, by Lemma 3.1.2 none of the edges incident to u is red and we can recolour to
make (w,) not red and (w, u) and (u, z) red. Then, as above, we remove the edge
(w, z) with a reverse Cp; move to obtain P, which is a target graph.

If u is in exactly one triangle in C: that triangle must include two edges
incident to u. If any non-red edge incident to u is on the triangle, then we can
contract along the one edge incident to u that is not on the triangle, with a reverse
71,1 move, to obtain P. By Lemma 3.1.3 this preserves the genus of the graph.
Since the edge being contracted is not on a triangle, the reverse move creates no
multiple edges. And a reverse 7;; move can never decrease the degree of a vertex
or reduce the connectivity of a graph, so the remaining conditions are satisfied, and
P is a target graph.

If u is in one triangle and both edges incident to u in the triangle are red, then
the triangle consists of u, w, and x. By Lemma 3.1.2, the edge (w,x) is not red,
and we can re-colour so that (w,z) is red and none of the edges incident to u are
red. Then we contract along (u,v) with a reverse 77; move, as above, and obtain
a target graph P.

If u is in exactly two triangles in C': one neighbour of v must be in both of
those triangles also; we call this neighbour y. If y is degree three, then (u,y) is a
diamond edge, and we handled the case of graphs containing diamonds already. If
(u,y) is red, then there is exactly one vertex z adjacent to both u and y such that
(u, z) is red; then by Lemma 3.1.2, the edge (y, z) is not red, but we can recolour
so that (y, z) is red and no edge incident to w is red.

Now we have a vertex u of degree three with a neighbour y of degree greater
than three, and the edge (u,y) is not red and is on two triangular faces. Let ug be u
and let u; be one of the other neighbours of w. Since (uo, y) is part of two triangles,
uy must also be a neighbour of y. If the edge (y,u,) is red, we can recolour to make
it not red while keeping the red subgraph nonplanar, by colouring (ugp,u;) red if

it was not already red, and colouring (ug,y) red. This has the effect of splitting a

34

vertex in the red subgraph, which always preserves nonplanarity. The resulting red
subgraph is nonplanar but may not be homeomorphic to K5 or Kj3; if necessary,
we can uncolour additional edges to leave a red subgraph homeomorphic to K5 or
K33, and (y,uq) not red.

We then replace uy by u; and repeat, to choose vertices usg,us,...,us: for ¢
starting at one, while u; is degree three and (u;,y) is on two triangles, we choose
u;+1 to be the third neighbour of u;, other than u; ; and y. The vertex u; that
terminates the repetition must be adjacent to y and either u; has degree greater
than three or (ug,y) is on just one triangle. Furthermore the edge (uy,y) must
not be red because we were recolouring to ensure that at every step of the way.
There must be such a vertex uy or else the vertices u; would form a cycle with every
vertex also adjacent to y; and then either y would be a cut vertex of C', or C would
be a wheel and therefore planar. The following pseudocode restates the iteration

algorithm:

FINDUK(C, u,y) :
Ug < U
uy <— a neighbour of u other than y
if (uy,y) is red
uncolour (uy,y)
colour (y,u) and (up,u;) red
uncolour additional edges as needed to make red subgraph homeomorphic
to K5 or K33
end if
11
while degree(u;) = 3 and (u;, y) is on two triangles in C'
if (ujy1,y) is red
uncolour (u;41,y)

colour (y,u;) and (u;, u;4;) red

35

uncolour additional edges as needed to make red subgraph homeomorphic
to K5 or K33
end if
1 1+1
end while
k<

return uy

When we finish we have a vertex u; adjacent to y, with the edge (u,y) not red,
and either that edge is on just one triangle in C or the degree of uy is greater than
three. If the degree of wy is greater than three, then we can remove (uy,y) with
a reverse Co; move to obtain P. Because the edge we remove is not red and has
both endpoints of degree greater than three, P is nonplanar and has no vertices of
degree less than three.

Choose a neighbour wug; of ug, other than u,_; and y. Since C' is biconnected,
we can find a path from y to w4, and not containing uy. By adding the edges (v, us)
and (ug, ug11) to that path, we have a cycle. If the cycle does not contain the vertex
uk_1, we can replace the edge (y,uy) with (ug,ur_1) and (ug_1,y) to find a cycle
through uy and y that does not contain (ug,y). Let z be the third vertex adjacent
to ug_1, besides uy, and y. Since the edge (ug_1,y) is on two triangles, z must also
be a neighbour of y. If the cycle passes through the vertex wuy_;, then because
uy—1 has degree three, the cycle must include the edges (y, ug—1) and (ug_1,2). We
can replace the sequence of consecutive vertices in the cycle (ug,y,us 1,2) with
(ug, uk_1,y, 2) to find a cycle through u, and y in P. Therefore, we can always find
a cycle through uy and y and not passing through (uy,y), and that cycle provides
two internally vertex disjoint paths between these vertices, so removal of (uy,y)
leaves a biconnected graph P. Since P fulfills the other conditions, it is a target
graph.

If the degree of uy is three, then the edge (uy,y) is on only one triangle. Let

36

(ug, z) be the edge incident to uy that is not in that triangle. The edge (u, 2)
cannot be in any triangle because if it were in a triangle, that triangle would have
to also contain either y or ug ;. If the triangle contains y then the third vertex
is a neighbour of y, (ux,y) is in two triangles, and we would not have stopped at
ug. If {ug,ux_1,z} is a triangle, then z must be a neighbour of uj_; other than
y, and so z must be a neighbour of y because (u;_1,y) is in two triangles. Then
{uk,y, 2z} must be a triangle, contradicting the claim that (ug,y) was in only the
triangle {ug, ux_1,y}.

Then (uy, z) is an edge incident to the degree three vertex wuy and not on any
triangle, so we can contract it with a reverse 7; ; move to leave a biconnected graph
P with no multiple edges or vertices of degree less than three. Because the edge
(ug,y) is not red, by Lemma 3.1.3, P is nonplanar. Therefore P is a target graph.
O

Theorem 3.1.8 shows the existence of a reverse move from any target graph other
than K5 or K33 to a target graph with fewer edges. As noted at the start of this
section, the existence of a target graph parent for any target graph child implies
the existence of a target embedding parent for any target embedding child. So the
sufficiency of the move set {Cy 1, D24, T11} to generate all target embeddings, with

the torus embeddings of K5 and K33 as seeds, follows immediately.

3.2 The three-move set is minimal

Although we have intuitive justification for each of the three move types Cy 1, D2 4,
and 7; 1, it may seem possible that some subset of these moves could still generate
all target graphs. Our work began with two move types (S;; and Cp;) which
were expanded to six move types (Co 1, C12, Ca3, D24, D35, and Dyg) to eliminate
inefficiencies associated with degree two vertices. The six-move set was then cut to

four moves by the adoption of the 7;; move, which eliminated the need for Cy3,

37

D35, and Dyg.

But the C; » move was only eliminated much later, because at the time the four-
move set was chosen we were attempting to work with embeddings on arbitrary
surfaces, and there is an infinite set of target-like graphs on the plane, namely the
wheels, which cannot be generated without C; 2. Actually, there are no target em-
beddings (under the current definition which requires nonplanarity) that cannot be
generated by the three-move set above; but we only proved that late in the research,
spurred by the experimental observation that removing C; o from our software did
not reduce the list of graphs generated. Three-move sufficiency, proved in Theo-
rem 3.1.8, is far from obvious. So there is some precedent for the idea that move
sets may be reduced counter-intuitively.

In this section, not only do we prove that the three-move set is minimal in the
strict sense that any proper subset requires an infinite set of seeds to generate all
target graphs, but we also argue that the infinite set of seeds required by any further
reduction of the three-move set would have to be inconveniently complicated. Thus,
further reduction of the move set is not useful, even if we are willing to make a
concession like generating most embeddings with our standard algorithm and using

a different algorithm to generate the few not covered.

Lemma 3.2.1 The set of moves {Da4, T11} is not sufficient to generate all target

embeddings with any finite set of seeds.

Proof. These moves may add at most two edges for every vertex they add, so
with a finite set of seeds the embeddings we can generate with n vertices have a
maximum of 2n + k edges for some constant k. Triangulations on the torus with
n vertices may have up to 3n edges, and for sufficiently large n, this will always
exceed the number of edges in any n-vertex embedding we can generate. Therefore,
there exist embeddings we cannot generate with this set of moves and any finite set

of seeds. J

38

Attempting to compensate for the removal of Cy; by expanding the set of seeds
would require us to add as seeds all the torus triangulations. Generating triangu-
lations for surfaces is an interesting problem which has been studied, for instance,
by Barnette [6, 7], but a solution to that problem requires work comparable to our
work here; and it is not obvious that the triangulations are the only things we would
have to add. So removing Cy; from the set of moves would almost certainly create

more work than it saves.

Lemma 3.2.2 The set of moves {Co1,Ti1} is not sufficient to generate all target
embeddings with any finite set of seeds.

Proof. By starting with a seed embedding and repeatedly replacing edges with
the structure shown in Figure 3.1, which we call a super-diamond, we can construct
a target embedding which contains an arbitrarily large number of copies of this
structure. Indeed, we can choose a target embedding which contains the super-
diamond more times than there are edges in any seed embedding. In such a target
embedding there must be a super-diamond where none of the seven edges existed
in the seed and so all of them were created by moves in our set. We consider what
the last move used in the creation of that copy could have been.

Suppose the last move made was a Cy; move. In that case, the last edge added
could not have been one of the five edges incident to at least one of the two degree
three vertices. If it was one of the two remaining edges, then the embedding prior
to that move must have contained a diamond, and moreover a diamond that did
not exist in the seed because all the seed edges are in use elsewhere. We do not
have a move in our set that can create a diamond, so this is impossible and the last
move cannot have been a Cy; move.

A 71, move must always create a degree three vertex. But the two degree
three vertices in the super-diamond are each contained in two distinct triangles.

Reversing the 77 ; move from either of these vertices to any of its neighbours would

39

K{_,

Figure 3.9: Exploding a vertex to create degree three vertices each adjacent to two

others.

give us a previous state containing a multiple edge. So the last move cannot have
been a 77, move.

Therefore there is no way to create more copies of the structure shown in Fig-
ure 3.1 than there are edges in any seed, and so for this set of moves and any finite
set of seeds, we can always find a target embedding we cannot create. Thus, the

set of moves {Cy1, 71,1} is not sufficient. O

Eliminating D, swould require us to add as seeds an infinite number of graphs
differing from graphs we can generate without Dy 4, only by D4 moves. This
seems at least as complicated as including D5 4 in the set of allowable moves. The
proof of Lemma 3.2.2 may seem unnecessarily complicated. A similar proof could be
written to use ordinary diamonds instead of super-diamonds. The proof was written
as above, using super-diamonds, because the diamond-based proof would involve
graphs containing a large number of diamonds. As described in Chapter 4, we wish
to avoid diamonds, and to make restrictions on the number of diamonds that may
exist in our embeddings. Lemma 3.2.2 as proved here produces counterexamples to

sufficiency that contain no diamonds but still require the D, 4 move.

Lemma 3.2.3 The set of moves {Cy 1, D24} is not sufficient to generate all target

embeddings with any finite set of seeds.

Proof. Neither of these moves can create a degree three vertex adjacent to two

other degree three vertices, because Cy; always increases the degree of two vertices

40

beyond three without introducing any new ones, and Ds 4 introduces two new degree
three vertices but makes them each adjacent to two vertices of degree greater than
three. As shown in Figure 3.9, we can perform a move on any vertex of a target
embedding to create a new target embedding containing degree three vertices each
adjacent to two other degree three vertices. We can do this on an arbitrarily large

target embedding, so we can produce an infinite number of counterexamples to the

sufficiency of {Cy 1, Daa}. O

Not only does Lemma 3.2.3 provide an infinite number of embeddings we can-
not generate with {Cp1, D24}, but the embeddings are of a form that we cannot
generate conveniently enough to throw them in as seeds. For instance, the duals of
triangulations on our surface are usually if not always three-regular target embed-
dings. All these would have to be included as seeds. Also, we can generate from
any target embedding an exponential number of children, all target embeddings
not generated by {Cp1, D24}, by exploding a subset of the vertices in the manner
of Figure 3.9. There would be some duplication among those children, but it does
not look like an easy way to simplify our experiments. Even if we were to replace
71,1 with some new move for creating degree three vertices with two degree three
neighbours, such a move would almost certainly not be easier to implement than
T

We can now prove the main result of this section, the minimality of the three-

move set.

Theorem 3.2.4 The set of move types {Co1,Daa, Ti1} is sufficient and minimal
to generate all target embeddings, with the set of seeds equal to all embeddings on

the torus of K5 and K 3.

Proof. We have sufficiency from Theorem 3.1.8. By Lemmata 3.2.1, 3.2.2, and
3.2.3, if we remove any one move type the remaining set is not sufficient. Therefore

no proper subset of {Cp1, D24, 71,1} is sufficient, so this set is minimal. [J

41

As well as being minimal in the technical sense of Section 2.4, this set of three
move types appears to be especially convenient when we work with the stated
definition of target graphs as having no degree two vertices. In the next section we

discuss what might be accomplished by relaxing that requirement.

3.3 A two-move minimal sufficient set

The software written for this research began as a program to generate randomly
selected embeddings of toroidal graphs, by starting with a seed K5 or K33 and
making S;; and Cp; moves. When we later began to consider the question of
exhaustive generation without duplicates, we started with that set of moves and
a more relaxed definition for target embeddings that permitted them to include

vertices of degree two.

Theorem 3.3.1 The set of moves {S11,Co1} is sufficient and minimal to generate
all combinatorial embeddings of graphs homeomorphic to target graphs, with the set

of seeds equal to all embeddings on the torus of K5 and K 3.

Proof. 1f an embedding F is like a target embedding except that it contains one
or more vertices of degree two, then we can use a reverse 5171 move to remove one
of the degree two vertices and obtain an embedding E’ with fewer edges which is
similarly a target embedding except for possibly containing vertices of degree two.
If E contains no vertices of degree two, then it is a target embedding, and if E is
not a seed we can apply Lemma 3.1.7 to find an edge that we can remove with a
reverse Cp ; move to obtain an embedding £’, which is a target embedding except for
possibly containing some vertices of degree two. Therefore, {S; 1,Cp1} is sufficient.

The set of moves consisting of only &, ; is not sufficient because it cannot be
used to create embeddings with more vertices of degree greater than two than exist
in any seed, and a target-like embedding could contain an arbitrary number of

vertices of degree greater than two. Similarly, the set of moves consisting of only

42

Co,1 cannot create vertices at all, and so cannot create target-like embeddings with

more vertices than any seed. Therefore, {S;1,Co 1} is minimal. O

If we allow vertices of degree two, then the number of embeddings and therefore
graphs we must consider increases without significant improvements in the uses
we can make of the results. Any time we would want to embed a graph with
degree two vertices on the torus, we could instead eliminate them with reverse & ;
moves, embed the resulting graph, and then add the vertices of degree two back in
afterwards. Degree two vertices have no effect on embeddability.

So the question arose of how many degree two vertices we had to permit in
order to be able to generate all target embeddings, and the answer seemed to be
three, because we needed to be able to draw a chord across a face, possibly creating
one or two new degree three vertices at the ends of the chord, and we needed to
be able to create diamonds, either replacing or inserted in the middle of existing
edges. Creating diamonds with &) ; and Cy;, as described below, could require the
use of up to three degree two vertices at one time.

If we would be creating degree two vertices only under limited circumstances
and only to immediately increase their degree with new edges, then we might as
well create and destroy the degree two vertices in one step. That lead naturally to
a set of six moves: {Cyp1,C12,C23, D24, D35, Dig}t. Each of these moves corresponds
to a sequence of ;7 and Cp; moves, as shown in Figures 3.10 and 3.11.

The six-move set appeared to be sufficient to generate all target embeddings,
but was difficult to implement in practice. The D35 and D, moves, in particular,
presented difficulties because of the sizes of the subembeddings that had to be
constructed and inserted. Our data structures involved two records containing
three pointers each for every edge, requiring at least 42 pointers to be updated
one by one in order to remove one old edge and add six new ones in a D, move.
Although there is nothing in principle difficult about updating a data structure this

way, in practice such moves proved cumbersome to implement and debug.

43

44

e

i
SEEE

Figure 3.10: Chord mov of Cyp; and S moves.

KTC(b—‘C(b | ot

WWM&M

@WW

@WW
@XM@%W

Figure 3.11: Diamond mov of Cp,; and &;,; moves.

RIS N

Figure 3.12: Simulating Cy 3 with C;» and 7; ;.

The six-move set, because of its complexity, was also cumbersome to deal with
on the theoretical level. It appeared that the sufficiency of the six-move set would
be easy enough to prove. We do not prove it here because with the introduction of
the three-move set and proof of the two-move set’s sufficiency independent of the
six-move set, a complicated proof for the six-move set no longer seems useful. It
was not clear whether the six-move set was minimal, nor how to prove that.

The 7;; move was introduced to simplify the set of moves. As shown in Fig-
ures 3.12 and 3.13, the use of the 7;; move along with C;» and D4 allows us to
achieve the effect of the more complicated Cy 3, D35, and D,y moves. That leads
naturally to a set of four moves, {Cy 1,C1 2, D24, 711} It is not generally possible to
simulate a C; » move with a Cy; move followed by a 7; ; move, because if we wished
to perform the C; 5 move inside a triangular face, the initial Cy; move would have
to create a multiple edge.

The C,, move appears necessary because, if we imagine ourselves generating
planar embeddings in the same way we generate torus embeddings, a wheel with
many vertices clearly cannot be generated by any of the other moves in the four-
move set. A wheel other than K, contains no diamonds, so Dy 4 is unusable; it
contains only one vertex of degree greater than three, so Cy; is unusable; and a
71,1 move would require the parent to contain multiple edges. It seems reasonable,
then, that there should be nonplanar graphs which also require C; 5. The necessity
of C; 2 appeared so obvious that its proof could safely be left almost to the end of
the project. So our intent during most of the project was to prove sufficiency of

the six-move set, then sufficiency of the four-move set by the equivalences above.

45

T T
><%>< <5
P [ol

Figure 3.13: Simulating D55 and Dyg with Doy and Ty ;.

46

Then we would prove minimality of the four-move set, possibly with a note on the
possibilities of using the original two moves, for a more wasteful but much simpler
approach.

The discovery that C; » was not necessary, or at least not necessary when dealing
with embeddings on the torus, was triggered by the difficulty of proving minimality
of the four-move set. Despite the note above that C, , cannot be directly simulated
by Cp,1 and 7;;, we could not actually find any target embeddings for which it
was necessary; not even in our computer experiments with hundreds of millions of
embeddings. Obtaining a sufficiency proof, showing that in fact the four-move set
is not minimal, was difficult but eventually possible.

Unfortunately, we have no simple explanation for why C;» can be eliminated;
unlike Cy 3, there is no easy sequence of other moves that can replace C; 2 in all cases.
At best we can point to Theorem 3.1.8, which shows (after a complicated argument
with several cases) that any target embedding which might appear to require C; o,
can be generated in some other way with the other three moves. Although the
three-move set requires an elaborate proof and appears to be in some sense just
barely sufficient, it is sufficient, and having only three moves simplifies the software

a great deal.

47

Chapter 4

Diamonds

In this chapter we discuss a further refinement of the algorithm, intended to make
the output more useful by eliminating embeddings of less interesting graphs. Graphs
containing diamonds present fewer challenges in embedding because we can sim-
ply eliminate the diamonds, embed the remaining graphs, and then reinsert the
diamonds. We begin with a description in Section 4.1 of diamonds and their conse-
quences. Then in Section 4.2 we prove that the algorithm can be limited to examin-
ing target graphs with at most one diamond, and still generate all the diamond-free
target graphs. Finally, in Section 4.3 we discuss how diamonds can be embedded

in several ways on the torus, and the consequences of that fact for our work.

4.1 Some notes on diamonds

We have already mentioned that the presence of diamonds in a graph does not
change its genus, since we can always perform a reverse D, 4 move to find a smaller
graph embeddable on exactly the same surfaces. Just like degree two vertices and
multiple edges, diamonds can be viewed as uninteresting embellishments to existing
edges. For any graph G that we consider really interesting, there will be a large

number of less interesting graphs consisting of G' with one or more diamonds sub-

48

stituted into its edges. It would be preferable to eliminate them from consideration.

But as described in Chapter 3, forbidding diamonds entirely, by eliminating the
D, 4 move, would require us to have some other way to create the more complicated
structures which currently require diamonds. Perhaps we could make diamonds
unnecessary by requiring target graphs to be 3-connected, but then the proofs that
we can maintain that constraint, already difficult for biconnectedness, could become
even more difficult. Also, some intended applications of the output, for instance
to the search for torus obstructions (see Section 7.2) would suffer if the output
were limited to 3-connected embeddings. It seems useful to permit at least a few
diamonds.

We could make attempt to place a similar limit on how many degree two vertices
are necessary at any one time to generate all target embeddings with moves in
{811,Co.1}, as discussed in Section 3.3, but it appears that we would still need at
least three degree two vertices to be able to generate diamonds with those moves.
Similarly, if we permitted multiple edges we might also need to permit enough of
those to be inconvenient.

Permitting diamonds presents less of a problem than permitting multiple edges
or degree two vertices, because every diamond includes two vertices which are not
available to be included in any other diamond. When we generate graphs up to a
fixed number of vertices n, the n-vertex graphs containing diamonds must corre-
spond to graphs with n — 2 or fewer vertices, and the fast growth in the number
of embeddings with increasing n guarantees that there will be far fewer target
embeddings with n — 2 vertices than with n vertices. So the actual number of
diamond-containing embeddings should not be overwhelming.

Nonetheless, we choose to avoid diamond-containing embeddings as far as pos-
sible. Lemma 3.2.2 shows that some diamonds are necessary with our move set, so
we cannot simply require all parents and children to be diamond-free and expect
to generate all other target embeddings that way. In the next section we show that

we need tolerate only one diamond in an embedding at a time; the set of target

49

Figure 4.1: The two situations where a reverse Dy 4 move would create a diamond

embeddings with at most one diamond can be generated without requiring the use

of embeddings with more than one diamond.

4.2 Only one diamond is necessary

In order to create graphs that do not contain diamonds but do contain things like
super-diamonds, we need to make use of parents containing diamonds. How many
diamonds must we tolerate in parents in order to be able to generate all diamond-

free children? The following theorem shows that the answer is just one.

Theorem 4.2.1 If C is a target embedding containing at most one diamond, then
either C' 1s a seed or C' can be obtained from a target embedding P with fewer edges

and containing at most one diamond, by a move in {Co 1, Do, T11}-

Proof. By Theorem 3.1.8, we can find a reverse move from any non-seed C' to some
target embedding. We consider the ways that such a reverse move could create a
diamond, and show that we can always find a reverse move that will not increase
the number of diamonds past one.

A reverse Dy 4 move simultaneously reduces the degree of two vertices and makes
them adjacent to each other. However, it also destroys a diamond. There are two
cases: the new edge could form the crossbar of the diamond (becoming the diamond
edge as such) or it could go into the side of the diamond. These two cases are shown

in Figure 4.1. In each case, it is clear from the figure that the effect of the reverse

50

(u)

X W
Figure 4.2: How a reverse 7;; move can create a diamond.

move is limited to the vertices shown. With the new edge forming the crossbar of
the diamond, both its endpoints can only be part of that one diamond, so only one
diamond is created. With the new edge forming a side of the diamond, only one
vertex has its degree reduced to three, and so, again, only one diamond is created.
Since one diamond is always destroyed by the reverse D, move, this reverse move
can never increase the total number of diamonds in the embedding. Theorem 3.1.8
has already established that P is a target embedding when it is obtained by a
reverse Dy, move. Note that in the exceptional case of making a Dy 4 move on Ky,
the resulting graph C' has two diamond edges in it and a reverse D, 4 move gives us
the original K, with six diamond edges. We consider only target graphs with at
most one diamond, so that situation is excluded.

A reverse 7;; move always increases the degree of a vertex past three, so it can
never create a diamond by creating a degree three vertex. Any diamond created
by a reverse 7;; move must result from the contraction of a 4-cycle in the target
embedding, as shown in Figure 4.2. The edge (u,v) is the one being contracted.
Such a contraction could in fact create two diamonds at once, if we imagine the
structure repeated again on the other side of the edge (u,v), as shown in Figure 4.3.
We can instead contract the edge (u, w) in C' to obtain P unless u and y are adjacent,
or the edge (v,x) unless v and y are adjacent. The vertices u and v cannot both be
adjacent to y, because then the original reverse 7; ; move would have been forbidden
for creating a multiple edge.

We can assume without loss of generality that u is not adjacent to y, and so we

can contract (u,w). The reverse 71, move always preserves connectivity and the

52

()

v
Figure 4.3: How a reverse 7;; move can create two diamonds.

minimum degree of vertices; no multiple edges are created because we are using it
to contract an edge that is not on any triangle. It remains only to show that we

can preserve nonplanarity.

Figure 4.4: Why contracting (u, w) does not change the genus.

Suppose we contract (u,v), notwithstanding that it would create a diamond,
and label the resulting vertex z. Since that was the reverse move chosen by The-
orem 3.1.8, the resulting graph is still nonplanar, although it might contain too
many diamonds. Then we eliminate vertices w and = with a reverse D4 move,
which by Theorem 3.1.1 cannot make the graph planar. We subdivide the edge
(y, 2), labelling the new vertex x; that also cannot make the graph planar. Then
we add a new edge from y to z; adding an edge cannot make the graph planar. We

split z back into u and v, as they were before; splitting a vertex cannot make the

Figure 4.5: How a reverse Cy; move can create a diamond.

graph planar. Finally we add an edge from x to w. This process and its result are
shown in Figure 4.4. We have obtained, by a series of operations that maintain the
nonplanarity of the graph, exactly the same embedding we would have obtained by
contracting (u,w) in the original embedding C. Therefore this embedding, which
we call P, is of a nonplanar graph and so P is a target embedding containing no
more diamonds than C' contained.

A reverse Cp; move can create a diamond only by reducing the degree of a
degree four vertex which (except for the edge being removed) forms a diamond
with a degree three vertex, as shown in Figure 4.5. The edge (u,v) is the one
being removed. We know that (u,v) could not have been red in the colouring used
in Theorem 3.1.8, because then the edge removal would not have been permitted.
Note that v could also be degree four and create a diamond, so that this reverse
move could create two diamonds at once.

If one of w and y, say without loss of generality w, has degree greater than
three, then we will remove the edge (u, w) instead of (u,v). Suppose we did remove
the edge (u,v), even though it would make the graph contain too many diamonds;
since that is the reverse move found by Theorem 3.1.8, the resulting graph must
be nonplanar. We then apply a reverse Dy 4 move to replace the diamond by an
edge (w,y); this must leave a nonplanar graph G by Theorem 3.1.1. If we colour

the resulting graph with a red subgraph homeomorphic to K5 or K33, we can then

53

replace the diamond and then (u,v); in so doing we colour the replaced edges (w, x)
and (z,y) red if the edge (w,y) was red, and colour no other new edges. The result
is a red-coloured subgraph homeomorphic to K5 or K33 in the original C, with the
edge (u, w) not red. Therefore we can remove the edge (u, w) to obtain a nonplanar
graph P.

Since C'— (u, v) is known to be biconnected and w has degree greater than three,
we can choose a neighbour z of w, where 2z is not u, x, or y, and find a path in
C — (u,v) from z to y without passing through w. Then that path, plus the edges
(w, z) and (y,u) provide one path from w to w in P; and the path (w,z,u) is a
second path from w to u in P, internally vertex disjoint from the first. Therefore
removal of (u,w) leaves P biconnected. Since both w and w have degree greater
than three, every vertex of P has degree at least three. All the conditions are now
satisfied and P is an embedding of a target graph.

If w and y both have degree three in C', then we cannot remove the edge (u,w)
with a reverse Cp; move to obtain a target embedding. But then we can contract
the edge between w and its neighbour z with a reverse 7; ; move to obtain P. Such a
reverse move necessarily preserves biconnectedness and minimum degree. It cannot
create multiple edges unless z and v are the same vertex, a case which we handle
later. If w is degree three and we are contracting (w, z), then it only remains to
show that this leaves the graph nonplanar. The vertices w and y cannot both be
degree three and adjacent to v, or v would be degree two or a cut vertex.

It only remains to show that the graph in P is nonplanar. As above, we imag-
ine removing (u,v) from C' even though it would create a diamond, replacing the
diamond with an edge (w,y), and colouring the result with a red subgraph home-
omorphic to K5 or K33. Reversing these steps and maintaining the colouring, we
obtain a colouring for C' where the edges (w,u) and (w, z) are not both red. Then
by Lemma 3.1.3, we can contract the edge (w,z) and leave the graph nonplanar.

Therefore P is a target embedding.

54

One possibility remains with the reverse Cp; move: that w could be degree
three and v and z could be the same vertex, so that there is a triangle with vertices
{u,v,w} and we cannot contract the edge (w,v) without creating a multiple edge.
In that case, the graph C' must contain a super-diamond, as shown in Figure 3.1.
Obviously, an embedding (either the target embedding C' or some ancestor necessary
to create it) could contain an arbitrarily large number of super-diamonds. However,
the super-diamond does not contain a diamond itself, and it can be created from
an edge by making a D, 4 move followed by a 7;; move and a Cy; move, creating
and destroying one diamond along the way. So if we need to build an embedding
containing one or more of these and possibly a diamond as well, we can first build
the corresponding embedding with the diamond and super-diamonds replaced by
edges and any degree two vertices and multiple edges eliminated. Then we can
insert the diamond and super-diamonds, one at a time, never having more than one
diamond in the embedding at one time, and then we can do any final splitting and

adding of edges as in Theorem 3.1.4 to create the desired embedding. [

If we are primarily interested in embeddings of diamond-free graphs, then The-
orem 4.2.1 allows us to prune our computation tree considerably. Noting that our
seed embeddings, of K5 and K33, are all diamond-free, we can implement the prun-
ing in the generator software simply by discarding any parents or children that have
more than one diamond. We also restrict actual output to embeddings of diamond-
free graphs, although it is necessary to examine embeddings with one diamond in

order to generate all diamond-free embeddings.

4.3 Twisted diamonds

We normally imagine diamonds as being embedded nicely on the plane, as in the
drawing in Figure 2.1. But on the torus, there are more possibilities. Two other

ways to embed a diamond on the torus are shown in Figure 4.6. We call any

59

- -

Figure 4.6: Some twisted diamonds.

diamond that is not embedded in the obvious planar way depicted in Figure 2.1, a
tursted diamond.

Twisted diamonds are necessary because some target embeddings, even some
without diamonds like the one shown in Figure 4.7, can only be generated from
ancestors that contain twisted diamonds. If we imagine making reverse moves
on Figure 4.7, the only target embeddings we can find as possible parents, are
embeddings that contain twisted diamonds. Theorem 4.2.1 shows that we need
tolerate only one diamond, but it might happen that that diamond must be twisted.

So we cannot simply forbid twisted diamonds; our Dy 4 move must be able to
create them. The definition of the D, 4 move given in Section 2.4 is designed to be
able to create any possible twisted diamond, and the move label for it described in
Section 5.2 is designed to describe any possible D, 4 move. Here, we describe the
D, 4 move in detail, to clarify its operation.

Let (u,v) be a diamond edge in a target embedding C, and let w be the next
vertex after v in the clockwise adjacency list of u and x be the remaining neighbour
of u. This is the same naming of diamond vertices shown in Figure 3.3 earlier, but
here we emphasize that the diamond could be embedded in any of several ways;
some other embeddings of the same subgraph are shown in Figure 4.6. In all those

diagrams, the clockwise adjacency list of u is (v, w, z).

56

()
N

Figure 4.7: A diamond-free target embedding that cannot be generated without a

twisted diamond.

Figure 4.8: Illustration of the general Dy 4 move.

57

If we imagine removing the vertex v and all its incident edges, then we would
have an embedding P’, which is the same as the embedding P obtained by replacing
the diamond with a path (w,u,x). To obtain C' from P’, we must insert v into a
face containing the vertex u; v goes inside that face and its incident edges connect
it to some appearance of each of u, w, and = around the face. Because v must
come after x and before w in the clockwise adjacency list of u, there is only one
way to add the edge (u,v) even if u appears twice on the face. The other two edges
incident to v, however, may attach to any appearances of w and x on the face. We
can break down the addition of v and its edges further into the steps of adding
an edge between the two appearances of w and x that will be adjacent to v, then
subdividing that edge to create v, and finally adding the edge (u,v).

To remove a diamond, we can label it as above, remove v and its edges, then
remove y and replace the edges (w, u) and (u, z) with an edge (w,). We can remove
any diamond this way, twisted or not. By reversing the steps and making sure that
we can choose any appearances of w and x on the face, we obtain the definition of
the Dy 4 move, which can create any diamond, twisted or not. In detail, the steps

are as follows:
1. Choose a face F' of an embedding P.
2. Choose an edge e in F'.

3. Let w and x be the endpoints of e so that w comes immediately before = in
a clockwise traversal of F'. There may be two ways to do that if e appears

twice on the same face.

4. Choose one appearance of each of w and x on F' (each may appear more than

once).

5. Subdivide (w, z), creating u.

58

6. Add an edge through F' between the chosen appearances of w and x. This

divides F' into two distinct faces.

7. Subdivide the new edge, creating v. Because the edge appears on two distinct

faces, v can only appear once on any given face.

8. Add an edge from v to u, so that v appears before w and after x in the
clockwise adjacency list of u. There is only one way to do this because v

appears only once on any given face.

These steps can insert any embedding of a diamond, no matter how many times
a vertex may appear on a face in P. When looking for all possible moves to apply
to P in the algorithm GENERATE (see Section 2.5), we loop through all possible
choices of F', u, v, and the additional appearances of v and v. Then we are sure
of examining every possible twisted diamond and thus generating all diamond-free
target embeddings. In the next chapter we discuss how to recognize and prevent
duplication, so that even if we can describe the same diamond move in more than
one way (for instance, by making a different choice about which vertex is u), we

will still only generate each child once.

59

Chapter 5

Other aspects of the algorithm

There still remain some details which have not been described but which are nec-
essary for the implementation of the algorithm. Those details are discussed in this
chapter. First, in Section 5.1, we describe a canonical form for embeddings, which
leads to an isomorphism test. In Section 5.2 we discuss move labels, used to ensure
that each equivalent move is made exactly once from each parent. Our algorithm
requires the use of a planarity testing algorithm, and in Section 5.3 we describe an

enhancement used to reduce the number of planarity tests we must perform.

5.1 A canonical form for embeddings

The generation algorithm as described requires us, each time we derive a possible
child embedding C' from a possible parent P, to find the actual parent for C.
Then we recurse to C' and its descendants if and only if P is the parent of C'. This
limitation prevents us from processing C' at more than one place in the computation
tree. Saying that P must be the parent of C' begs the question of how to compare
P with PARENT(C'). Checking all possible labellings would consume O(n!) time for
an n-vertex embedding. Since embeddings include graphs, and graph isomorphism

is a difficult problem, not known to be solvable in polynomial time, the need for an

60

embedding isomorphism test may appear to be a significant obstacle.

Fortunately, embeddings are much easier to compare than graphs. Given a la-
belled combinatorial embedding of a connected graph, we can generate in O(n?)
time, using the algorithm below, a sequence of symbols representing the isomor-
phism class of the embedding. That sequence of symbols is called the canonical
form; two embeddings have the same canonical form if and only if they are isomor-
phic.

Suppose we have a combinatorial embedding, and we have already chosen a
direction (clockwise or counterclockwise) and assigned the labels zero and one to
two adjacent vertices. We perform a breadth-first search, starting with the vertex
labelled zero as the root and using the vertex labelled one as its first child. At each
vertex, we visit the neighbours in the chosen direction, clockwise or counterclock-
wise, starting from the parent. The order of edges visited by this search is then
fully determined. When the vertices of the embedding are labelled with nonneg-
ative integers, we can record the breadth-first search with a sequence of integers.
It remains only to choose which traversal direction and pair of adjacent vertices
to use. One obvious way to make that choice would be to try all possible starting
points and use the lexically least representation of the embedding.

However, doing four breadth-first searches for every edge in the embedding seems
inefficient. It would be preferable to reduce the number of possible starting points
as far as possible. As described below, we begin our canonical form with the in-
tegers (n,m, f), the counts of vertices, edges, and faces respectively. Those are
the same for all representations of the embedding. We then insert two more inte-
gers before recording the sequence generated by the breadth-first search, namely
(n — degree(u),n — degree(v)) where u is the starting vertex (labelled zero) and v is
its first neighbour (labelled one). Since the three terms (n, m, f) are the same in all
sequences representing the embedding, then the lexically least sequence must nec-
essarily have minimum possible n — degree(u), and minimum n — degree(v) subject

to the previous condition. In other words, v must have maximum degree among

61

the vertices in E, and v must have maximum degree subject to that.

These conditions limit the number of possible starting points for the search; if
there is a degree five vertex in F, for instance, then we need not run the search for
any v with degree three or four; we know that the result could not be lexically least.
We chose to maximize the degrees of u and v instead of minimizing them, because we
expect our embeddings to usually have relatively many vertices of small degree and
relatively few of large degree. Choosing maximum-degree vertices for the starting
point should tend to give a smaller number of starting points to examine. Of course
there are embeddings where many or all vertices have the maximum degree, and
then this condition gives little or no speed benefit; but it is cheap to implement, and
in practice it saves time often enough to provide a significant speed improvement
overall.

We use the integer —1 to represent the end of an adjacency list. The sequence
recording the breadth-first search then consists of three integers denoting the num-
ber of vertices, edges, and faces in the embedding, two more integers to force a
desirable ordering as described above, and then the adjacency lists of vertex zero,
vertex one, and so on, up to the last vertex in the embedding. Each adjacency list
is in the order determined by the breadth-first search, and terminated by —1; the
breadth-first search also assigns the vertex labels except for zero and one. The pseu-
docode below describes the breadth-first search to label an embedding F, starting
from adjacent vertices u and v and traversing in direction d, which is clockwise or

counterclockwise.

BFS(E,d,u,v) :

initialize seq with (n,m, f), the numbers of vertices, edges, and faces in F
append (n — degree(u),n — degree(v)) to seq (explained above)

all vertices begin unlabelled

label © with 0

label v with 1

62

neztlabel < 2
fori+~0ton—1
w < vertex labelled 7
for each neighbour = of w, starting with the one with minimum label
among those that have a label, and proceeding in the direction d
if « has no label yet
label « with nextlabel
nectlabel <— nextlabel + 1
end if
append label of z to seq
end for
append —1 to seq
end for

return seq

If we run this traversal on E with all possible values of d, u, and v (note that
when (w,z) is an edge in F, we must try both v = w,v = z and u = z,v =
w), then the lexically least result is the canonical form for the embedding. Since
we know that u must have maximum degree and v must have maximum degree
subject to that, we need only run the traversal for values of u and v satisfying
those conditions. Since this sequence includes an ordered adjacency list for every
vertex, it is easy to construct a combinatorial embedding isomorphic to E from
the canonical form. Thus, two embeddings with the same canonical form must be
isomorphic. Conversely, two isomorphic embeddings must have the same canonical
form. Changing the labelling of vertices or the starting point of a list has no effect
on the canonical form because the breadth-first search determines its own labelling
and starting points. Reversing all adjacency lists (mirror-reversing the embedding)
has no effect on the canonical form because we make the search both clockwise and

counterclockwise.

63

As a side effect of the canonical form calculation, we obtain the automorphism
group of the embedding in the form of a list of all permutations from the original
labelling to a labelling that yields the canonical representation. If the embedding
has some symmetry, then there will be more than one starting point that produces
the canonical representation, so there will be more than one such permutation. Since
each permutation is generated by one of our breadth-first searches, and there can
be at most 4m of those in a graph with m edges (two starting points for each edge
multiplied by two for clockwise or counterclockwise), that provides an upper limit
on the number of permutations. After applying to the embedding the canonical
labelling, which is a permutation 7y from the list of permutations we generated, we
also replace each entry 7, with 7 o 7, !, so that we have the automorphism group
as the set of permutations of the canonical vertex labels that leave the breadth-
first search representation unchanged. The automorphism group is used with move

labels in eliminating duplicate moves.

5.2 Move labels

As we observed when attempting to implement an embedding generator, we can
eliminate almost all duplication of isomorphic embeddings in the output by finding
a parent for each possible child, and keeping the child if and only if it was generated
from the parent according to the canonical form above. This restriction prunes the
computation tree a great deal. However, it is still possible that a child could be
kept more than once, resulting in duplicate embeddings in the output. That could
happen if there is more than one way to make a move on the parent to produce the
same child.

If the parent is highly symmetric, there could be many duplicate moves. For
example, in Figure 5.1, any of four edges can be replaced by a diamond to give the
pictured child. The software must have a way to recognize that these four edges

are equivalent, and only apply the move to one of them.

64

e
O
y

Figure 5.1: A D, 4 move can be applied to any of four edges in this parent to give

the same child.

We address this need by assigning a name called a move label to each way we
can make a move on the parent. The move label is a sequence of vertex labels. We
already know the automorphism group of the parent because we computed that as
a side effect of computing the canonical form. So by applying each element of the
automorphism group to the move label of the move under consideration, and taking
the lexically least result, we obtain a canonical form for the move label. Then we

actually make the move if and only if its move label matches the canonical form.

Lemma 5.2.1 If the vertexr sequence (u,v,w) occurs consecutively clockwise or
counterclockwise around some face of an embedding of a graph G with no vertices

of degree less than three, then it does so only once in the entire embedding.

Proof. The occurrence of this sequence once means that v and w are both neigh-
bours of v, and moreover that they appear consecutively in the cyclic adjacency list
of v. Since we do not allow multiple edges, © and w can each only appear once in
the cyclic adjacency list of v. If the sequence of labels (u,v,w) on a face occurs
more once in the embedding, then v and w must be consecutive on both sides: the
next neighbour of v after « must be w in both the clockwise and counterclockwise

directions. Therefore u and w must be the only neighbours of v, which contradicts

65

the definition of G' as having no vertices of degree less than three. [

Lemma 5.2.1 means that by giving the labels of three consecutive vertices
(u,v,w) on a face, we can uniquely identify the face, the particular appearances of
those three vertices on the face, and a direction for traversing the face. Conceptu-
ally, we are identifying an appearance of v; to disambiguate the many places it may
appear in the embedding, we give its successor around the face, w. To specify which
face we mean, if there are two containing that edge, we also give the immediate

predecessor of v, which is u; that also identifies the direction of traversal.

X VA
(a) Co,1 is (b) D3 4 is labelled by (¢) Ty is
labelled by (', z,y,u,u, v, v). labelled by
(yl7x7y7w’7z7w>' <x7y7z>

Figure 5.2: How to label moves.

As a result, we can label a Cy; move with a sequence of six vertex labels: three
to identify one endpoint of the new edge, and three to identify the other endpoint.
A 7, move is labelled with the vertex to split, and the two neighbours that will
become neighbours of the degree three vertex created by the move. Labelling a
D, 4 move is more complicated. Conceptually, this move consists of adding a new
edge between two vertices that are already adjacent, then subdividing the old and
new edges and adding another edge between their midpoints. We use three vertex

labels (y', z,y) to identify the old edge and the face in which we operate. We must

66

Figure 5.3: A potential Cy; move, which could be labelled in four different ways.

then specify where to draw the new edge, by naming its two endpoints. The label
(u',x,u) names one endpoint and (v, y,v) names the other, as for the Cy; move,
but since x and y were already specified in naming the old edge, we need only seven
numbers to name the entire move: (y',xz,y, v’ u,v', v).

One problem with this approach is that there may be several inequivalent ways
to label the same move. For instance, with the Cy; move, we could label it clockwise
or counterclockwise starting from either endpoint of the edge being created. If the
automorphism group of the parent is trivial, all four of these would result in different
canonical labellings. When assigning the canonical move label to a move, then, we
must find the lexical minimum of all images of all possible labels for the move.
When we evaluate possible moves in a software loop, we carefully decide which
labellings will be associated with which iterations of the loop, and take the least
of the labellings assigned to the current iteration as the thing to compare with the
canonical image.

For instance, our move-selection process for the Cy; move goes around each face
in only one direction, clockwise or counterclockwise, but attempts to draw a chord
across the face from every vertex to every other vertex on the face. In Figure 5.3,
we traverse a face clockwise and attempt to draw the chord between vertices u and
v twice: once conceptually from u to v and once from v to u. When drawing the

chord from u to v we label it with the least of (z,u,w, z,v,y) and (w,u, x,y,v, 2)

67

A A
; —
5
0 1
2
: —
A A A\ A
— —
5)—Br—(() —(1—)
% %
AR A
— —

Figure 5.4: Two different moves may create the same child from the same parent.

and when drawing the chord from v to u we label it with the least of (z, v, y, z, u, w)
and (y,v, z, w,u,). The canonical label for the move is the least image of any of
these. Assuming that the automorphism group is trivial, we will decide to make
the move exactly once on this face. If the automorphism group were not trivial we
might make the move on some other face instead; but in any case, we would make
it exactly once in the embedding.

A more serious problem occurs when two inequivalent moves lead from the
same parent to the same child. Figure 5.4 shows an example of such a situation.
First, note that the parent’s automorphism group consists of the identity and a
permutation that swaps vertex zero with vertex one and vertex three with vertex
four. Two different Cy; moves are shown by dashed lines. The canonical move
label for one is (0,2, 5,5,4,1) and for the other (0,3,5,1,4,0). These moves are not

equivalent; for instance, one endpoint of the first move is on a triangular face and

68

that is not the case for the second move.

The lower half of the figure shows the result of each move, using the same vertex
labelling as in the parent to make clear what happens to the vertices. Although
the drawings of the children have been adjusted to show their relationship to each
other rather than to the parent, it is clear by careful examination of each vertex
that these are the children produced by the two moves. As is also clear from the
diagram, these two children are the same up to a mirror reversal and relabelling of
the vertices. They have the same canonical form.

Fortunately, move labels provide an easy solution to this kind of problem as
well. When we examine a move we could make on an embedding P, we first check
that the move’s label matches its own least image under the automorphism group
of P. If it does, we construct the resulting embedding C, construct the parent of
C, and check that the parent is isomorphic to P. So far we have done nothing to
prevent the situation of Figure 5.4. But when we call PARENT(C'), it also returns a
move label describing a way to get from the parent to C'. We then check not only
that P matches the parent of C', but also that the move label we used to find C
matches the move label returned by PARENT(C).

Just as with selection of parents, it does not matter at all how we choose the
move label to return from PARENT, provided we choose some move label that actu-
ally will be visited and does lead from the parent to the child. However, PARENT(C')
must always choose the same move label for all isomorphic values of C', and the
easiest way to be sure of that is to force PARENT to examine only the canonical
form of C'. Any additional information available to the software, as for instance the
edge marks described in the next section, is carefully excluded from influencing the

selection of the parent and move label.

69

5.3 Edge marking

When we select a parent for a given C, it is important that the parent be an
embedding whose children we actually will examine. Otherwise, the child will never
be processed. Since we examine only target embeddings, the parent must be a target
embedding; therefore, it must be biconnected, have no vertices of degree less than
three, and have orientable genus one. If we are limiting the number of diamonds
to at most one, then we look for a parent containing at most one diamond. To
generate embeddings efficiently, we must be able to quickly test, or avoid testing,
each of these conditions.

Most of the target embedding conditions are easy to deal with. Genus no greater
than one, for instance, is guaranteed because the child has genus one and none of
our reverse moves can increase the genus. Minimum degree of vertices is easy to
assure. We simply forbid making any reverse move that would reduce the degree of
a vertex to less than three. Checking for biconnectedness requires a simple, linear-
time traversal of the graph. But it may be much more expensive to check that a
possible parent is not planar.

Some planarity testing algorithms are simple to implement but do not achieve
linear time complexity, like the one known as Demoucron’s Algorithm [15]; oth-
ers are linear-time but require complicated structures like PQ-trees [10, 14]. The
linear-time planarity algorithm of Boyer and Myrvold [11] is designed for easy im-
plementation, but is still complicated enough to present some problems. So if we
make an embeddability test, or possibly several of them, for every potential child
we visit, then we could spend most of our programming labour or computation time
doing that alone.

First of all, we can arrange the tests we apply to potential parents in order
of increasing cost, so that if we can reject a potential parent for a reason we can
determine cheaply, we will do so and avoid doing the more expensive tests. But it

still seems undesirable to do planarity testing if we can possibly avoid it, especially

70

as the graphs become larger. On a very large toroidal graph, for instance, it seems
unlikely that removing any one edge would ever render it planar.

We reduce the number of planarity tests by using edge marks. If an edge e in
an embedding £ is contained in every subembedding of £ homeomorphic to K5 or
K33, then e is marked. The converse is usually, but not always, true: edges that
are not contained in every Kuratowski subgraph may or may not be marked. Note
that this concept differs from the red colouring used in proving the existence of
parents, because there we chose a specific subgraph homeomorphic to K5 or Kj3
and coloured all of it. Edge marks, however, only need to be applied to edges that
are in all subgraphs homeomorphic to K5 or Kj3. All target embeddings contain
edges that would be coloured red, but some target embeddings have no edges that
need to be marked.

Removing an edge with a reverse Cy; move can only make the graph planar if
in so doing we destroy every nonplanar subgraph in the embedding. So any time
we would remove an edge to obtain the parent and that edge is not marked, we get
the planarity test result (“not planar”) for free. In that case the edge can remain
unmarked.

If we attempt to remove a marked edge, we must still do the planarity test.
But if we do the test and it returns “not planar”, then we know that the edge did
not really need to be marked; obviously there exists some nonplanar subgraph not
destroyed by the removal of the edge. So in that case, we can unmark the edge.
Since we are examining all possible children for each embedding, marked edges tend
to be tested, and unmarked if appropriate, sooner rather than later. So in practice,
the set of marked edges is usually close to minimal. The following theorem shows

that we can easily maintain a set of marked edges.

Theorem 5.3.1 If the edges of a parent P are marked such that an edge is marked
if it is in every subgraph of P homeomorphic to K5 or Ks3, then we can obtain a

marking for the child C also satisfying that condition by following these rules:

71

Edges marked in P are marked in C.

New edges introduced by Cy, moves are not marked.

New edges introduced by Dy 4 moves are not marked.

New edges introduced by T moves are marked.

Furthermore, if we ever do a planarity test on a graph G — e consisting of a

graph G minus an edge e, and G — e is found to be nonplanar, then we can unmark

e in G.

Proof. When we obtain C' from P by a Cy; move, obviously every subgraph of P
is a subgraph of C' also. So any edge that is in every subgraph of C' homeomorphic
to K5 or K33 must also be in every subgraph of P> homeomorphic to K5 or Kj 3.
The set of edges that must be marked in C' is a subset of the set of edges that must
be marked in P, so if we make the marked edges of C' equal to the marked edge of
P, we obtain a legal marking.

When we obtain C' from P by a D, 4 move, we do not mark any of the new
edges. Call the endpoints of the edge being removed u and v. If the edge (u,v)
was unmarked in P then obviously there is some subgraph homeomorphic to Kj
or K33 in P that did not include that edge, and that subgraph is retained in C.
Even if the edge being removed was marked, removal of any one of the new edges
maintains a path between u and v, and so does not make C planar by destroying
all subgraphs homeomorphic to K5 or Ks 3.

We mark all edges added by 7;; moves in order to err on the side of caution,
because it is possible that an edge added by such a move could be in every subgraph
homeomorphic to K5 or K33, even when no other edges need to be marked. For
instance, supposed we take an embedding of K3, subdivide all nine edges as with
811 moves, and then perform a D, 4 move on every edge of the result; so we have

an embedding of K33 with every edge replaced by two diamonds in a row.

72

Any one edge from the resulting embedding could be removed without rendering
the graph planar. Suppose we split the degree four vertex joining two diamonds in
this construction. We could either preserve both diamonds or destroy them both,
depending on how we make the split. If we preserve the diamonds, the new edge is
on every subgraph homeomorphic to K5 or K33 and so needs to be marked. Rather
than attempting to make some elaborate test for which new edges from 7;; moves
need to be marked, we simply mark them all. Any edges marked unnecessarily by
that rule will soon be unmarked as a result of a planarity test anyway.

Finally, we can remove the mark from an edge e if removal of e leaves the graph
nonplanar, because that is the definition of marking. Edges must be marked if their
removal makes the graph planar, and may or may not be marked if their removal

does not make the graph planar. [J

73

Chapter 6

Experimental results

Our algorithm is designed for practical implementation. This chapter begins with
Section 6.1, which describes our implementation of an embedding generator based
on this work. In Section 6.2 we describe some results obtained by running our
generator, and give tables of the embeddings and graphs found. We also comment

briefly on the number of embeddings per graph.

6.1 Implementation of the algorithm

We implemented several versions of an embedding generator during the project,
as the theoretical work developed. The final version, used to calculate the results
given here, contains approximately 5,100 lines of C language source code, plus
some additional utilities written in C and Perl, the GNU getopt library function
[21], and a makefile to manage the compilation process. This version is based
on Theorem 4.2.1 and the algorithm of Section 2.5, to generate lists of diamond-
free target embeddings by examining all target embeddings containing at most one
diamond.

Development was conducted on the author’s dual 433MHz Intel Celeron-based

personal computer, under the GNU/Linux operating system. The computational

74

experiments were conducted there and on various computers running Solaris at
the University of Victoria and Rochester Institute of Technology. All the CPU
times listed here are for the Celeron unless otherwise specified, and are measured
in user-space CPU time to reduce the effect of other processes running on the same
computers.

The embedding generator includes some additional features, like the edge-mark-
ing technique of Section 5.3 to reduce the number of planarity tests performed, and
the technique described by McKay [28, Section 8] for splitting the computation into
parallel slices. We include an implementation of the planarity algorithm of Demou-
cron, Malgrange, and Pertuiset [15]. Although this algorithm does not offer the
linear asymptotic time complexity of some other planarity algorithms, it performs
well with the relatively small graphs our code processes.

The data structure we use for embeddings is a simplified version of that described
by Boyer and Myrvold for their planarity algorithm [11, Section 4]. Each vertex
has a circular doubly-linked list of records representing the neighbours around that
vertex in clockwise order; the two records representing the endpoints of each edge
are joined by pointers called twin links. We do not use the special feature of treating
the two linked-list pointers equivalently, because we do not need to be able to reverse
the order of a list in constant time.

As well as the linked-list representation of the embedding, we also maintain an
adjacency matrix as a packed bit array. Adjacency matrices inherently require O(n)
or O(n?) time for some operations that could be done faster on other structures.
But our implementation, although it can handle almost any number of vertices in
theory with the appropriate compiled-in options, is limited to embeddings of up to
about eleven or twelve vertices in practice simply by output size and computation
time. Packed bit arrays of this size can be implemented so efficiently on current bit-
parallel computers that the adjacency matrices are extremely fast and convenient,
despite their asymptotic disadvantages.

One special feature of the present software allows running the generation pro-

75

cess in reverse: with an embedding provided as input, it prints out the parent of
the input embedding, the parent of that embedding, and so on, until a seed em-
bedding is reached or a consistency check fails. That procedure proved invaluable
when debugging the parent-selection code, since a common failure mode was for
the software to select as a parent an embedding (or an inconsistent data struc-
ture vaguely resembling an embedding) that would not ever be generated by the

generation algorithm.

6.2 Diamond-free targets up to n = 10

We ran the embedding generator to make a list of all diamond-free target embed-
dings on up to nine vertices, and stored the results as compressed text files with one
line, containing the canonical form, for each embedding. The resulting files store
approximately 17 million embeddings of 75 thousand graphs in approximately 120
megabytes of disk space. This run was split into three equal slices and consumed
approximately 9.4 hours of CPU time.

Since a similar set of files for the ten-vertex case would be too large to store con-
veniently, we split the computation into 100 slices and had the program output only
the graph for each diamond-free target embedding. We then counted the number
of embeddings for each isomorphism class of graphs. Generating these embeddings
required approximately 13 days of CPU time. The resulting files, containing graphs
in nauty canonical form [27] and a count of embeddings for each graph, consume
approximately 19 megabytes compressed. There were approximately 3.9 million
graphs with 462 million embeddings in this run. Storing the embeddings would be
prohibitive: extrapolating the space consumption of the nine-vertex graphs gives
an estimate of at least 3,200 megabytes to store all the ten-vertex embeddings of
diamond-free target graphs, even in compressed form.

To provide a reference for debugging purposes, we also obtained an independent

list of diamond-free target graphs with up to nine vertices, by using the geng

76

software by McKay [28] to generate all graphs on up to nine vertices with all vertices
having minimum degree three and few enough edges to be toroidal. We passed those
graphs through a simple filter to remove the ones containing diamonds, and used
the torus embedding software of Neufeld and Myrvold [34] to find the graphs with
genus one.

Generating the independent list of diamond-free target graphs required approx-
imately four months of CPU time (compare to 9.4 hours to generate the same list
with our generator program), but the result proved to be invaluable for debugging
our generator. Most programming mistakes in our own software manifested either
as duplicate embeddings in the output, or as target graphs that failed to appear
in the output, so we tested our package by checking for duplicates, then using
nauty [27] to find a list of graphs in our output up to isomorphism, and checking
that list against the reference list.

The list from our current generator agrees with the reference list, and that adds
to our confidence not only that our software is correct but that the packages used
to make the reference list are also correct. Since our generator uses a completely
different algorithm from the algorithms used by geng and the torus embedder,
it seems highly unlikely that both lists would accidentally omit exactly the same
graphs.

Our counts of diamond-free target embeddings and graphs with up to ten vertices
are shown in Tables 6.1 and 6.2 respectively. We also found the maximum number
of torus embeddings for any one diamond-free target graph with a fixed number of
vertices n and edges m; these numbers are shown in Table 6.3.

In Table 6.4 we show the mean count of torus embeddings per graph for each
value of n, obtained by dividing the number of embeddings by the number of graphs.
Note that the number of embeddings per graph increases with more vertices up to
eight, but then decreases a little for nine-vertex graphs and decreases considerably
more for ten-vertex graphs. However, the maximum number of embeddings for

a single target graph at each value of n, shown in the bottom line of Table 6.3,

77

n=>= 6 7 8 9 10
m =9 2

10 6 7

11 45 14

12 110 218 9

13 113 1,287 364

14 24 3,702 4,822 241

15 4 4,990 28,851 8,106 74

16 3,184 88,564 96,129 7,012

17 911 150,724 956,190 170,443

18 168 144,888 1,814,463 1,771,171

19 21 79,845 3,574,097 9,951,881

20 2 26,194 4,408,741 33,834,400

21 1 5,613 3,475,526 74,055,939

22 790 1,784,251 108,160,019

23 69 611,193 107,805,321

24 7 142,144 74,469,982

25 21,760 36,069,910

26 2,000 12,326,126

27 112 2,938,905

28 467,434

29 44,739

30 2,109
total 6 305 14,498 530,740 16,494,953 462,075,465

Table 6.1: Counts of diamond-free target embeddings on the torus.

n=>= 6 7 8 9 10
m =9 1

10 1 1

11 2 1

12 2 6 2

13 2 14 13

14 1 23 59 11

15 1 23 180 132 9

16 17 339 784 171

17 9 441 2,757 2,003

18 5 415 6,473 12,726

19 2 307 10,757 51,060

20 1 187 13,548 142,358

21 1 103 13,565 295,863

22 51 11,271 482,277

23 22 7,920 640,518

24 7 4,639 706,707

25 2,113 643,664

26 628 466,213

27 101 250,369

28 90,649

29 19,190

30 1,866
total 1 10 102 2,126 74,699 3,805,643

Table 6.2: Counts of diamond-free target graphs on the torus.

79

n=>5 6 7 8 9 10
m =9 2

10 6 7

11 25 14

12 88 68 5

13 66 239 45

14 24 372 199 44

15 4 866 570 158 20

16 491 1,084 498 100

17 281 2,232 1,056 308

18 64 1,818 2,216 1,010

19 11 2,112 3,384 2,110

20 2 828 4,196 3,860

21 1 375 5,164 5,808

22 66 2,918 9,144

23 8 1,380 9,748

24 1 499 7,476

25 162 3,828

26 24 1,521

27 2 718

28 166

29 48

30 6
all m 6 88 866 2,232 5,164 9,748

Table 6.3: Maximum numbers of torus embeddings for diamond-free target graphs.

80

n=> 6 7 8 9 10

6.00 30.50 142.14 249.64 220.82 121.42

Table 6.4: Mean number of torus embeddings per diamond-free target graph.

continues to increase with additional vertices, at least for the numbers of vertices
we examined. An embedding of the single diamond-free target graph we examined

with most torus embeddings, 9,748 of them, is shown in Figure 6.1.

81

82

Figure 6.1: One of the 9,748 torus embeddings of the unique ten-vertex diamond-

free target graph with maximum number of torus embeddings.

Chapter 7

Applications and future work

Although the lists of diamond-free target embeddings generated by our software and
described in the previous chapter may have some interest in themselves, the algo-
rithm is intended to be useful in some specific applications. This chapter describes
some of those applications. We begin by describing a fast lookup-based toroidality
test in Section 7.1. In Section 7.2 we apply that test to the search for topological
obstructions to embeddability on the torus. Future work with this algorithm could
focus on searches for additional obstructions. Another possible direction for future
work would be the application of these techniques to other surfaces, described in

Section 7.3. We end the chapter with a summary of our conclusions, in Section 7.4.

7.1 A lookup-based toroidality tester

We can use the output of the embedding generator to build a database of diamond-
free target graphs, and then use that database as the basis for a fast toroidality
test. Given a graph G with n vertices and the database of diamond-free target
graphs with up to n vertices, we can eliminate any vertices of degree less than three
from G, find its biconnected components, and check them for planarity. If more

than one biconnected component is nonplanar then G must have genus greater than

83

one; if all are planar then G is planar; otherwise, we look up the one nonplanar
biconnected component in the database. The following pseudocode describes the

algorithm:

FASTGENUS(G) :
genus <— 0
while G is not empty
H < some biconnected component of G
if H is nonplanar
replace diamonds with edges by reverse D, 4 moves, and eliminate
vertices of degree less than three with reverse S;; moves
if H is in the list of diamond-free target graphs
genus <— genus + 1
else
return “greater than one”
end if
if genus > 1

return “greater than one”

end if
end if
G+—G-H
end while

return genus

Our implementation of FASTGENUS consists of a filter that writes out, for each
input graph G, either K, if G is planar; a constant genus two graph if G has genus
at least two; or a graph isomorphic to the nonplanar biconnected component of G
except for diamonds and vertices of degree less than three, if G has exactly one
nonplanar biconnected component. So the output of the filter is a graph that falls

into the same category (genus zero, genus one, or genus at least two) as the input;

84

if the genus is zero then the output is K4, and if the genus is one then the output
is some labelling, possibly not canonical, of a diamond-free target graph.

We pass the output of our filter through the nauty [27] canonical labelling
utility; then we look up the result in a table to find the category for the graph.
To handle input graphs up to ten vertices, the table has about 3.9 million entries
and consumes about 39 megabytes of disk space (ten bytes per entry). The table
contains K, and the diamond-free target graphs from the generator program; if
the output of the filter is not in the table, then we know the input graph G must
have had genus at least two. Running the test on large batches of graphs, using our
filter, nauty, and the sorting and lookup utilities provided by the operating system,

we can categorize about ten thousand graphs per CPU second.

7.2 Searching for torus obstructions

The generalized Kuratowski theorem states that for any surface S, there is a finite
list of graphs called topological obstructions such that a graph G is embeddable on
the surface if and only if it does not contain a subgraph homeomorphic to a graph
on the list. The theorem can also be stated in terms of minors: G is embeddable
if and only if it does not contain as a minor one of the graphs on a finite list
of minor-order obstructions. The result was proved for non-orientable surfaces by
Archdeacon and Huneke [4] and for orientable surfaces by Bodendiek and Wagner
[9]. Robertson and Seymour proved a stronger conjecture that includes the general
Kuratowski theorem [37]. These citations are from a survey by Archdeacon [3].

For the plane, the sets of topological and minor order obstructions are both
equal to { K5, K3 3}. For the projective plane, there are 103 topological obstructions
corresponding to 35 forbidden minors [1, 2, 20]. The torus embedding code of
Neufeld and Myrvold [34, 33] led to a complete list of torus obstructions with up
to ten vertices, and a partial list of larger obstructions.

A few obstructions for various surfaces can also be generated by simple rules;

85

for instance, suppose we take k + 1 copies of K5, choose one vertex from each, and
identify all the chosen vertices. The result, containing 4k + 5 vertices, must be a
topological and minor-order obstruction for the k-handled torus because it contains
k + 1 biconnected components each with genus one, and removing or contracting
any edge reduces the genus of that 3-connected component to zero, reducing the
genus of the entire graph by a theorem of Battle, Harary, Kodama, and Youngs
[8]. We know of no known embeddability obstructions apart from these kinds of
constructions and the results mentioned above for the plane, projective plane, and
torus.

A topological obstruction G for the torus has the property that G is not toroidal
but removing any one edge from G gives a toroidal graph. This property leads
naturally to a technique for finding obstructions: if we take a list of all toroidal
graphs, add one edge to each of them in all possible ways, and remove any toroidal
graphs from the resulting list, all topological obstructions for the torus will be
included in the resulting list. All topological obstructions are diamond-free as
a consequence of Theorem 3.1.1, and if we confine our attention to biconnected
obstructions, we can find them all on the list derived from our software’s list of
diamond-free target graphs.

We took the list of about 3.9 million diamond-free target graphs generated by our
software for up to ten vertices, subdivided between zero and two edges in all possible
ways to get graphs with no more than ten vertices, and eliminated duplicate graphs.
Then we added an edge to each graph in all possible ways, eliminated duplicates,
and removed all graphs that were on the list of diamond-free target graphs. That
produced a list of 1,028,118 graphs, including all topological obstructions for the
torus with up to ten vertices. The step of subdividing edges was necessary in order
to be able to create obstructions where every edge is incident to a degree three
vertex; such a graph clearly cannot be created by adding just an edge to a graph
with no vertices of degree less than three. The only biconnected obstruction we

found with every edge incident to a degree three vertex is the graph K73, shown in

86

Figure 7.1: The graph K73, a topological obstruction to torus embeddability.

Figure 7.1.

For every graph G on this list of candidate obstructions, we removed one edge
in all possible ways and made another list of all those graphs G — e. We applied
the fast lookup-based torus test described in the previous section to the list of
G — e graphs, and generated a list of all graphs GG that were not toroidal but where
removing an edge e would always make G — e toroidal; in other words, a list of
topological obstructions. A summary of that list is shown in Table 7.1. The CPU
time consumption for this obstruction search was difficult to measure because the
processing was divided between several different pieces of sorting, merging, and
lookup software. We estimate the consumption at six hours, about a third spent
running the system sort utility, and excluding the 13 days required to compile the
database as discussed in Section 6.2.

We checked the 707 obstructions on our list with nauty to make sure they were
distinct, and with the simplification utility from our lookup-based torus test to make
sure they were biconnected. We also verified that each of our believed topological
obstructions really was a topological obstruction, using the torus tester of Neufeld
and Myrvold [34, 33]. Our counts of obstructions agree with theirs except in the
case of ten vertices and 26 edges, where we count one more obstruction. After
obtaining their list of 656 ten-vertex topological obstructions [31], we found that
the one missing obstruction was the one shown in Figure 7.2. We were unable to

determine why their search missed this obstruction.

87

n=8 9 10

m =19 0 2 14
20 0 4 8
21 0 2 34
22 19 40
23 0 17 190
24 1 6 170
25 1 2 102
26 0 5 76
27 0 0 21
28 0 0 1
29 0 0 0
30 0 0 1
total 3 47 657

Table 7.1: Biconnected topological obstructions for the torus with up to ten vertices.

Figure 7.2: The obstruction not found by Neufeld and Myrvold [34, 33].

88

7.3 Other surfaces

Much of this work could also be applied to other surfaces besides the torus. Indeed,
much of the programming in our project was originally done with an extension
to arbitrary surfaces in mind. Generating embeddings of projective planar graphs
embedded on the projective plane would require us to extend the concept of a com-
binatorial embedding to express embeddings on nonorientable surfaces, but that is
not difficult. A technique involving positive and negative signs placed on the edges
of the embedding is used in the projective planarity algorithms of Mohar [29] and
Myrvold and Roth [32]. While developing the toroidal graph generator, we imple-
mented but did not test or use some subroutines to handle embeddings extended
this way.

For the projective plane, the edge signs are the only enhancement obviously
necessary. The proofs of Chapters 3 and 4 should be easy to extend to the projective
plane. For surfaces of higher genus, both orientable and non-orientable, the problem
may be somewhat more complicated.

First, there is the question of what embeddings to use as seeds. The same set of
eight seeds we used for the torus would seem to be a good choice for the projective
plane also, but it is not clear what seeds to use, for example, for the two-handled
torus. Should we use the set of topological obstructions for the torus? If we did,
it would raise a problem, because some torus obstructions are not connected, let
alone biconnected; we would have to either revise our definition of target graphs to
allow the use of those as seeds, or somehow prove them unnecessary.

The second problem involves verifying the genus of target graphs. Our algorithm
for the torus requires that we test, when examining possible parents, that each graph
really is genus one; the construction provides that the genus is no more than one,
and we use a planarity test to verify that the genus is no less than one. We could
use the planarity test when generating graphs on the projective plane also. But

when generating graphs on a surface of higher genus we would need a higher-genus

89

testing algorithm; for instance, a torus tester to generate graphs on the two-handled
torus.

The torus tester of Neufeld and Myrvold [34] seems too slow to be useful in this
context, where millions of graphs must be processed; but perhaps it could be sped
up by some kind of memoization technique, because the same graphs will be tested
many times. The lookup-based toroidality tester we constructed in Section 7.1 could
also be useful. Note that the implemented projective planarity tester of Myrvold
and Roth [32], and the known list of obstructions for the projective plane [1, 2, 20],
suggest a relatively easy application to the Klein bottle.

We could consider generating embeddings on the plane. Indeed, some early
versions of our software (before we completed the theoretical work) were designed
to also generate planar embeddings. On the plane, of course, there is no concern
about testing genus; we can start with planar embeddings as seeds and then the
construction moves can keep them planar. However, something would have to be
done about the wheels, which are an infinite set of biconnected planar graphs with
no degree three vertices, each of which is not amenable to any reverse Cy 1, D4, or
71,1 move to leave a biconnected planar graph with no degree three vertices.

Also, some special accommodation might possibly have to be made for K4, which
is a graph with the unique feature that every one of its edges is a diamond edge.
The proof of Theorem 3.1.8, for instance, depends on the fact that a target graph
cannot be a wheel. The only move that can be made on an embedding of K, is a
D, 4 move that destroys five diamonds and creates one, which could cause problems

for the line of reasoning developed in Section 4.2.

7.4 Conclusions

We have described an algorithm to generate one representative from every isomor-
phism class of diamond-free target embeddings up to a chosen number of vertices

or edges, and proved that algorithm correct. We have described some additional

90

issues relating to implementation, and our own C language implementation of the
algorithm. Some experimental results from our implementation have been pre-
sented, including the determination of all biconnected topological obstructions to
torus embeddability containing ten or fewer vertices. Finally, we have proposed

some additional applications for the algorithm.

91

Bibliography

1]

8]

9]

[10]

[11]

D. Archdeacon. A Kuratowski theorem for the projective plane. Thesis, Ohio
State University, 1980.

D. Archdeacon. A Kuratowski theorem for the projective plane. Journal of
Graph Theory, 5:243-246, 1981.

D. Archdeacon. Topological graph theory: A survey. Congressus Numeratum,
115:5-54, 1996.

D. Archdeacon and J. P. Huneke. A Kuratowski theorem for nonorientable
surfaces. Journal of Combinatorial Theory, Series B, 46:173-231, 1989.

A. Argyle. Toroidal embeddings of K33 and K;5. CSC 499 Technical Project,
University of Victoria, 1999.

D. Barnette. Generating the triangulations of the projective plane. Journal of
Combinatorial Theory, Series B, 33:222-230, 1982.

D. Barnette. Generating the 4-connected and strongly connected triangulations
on the torus and projective plane. Discrete Mathematics, 85:1-16, 1990.

J. Battle, F. Harary, Y. Kodama, and J. Youngs. Additivity of the genus of a
graph. Bulletins of the American Mathematical Society, 68:565-568, 1962.

R. Bodendiek and K. Wagner. Solution to Konig’s graph embedding problem.
Math. Nachr., 140:251-272, 1989.

K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal of
Computer and System Sciences, 13:335-379, 1976.

J. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simplified
O(n) planar embedding algorithm. In Proceedings of the Tenth Annual ACM-
SIAM Symposium on Discrete Algorithms (Baltimore, Maryland, January 17-
19, 1999), pages 140146, 1999,

92

[12]

[13]

[14]

[15]

[16]

[22]

23]

[24]

G. Brinkmann and B. McKay. Fast generation of some classes of planar graphs.
preprint.

J. Cai. Counting embeddings of planar graphs using DF'S trees. SIAM Journal
on Discrete Mathematics, 6(3):335-352, 1993.

N. Chiba, T. Nishizeki, A. Abe, and T. Ozawa. A linear algorithm for embed-
ding planar graphs using PQ-trees. Journal of Computer and System Sciences,
30:54-76, 1985.

G. Demoucron, Y. Malgrange, and R. Pertuiset. Graphes planaires. Revue
Francaise Recherche Opérationnelle, 8:33—-47, 1964.

J. R. Fiedler, J. P. Huneke, R. B. Richter, and N. Robertson. Computing the
orientable genus of projective graphs. Journal of Graph Theory, 20(3):297-308,
1995.

I. S. Filotti. An algorithm for embedding cubic graphs in the torus. Journal
of Computer and System Sciences, 2:255-276, 1980.

M. Fontet. A linear algorithm for testing isomorphism of planar graphs. In
S. Michaelson and R. Milner, editors, Third International Colloquium on Au-
tomata, Languages and Programming, pages 411-424, University of Edinburgh,
July 20-23 1976. Edinburgh University Press.

O. Frink and P. Smith. Abstract 179. Bulletins of the American Mathematical
Society, 36:214, 1930.

H. Glover, J. Huneke, and C. Wang. 103 graphs that are irreducible for the
projective plane. Journal of Combinatorial Theory, Series B, 27:332-370, 1979.

GNU Project. GNU getopt. Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA, 1995. Computer software, from the Fetchmail
4.1.1 distribution by Eric S. Raymond.

M. Henle. A combinatorial introduction to topology. Dover Publications, Inc.,
New York, 1994.

J. Hopcraft and J. Wong. Linear time algorithm for isomorphism of planar
graphs. In 6th ACM SIGACT. Association for Computing Machinery, New
York, 1974.

M. Juvan, J. Marincek, and B. Mohar. Embedding graphs in the torus in linear
time. In Integer Programming and Combinatorial Optimization, volume 920 of
Lecture Notes in Computer Science, pages 360-363. Springer, Berlin, 1995.

93

[25]

[26]

[27]

28]

[29]

[30]

[31]
32]

33]

[34]

[35]

[36]

37]

L. C. Kinsey. Topology of Surfaces. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 1993.

K. Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta
Mathematicae, 15:271-283, 1930.

B. D. McKay. nauty user’s guide (version 1.5). Technical Report TR-CS-90-02,
Department of Computer Science, Australian National University, 1990.

B. D. McKay. Isomorph-free exhaustive generation. Journal of Algorithms,
26(2):306-324, Feb. 1998.

B. Mohar. Projective planarity in linear time. Journal of Algorithms, 15:482—
502, 1993.

B. Mohar. A linear time algorithm for embedding graphs in an arbitrary
surface. SIAM Journal of Discrete Mathematics, 12(1):6-26, 1999.

W. Myrvold. Personal communication.

W. Myrvold and J. Roth. Simpler projective plane embedding. Submitted to
Discrete Mathematics, June 2000.

E. Neufeld. Practical toroidality testing. Master’s thesis, Department of Com-
puter Science, University of Victoria, 1993.

E. Neufeld and W. Myrvold. Practical toroidality testing. In Proceedings of the
FEighth Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans,
Louisiana, January 5-7, 1997), pages 574580, 1997.

B. Perunic¢i¢ and Z. Duri¢. An efficient algorithm for embedding graphs in
the projective plane. In Proceedings of the Fifth Quadrennial International
Conference on the Theory and Applications of Graphs with special emphasis on
Algorithms and Computer Science Applications (Kalamazoo, Michigan, June
4-8, 1984), pages 637-650, 1985.

R. Read and D. Corneil. The graph isomorphism disease. Journal of Graph
Theory, 1:339-363, 1977.

N. Robertson and P. Seymour. Graph minors VIII: A Kuratowski theorem
for general surfaces. Journal of Combinatorial Theory, Series B, 48:255-288,
1990.

94

VITA

Surname: Skala Given Names: Matthew Adam
Place of Birth: Victoria, British Columbia, Canada

Educational Institutions Attended:

University of Victoria 1995 to 2001
Camosun College 1994 to 1995

Degrees Awarded:

B.Sc. University of Victoria 1999

Honours and Awards:

NSERC Postgraduate Scholarship (PGS A) 2000 to 2001
University of Victoria Fellowship 1999 to 2000
President’s Research Scholarship 2000
BC ASI Graduate Scholarship 1999

Publications and Presentations:

Skala, M., and Myrvold, W. (2001) Fast Generation of Graphs Embedded on the
Torus. Presented at 32nd Southeastern International Conference on Combinatorics,
Graph Theory, and Computing, Baton Rouge, Louisiana, February 26-March 2,
2001.

Goodenough, D.G., Charlebois, D., Bhogal, A.S., Dyk, A., and Skala, M. (1999)
SEIDAM: A Flexible and Interoperable Metadata-Driven System for Intelligent For-
est Monitoring. Proceedings of the International Geoscience and Remote Sensing
Symposium 1999 (IGARSS’99), Hamburg, Germany, pp. 1338-1341.

Skala, M. (1998) A Limited-Diffusion Algorithm for Blind Substring Search. Pro-
ceedings of the 10th Annual Canadian Information Technology Security Sympo-
sium, 1-8 June 1998, Ottawa, Ontario, pp. 397—410.

UNIVERSITY OF VICTORIA PARTIAL COPYRIGHT LICENSE

I hereby grant the right to lend my thesis to users of the University of Victoria
Library, and to make single copies only for such users or in response to a request
from the Library of any other university, or similar institution, on its behalf or
for one of its users. I further agree that permission for extensive copying of this
thesis for scholarly purposes may be granted by me or a member of the University
designated by me. It is understood that copying or publication of this thesis for
financial gain by the University of Victoria shall not be allowed without my written

permission.

Title of Thesis:

Generation of Graphs Embedded on the Torus

Author

Matthew Adam Skala
August 27, 2001

