
Generation of Graphs Embedded on the TorusbyMatthew Adam SkalaB.S
., University of Vi
toria, 1999A Thesis Submitted in Partial Ful�llment of theRequirements for the Degree ofMASTER OF SCIENCEin the Department of Computer S
ien
eWe a

ept this thesis as 
onformingto the required standard
Dr. Wendy Myrvold, Supervisor (Dept. of Computer S
ien
e)Dr. Ulrike Stege, Departmental Member (Dept. of Computer S
ien
e)Dr. Gary Ma
Gillivray, Outside Member (Dept. of Mathemati
s and Statisti
s)Dr. Ri
hard Anstee, External Examiner (Dept. of Mathemati
s, University ofBritish Columbia) 

 Matthew Adam Skala, 2001University of Vi
toriaAll rights reserved. This thesis may not be reprodu
ed in whole or in part, byphoto
opy or other means, without the permission of the author.



iiSupervisor: Dr. Wendy MyrvoldABSTRACTAn algorithm is presented and proved to generate one representative from everyisomorphism 
lass of embeddings on the torus of graphs with 
ertain properties.Implementation issues, possible appli
ations, and experimental results from an im-plementation of the algorithm are des
ribed, in
luding the determination of all bi-
onne
ted topologi
al obstru
tions to torus embeddability 
ontaining ten or fewerverti
es.Examiners:
Dr. Wendy Myrvold, Supervisor (Dept. of Computer S
ien
e)Dr. Ulrike Stege, Departmental Member (Dept. of Computer S
ien
e)Dr. Gary Ma
Gillivray, Outside Member (Dept. of Mathemati
s and Statisti
s)Dr. Ri
hard Anstee, External Examiner (Dept. of Mathemati
s, University ofBritish Columbia)



iii
Contents

Abstra
t iiContents iiiList of Tables vList of Figures viA
knowledgments viii1 Introdu
tion 12 De�nitions and notation 42.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Surfa
es and embeddings . . . . . . . . . . . . . . . . . . . . . . . . 72.3 Target embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.4 Moves and sets of moves . . . . . . . . . . . . . . . . . . . . . . . . 102.5 The generation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 123 Choosing a set of moves 183.1 A three-move suÆ
ient set . . . . . . . . . . . . . . . . . . . . . . . 193.2 The three-move set is minimal . . . . . . . . . . . . . . . . . . . . . 373.3 A two-move minimal suÆ
ient set . . . . . . . . . . . . . . . . . . . 42



iv4 Diamonds 484.1 Some notes on diamonds . . . . . . . . . . . . . . . . . . . . . . . . 484.2 Only one diamond is ne
essary . . . . . . . . . . . . . . . . . . . . . 504.3 Twisted diamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Other aspe
ts of the algorithm 605.1 A 
anoni
al form for embeddings . . . . . . . . . . . . . . . . . . . 605.2 Move labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.3 Edge marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706 Experimental results 746.1 Implementation of the algorithm . . . . . . . . . . . . . . . . . . . . 746.2 Diamond-free targets up to n = 10 . . . . . . . . . . . . . . . . . . 767 Appli
ations and future work 837.1 A lookup-based toroidality tester . . . . . . . . . . . . . . . . . . . 837.2 Sear
hing for torus obstru
tions . . . . . . . . . . . . . . . . . . . . 857.3 Other surfa
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897.4 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



v
List of Tables

6.1 Counts of diamond-free target embeddings on the torus. . . . . . . 786.2 Counts of diamond-free target graphs on the torus. . . . . . . . . . 796.3 Maximum numbers of torus embeddings for diamond-free target graphs. 806.4 Mean number of torus embeddings per diamond-free target graph. . 817.1 Bi
onne
ted topologi
al obstru
tions for the torus with up to tenverti
es. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



vi
List of Figures

2.1 A diamond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Some representative graphs. . . . . . . . . . . . . . . . . . . . . . . 62.3 A drawing of a graph on the plane, and a 
orresponding 
ombinato-rial embedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4 Some examples of moves . . . . . . . . . . . . . . . . . . . . . . . . 112.5 The eight seed embeddings for our algorithm. . . . . . . . . . . . . 143.1 A super-diamond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.2 Adding a diamond without 
hanging the genus. . . . . . . . . . . . 213.3 Vertex names for the proof of Theorem 3.1.4. . . . . . . . . . . . . . 243.4 Finding a path from u to v 
ontaining w, in H2. . . . . . . . . . . . 283.5 K4 minus an edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.6 Removal of the 
ut vertex u must split C � e into exa
tly two 
on-ne
ted 
omponents: one planar, and one nonplanar. . . . . . . . . . 313.7 The bi
onne
ted 
omponent H. . . . . . . . . . . . . . . . . . . . . 323.8 Vertex names when u is on three triangles. . . . . . . . . . . . . . . 333.9 Exploding a vertex to 
reate degree three verti
es ea
h adja
ent totwo others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.10 Chord moves as sequen
es of C0;1 and S1;1 moves. . . . . . . . . . . 443.11 Diamond moves as sequen
es of C0;1 and S1;1 moves. . . . . . . . . . 443.12 Simulating C2;3 with C1;2 and T1;1. . . . . . . . . . . . . . . . . . . . 45



vii3.13 Simulating D3;5 and D4;6 with D2;4 and T1;1. . . . . . . . . . . . . . 464.1 The two situations where a reverse D2;4 move would 
reate a diamond 504.2 How a reverse T1;1 move 
an 
reate a diamond. . . . . . . . . . . . . 514.3 How a reverse T1;1 move 
an 
reate two diamonds. . . . . . . . . . . 524.4 Why 
ontra
ting (u; w) does not 
hange the genus. . . . . . . . . . 524.5 How a reverse C0;1 move 
an 
reate a diamond. . . . . . . . . . . . . 534.6 Some twisted diamonds. . . . . . . . . . . . . . . . . . . . . . . . . 564.7 A diamond-free target embedding that 
annot be generated withouta twisted diamond. . . . . . . . . . . . . . . . . . . . . . . . . . . . 574.8 Illustration of the general D2;4 move. . . . . . . . . . . . . . . . . . 575.1 A D2;4 move 
an be applied to any of four edges in this parent togive the same 
hild. . . . . . . . . . . . . . . . . . . . . . . . . . . . 655.2 How to label moves. . . . . . . . . . . . . . . . . . . . . . . . . . . 665.3 A potential C0;1 move, whi
h 
ould be labelled in four di�erent ways. 675.4 Two di�erent moves may 
reate the same 
hild from the same parent. 686.1 One of the 9,748 torus embeddings of the unique ten-vertex diamond-free target graph with maximum number of torus embeddings. . . . 827.1 The graph K7;3, a topologi
al obstru
tion to torus embeddability. . 877.2 The obstru
tion not found by Neufeld and Myrvold [34, 33℄. . . . . 88



viii
A
knowledgments
The author's work was supported by an NSERC Postgraduate S
holarship (PGSA) from May 2000 onwards, and by a University of Vi
toria Fellowship prior tothat. Thanks also to the author's a
ademi
 supervisor, Wendy Myrvold, for all herhelp and support; to Staszek Radziszowski for 
omputer pro
essing resour
es; andto Meredith Tanner for some words of wisdom.



Chapter 1
Introdu
tion
Graphs des
ribe patterns of 
onne
tions between things, in an abstra
t and powerfulway. We 
an deal with graphs mathemati
ally as purely abstra
t entities, withoutinvoking any 
on
ept of spa
e. But as soon as we try to visualise a graph, we haveto pla
e it in a physi
al spa
e, and immediately we en
ounter topologi
al questions.One of the simplest topologi
al questions we 
an ask about a graph is whether ornot we 
an draw the graph on a given surfa
e without any of the edges 
rossing.That is the 
entral question 
onsidered in this work.Embedding problems appear in many real-world situations. For instan
e, if weuse a graph to represent a network of rail lines between 
ities, we may wish toknow whether we 
an lay out the tra
ks to maintain the pattern of 
onne
tionswithout needing any bridges. A similar situation o

urs on a smaller physi
al s
alein the design of ele
troni
 
ir
uits. There, ea
h 
hip may 
ontain many 
omponents,and ea
h board may 
ontain many 
hips, and in both 
ases there is a pattern of
onne
tions between them whi
h must be maintained. In these kinds of situationswe may be allowed to use some limited number of 
rossings between 
onne
tions,but su
h 
rossings are expensive and may not always be available.Graphs embedded on surfa
es are of interest in more purely theoreti
al situationsalso. Some things we would like to do with graphs are easier to do when the graphs



2are embedded. For instan
e, the graph isomorphism problem, whi
h is not known tobe polynomial-time in the general 
ase [36℄, 
an be solved in linear time for graphsembedded on the plane [18, 23℄. Sin
e graphs that embed on spe
i�
 surfa
es appearespe
ially desirable both for physi
al appli
ations and in more abstra
t situations,it be
omes natural to ask how we 
an �nd su
h graphs. Perhaps we 
ould evenhope for exhaustive lists of them.The plane is naturally the �rst surfa
e on whi
h we might want to embed graphs,and many results are known on planar graphs. The graph isomorphism problemis easier for planar graphs than for general graphs, as mentioned above. Severalalgorithms are known for testing whether a graph is planar [10, 11, 14, 15℄. Somework has also been done on generation of planar graphs [12℄. The proje
tive plane isinteresting as the simplest non-orientable surfa
e. Graphs known to be proje
tiveplanar 
an have their orientable genus 
omputed in polynomial time [16℄. Somealgorithms are known for embedding graphs on the proje
tive plane [29, 32, 35℄ andfor generating limited 
lasses of proje
tive planar graphs [6, 7℄.In this work we 
onsider graphs embedded on the torus. More spe
i�
ally, wegenerate all embeddings of diamond-free target graphs (de�ned in Se
tion 2.3) onthe torus. The torus appears to be the next logi
al step after examination of theplane and proje
tive plane, and this work began with the question of generatingrandomly-
hosen test 
ases for the \pra
ti
al torus embedding" 
ode of Neufeldand Myrvold [34℄. We expanded the proje
t to 
over exhaustive generation oftarget embeddings. It then gave a method for obtaining torus obstru
tions (seeSe
tion 7.2) without needing a separate torus embedding algorithm.Algorithms to embed graphs on the torus have been studied by Juvan, Marin�
ek,and Mohar [24℄ as well as by Neufeld and Myrvold [34, 33℄. There is an algorithmby Filotti [17℄ for embedding 
ubi
 graphs on the torus. Some general results forembedding on arbitrary surfa
es, for instan
e the linear-time embedding algorithmof Mohar [30℄, 
ould be applied to the torus. Unfortunately, that algorithm has notbeen implemented and appears diÆ
ult to implement pra
ti
ally. The generation



3results of Barnette [7℄ for 4-
onne
ted graphs 
an also be applied to the torus aswell as the proje
tive plane. In our generation work, we have 
hosen a set of targetgraphs intended to make the resulting lists as useful as possible for study of theembedding problem, while still being easy to generate.We have also 
hosen to generate embeddings of toroidal graphs rather thanmerely the graphs themselves. This 
hoi
e appears to make the generation algo-rithm easier, but it also allows us to study how many embeddings exist for ea
hgraph. The equivalent question on the plane has been studied by Chiba, Nishizeki,Abe, and Ozawa [14℄, and Cai gives a simpli�ed algorithm for 
ounting planar em-beddings [13℄. Be
ause we generate embeddings exhaustively, we 
an �nd how manytorus embeddings any given graph has simply by 
ounting them in the output.The next 
hapter 
ontains de�nitions of terms and notation used in this work.We then dis
uss in Chapter 3 the operations we perform on embeddings, and provethat our algorithm 
an generate all target embeddings. In Chapter 4 we dis
ussthe e�e
t of a subgraph 
alled a \diamond" (de�ned in Se
tion 2.1) and spe
ialdiamond-related 
onsiderations for our algorithm. After that, we dis
uss someimplementation issues in Chapter 5, and present experimental results in Chapter 6.We 
on
lude in Chapter 7 with proposed appli
ations and future work.



4
Chapter 2
De�nitions and notation
Before dis
ussing our results, we de�ne some terms and notation used throughoutthe work. First we des
ribe basi
 
on
epts of graphs and graph theory in Se
tion 2.1.In Se
tion 2.2 we introdu
e the 
on
ept of a surfa
e and dis
uss graphs embedded onsurfa
es. In Se
tions 2.3 and 2.4 we des
ribe the 
lass of embeddings we generate,and the moves and starting points used to generate them. Then in Se
tion 2.5, wedes
ribe the generation algorithm.2.1 GraphsA graph G 
onsists of a �nite set V of verti
es and a �nite set E of edges whereea
h edge in E is asso
iated with an unordered pair (u; v) of elements of V ; theedge (u; v) is in
ident to or has as endpoints the verti
es u and v. We disallowmultiple edges (more than one edge with the same endpoints), and loops (edges ofthe form (u; u)).The number of edges in
ident to a vertex is the degree of the vertex. The verti
esu and v are adja
ent if there is an edge (u; v) in the graph, and the verti
es adja
entto a vertex u are 
alled the neighbours of u.Two graphs G1 and G2 are 
alled isomorphi
 if there is a bije
tion � from the



5
u

v

w x

Figure 2.1: A diamond.verti
es of G1 to the verti
es of G2 su
h that (u; v) is an edge in G1 if and only if(�(u); �(v)) is an edge in G2.To subdivide an edge (u; v) in a graph means to introdu
e a new vertex w, addedges (u; w) and (w; v), and remove the edge (u; v). Two graphs are homeomorphi
if there is a graph G su
h that they ea
h 
an be obtained from G by relabellingverti
es and subdividing edges.A graph G is 
alled a subgraph of a graph H if the edge and vertex sets of Gare subsets of the edge and vertex sets, respe
tively, of H. Let V be the vertex setof G, a subgraph of H. If G 
ontains every edge in H whose endpoints are both inV , then G is 
alled the subgraph of H indu
ed by V .If two adja
ent degree three verti
es u and v share the same other two neigh-bours, in other words the neighbours of u are fv; w; xg and the neighbours of v arefu; w; xg, then the resulting subgraph, shown in Figure 2.1, is 
alled a diamond andthe edge between u and v is a diamond edge. There may or may not be an edgebetween w and x. A graph is diamond-free if it 
ontains no diamond edges.Consider a graph with verti
es fv1; v2; : : : ; vng and edgesf(v1; v2); (v2; v3); : : : ; (vn�1; vn); (vn; v1)gfor some n greater than or equal to three. A graph isomorphi
 to this one is 
alleda 
y
le of length n. Similarly, a graph with n verti
es, all pairwise adja
ent to ea
hother, but no multiple edges or loops, is 
alled the 
omplete graph on n verti
esand denoted by Kn. Observe that K3 is a 
y
le of length three, whi
h we will



6

(a) K5 (b) K3;3 (
) A �ve-vertexwheelFigure 2.2: Some representative graphs.
all a triangle. We also refer to K3;3, obtained by taking two disjoint sets X andY of three verti
es ea
h, using their union as the vertex set, and adding an edgefrom ea
h vertex in X to ea
h vertex in Y . The graphs K5 and K3;3 are shown inFigure 2.2.If we start with a 
y
le of at least three verti
es and add one more vertex withedges from the new vertex to ea
h vertex of the 
y
le, the resulting graph is 
alled awheel. A �ve-vertex wheel is shown in Figure 2.2. Observe that the smallest wheelis isomorphi
 to K4.A sequen
e of distin
t verti
es hv1; v2; : : : ; vki, where ea
h pair of 
onse
utiveverti
es is adja
ent, is 
alled a path with endpoints v1 and vk. Two paths are 
alledinternally vertex disjoint if they have no verti
es in 
ommon ex
ept possibly theendpoints. A graph G is 
onne
ted if for every pair of verti
es a and b in G, G
ontains a path from a to b. A graph G is bi
onne
ted if it is 
onne
ted, and thegraph obtained by deleting any one vertex is still 
onne
ted. More generally, G isk-
onne
ted if G has greater than k verti
es and we 
an remove any set of fewerthan k verti
es and the edges in
ident to them and always have the remaining graphbe 
onne
ted.A k-
onne
ted 
omponent of a graph G is a subgraph H of G su
h that H is



7k-
onne
ted but is not a proper subgraph of any other k-
onne
ted subgraph of G.A set of k verti
es whose removal in
reases the number of 
onne
ted 
omponents is
alled a k-
ut, and the single vertex in a 1-
ut is 
alled a 
ut vertex. Note that ourk-
uts 
an be des
ribed more pre
isely as k-vertex 
uts; it is also possible to de�nea k-edge 
ut of edges whi
h 
an be removed to dis
onne
t a graph, but we do notuse that 
on
ept in this work.To 
ontra
t an edge (u; v) means to remove the edge (u; v), then identify u andv. The reverse operation of 
ontra
ting an edge is 
alled splitting a vertex. We saythat a graph G is a minor of a graph H if G 
an be obtained from H by the minoroperations of removing edges, removing verti
es of degree zero, and 
ontra
tingedges.2.2 Surfa
es and embeddingsAlthough we will not dis
uss the topology of surfa
es extensively, ex
ept as it appliesdire
tly to this graph-theoreti
 work, we will de�ne a surfa
e as a topologi
al spa
ein whi
h any two distin
t points have disjoint neighbourhoods, and every point has aneighbourhood topologi
ally equivalent to a two-dimensional open dis
. Intuitively,a surfa
e is a spa
e that looks like a plane, when examined within a small enoughneighbourhood.The 
lassi�
ation of surfa
es is well known, and des
ribed in detail in intro-du
tory textbooks on topology, su
h as that by Kinsey [25℄. Surfa
es are uniquelydetermined by the properties of genus and orientability. The genus may be anynonnegative integer, and if the surfa
e has genus greater than zero, it may be ori-entable or non-orientable. The plane, equivalent to the sphere, is the only surfa
eof genus zero, and is orientable. Genus may be thought of intuitively as des
ribingthe number of handles or bridges on the surfa
e, and orientability as des
ribingwhether or not the surfa
e has a well-de�ned sense of 
lo
kwise.After the plane the remaining orientable surfa
es are 
alled the torus, with genus



8one, and the k-handled torus for ea
h k greater than one, with genus k. We 
allthe non-orientable surfa
e with genus one the proje
tive plane, and with genus twothe Klein bottle.In this work we deal with 
ombinatorial embeddings, whi
h represent drawingsof graphs on orientable surfa
es. A 
ombinatorial embedding 
onsists of a list, forea
h vertex in the graph, of the neighbours of that vertex in 
lo
kwise order. Anexample of a 
ombinatorial embedding is shown in Figure 2.3. The adja
en
y listsare 
y
li
, in that we 
an start at any neighbour; the lists hu; v; w; xi and hv; w; x; uiare equivalent. Reversing a list would violate the 
lo
kwise ordering and is notallowed. Two 
ombinatorial embeddings are isomorphi
 if one 
an be obtainedfrom the other by relabelling verti
es, 
hoosing a starting point for ea
h adja
en
ylist, and possibly reversing all adja
en
y lists at on
e (whi
h 
an be imagined asmirror-reversing the embedding).
0

1

23

4

0 : h1; 4; 2i1 : h0; 2; 3; 4i2 : h1; 0; 3i3 : h4; 1; 2i4 : h0; 1; 3iFigure 2.3: A drawing of a graph on the plane, and a 
orresponding 
ombinatorialembedding.Drawing a graph on a surfa
e divides the surfa
e into regions 
alled fa
es, anda simple algorithm applied to a 
ombinatorial embedding 
an 
ount the fa
es and�nd the sequen
e of verti
es around ea
h fa
e [3, Se
tion 2.5℄. If every fa
e 
ontainsthree verti
es, then the embedding is 
alled a triangulation. From the 
ombinatorialembedding of a 
onne
ted graph with n verti
es, m edges, and f fa
es, we 
an
al
ulate the genus of the embedding g with the formula g = (m � n � f + 2)=2[22℄.



9A 
ombinatorial embedding des
ribes a drawing of a graph on the orientablesurfa
e with the 
orresponding genus. The existen
e of 
ombinatorial embeddingsallows us to de�ne embeddability : a graph G is said to be embeddable on an ori-entable surfa
e S if there exists an embedding of G with genus no greater thanthe genus of S. The orientable genus of a graph is the least genus of an orientablesurfa
e on whi
h the graph is embeddable. Graphs with orientable genus zero are
alled planar and with genus one toroidal.2.3 Target embeddingsA move is an operation we 
an perform on a 
ombinatorial embedding to produ
eanother 
ombinatorial embedding with more edges. The generation algorithm (de-s
ribed in Se
tion 2.5) starts from a set of embeddings 
alled seeds (de�ned below)and applies moves from a �xed set of types to generate target embeddings. Wedes
ribe our 
hoi
es for the target embeddings here, and move types and seeds inthe next se
tion.De�nition 2.3.1 A target graph is a graph G su
h that:� G has orientable genus one;� G has no verti
es of degree less than three; and� G is bi
onne
ted.A target embedding is a 
ombinatorial embedding of a target graph on the torus.The 
omplete algorithm as we eventually implemented it uses an additional restri
-tion, generating diamond-free target embeddings, be
ause we 
onsider diamond-freeembeddings more topologi
ally interesting. We de�ne target embeddings as aboveto simplify the dis
ussion in Chapter 3. We then build the more spe
i�
 resultsappli
able to the �nal form of our software, in Chapter 4.



10The seeds for a given set M of moves are those target embeddings that 
annotbe generated from other target embeddings by moves inM . Sin
e a move in
reasesthe number of edges in an embedding, it follows that any target embedding may begenerated from some seed by a sequen
e of moves in M .2.4 Moves and sets of movesHere we de�ne all the types of moves we 
onsider in this work. All these movesmaintain the genus of an embedding and a�e
t at most a 
onstant number of ver-ti
es and edges, and all our moves in
rease the number of edges in the embedding.With one ex
eption, all the moves also preserve the other 
onditions on target em-beddings: bi
onne
tivity and no verti
es of degree less than three. The expe
tionis that that the S1;1 move introdu
es a degree two vertex. Although moves formallytake pla
e on embeddings, we often dis
uss the 
orresponding graph operationsusing the same symbols.We denote types of moves with symbols like Mn;m, where M is a mnemoni
letter representing the general kind of move, n is the number of verti
es added bythis move, and m is the number of edges added by this move, whi
h is always atleast one. We also de�ne reverse moves, as the inverses of the forward moves. Re-verse moves do not always preserve the 
onstraints preserved by the 
orrespondingforward moves; for instan
e, removing an edge 
an redu
e the 
onne
tivity of thegraph in an embedding, whereas adding an edge 
an never redu
e the 
onne
tivity.An S1;1 move 
onsists of subdividing an edge (u; v) into two edges by adding anew vertex. The edge (u; v) is removed, a new vertex w is introdu
ed, and edges(u; w) and (w; v) are added. Note that the new vertex has degree two, so theresulting embedding is not a target embedding. The S1;1 move type is used inde�ning other moves that do preserve the target properties.A C0;1 move 
onsists of adding an edge in a fa
e of the embedding, between twoverti
es not already adja
ent to ea
h other. To make a C1;2 move, we �rst subdivide



11

(a) S1;1 (b) C0;1
(
) C1;2 (d) C2;3
(e) D2;4 (f) D3;5
(g) D4;6 (h) T1;1Figure 2.4: Some examples of moves



12an edge as with an S1;1 move, then add a new edge from the new vertex to someother vertex on a fa
e 
ontaining the divided edge. The move type C2;3 
onsists ofusing two S1;1 moves to subdivide two edges on the same fa
e, then adding an edgethrough the fa
e, between the two new verti
es.Move types D2;4, D3;5, and D4;6 ea
h 
onsist of removing an edge of the em-bedding and repla
ing it with a subgraph in
luding a diamond, as shown in Fig-ures 2.4(e), 2.4(f), and 2.4(g). If the edge being removed appears twi
e on thesame fa
e, or if it is in
ident to a vertex that appears more than on
e on the samefa
e, then there may be two or more inequivalent ways to embed the newly-addedsubgraph while maintaining the rest of the embedding. This issue is dis
ussed indetail in Chapter 4.A T1;1 move 
onsists of splitting a vertex into two adja
ent verti
es, in su
ha way that at least one of the new verti
es has degree three. The restri
tion to
reating a degree three vertex may seem mysterious, but the only o

asions wherewe have a reason to make a vertex-splitting move are those where we are 
reatinga degree three vertex anyway. Making the restri
tion expli
it allows us to simplifythe 
omputer software based on these results.We say that a set of move types M is suÆ
ient with a given set of seeds if everytarget embedding 
an be generated from one of the seeds by a sequen
e of movesfrom M . Obviously, if M is suÆ
ient then every superset of M is also suÆ
ient,and if M is not suÆ
ient, then no subset of S is suÆ
ient. We 
all a set of movesminimal if it is suÆ
ient but has no proper subset that is suÆ
ient.2.5 The generation algorithmAlthough many of the details involve 
on
epts that have yet to be dis
ussed, wepresent the overall generation algorithm here, to motivate the details presented insubsequent 
hapters. We follow a general algorithm of orderly generation similar tothat des
ribed by M
Kay [28℄. Our goal is to generate one representative for ea
h



13isomorphism 
lass of diamond-free target embeddings, up to a 
hosen number ofverti
es and/or edges.We use the move set fC0;1;D2;4; T1;1g and the set of seeds 
onsisting of all embed-dings on the torus ofK5 orK3;3. There are eight embeddings (up to isomorphism) inthat set, enumerated by Argyle [5℄, and they are shown in Figure 2.5. In Chapter 3we show that these moves and seeds are suÆ
ient to generate all target embeddings,and in Chapter 4 we show that they 
ontinue to be suÆ
ient when we introdu
e alimit of at most one diamond in ea
h embedding.Any target embedding C either is one of the seeds, or has a parent P whi
h isanother target embedding with fewer edges than C, su
h that C 
an be obtainedfrom P by a C0;1, D2;4, or T1;1 move. If P is the parent of C, then C is a 
hild ofP . The existen
e of parents is proved in Chapter 3, along with some dis
ussion ofother sets of moves and seeds we 
onsidered using.In order to generate all diamond-free target embeddings, we sometimes need toexamine target embeddings 
ontaining one diamond, as dis
ussed in Chapter 4. Itis not 
lear whi
h target embeddings with one diamond are ne
essary to generateall diamond-free target embeddings. Rather than spending 
omputation time in a
ompli
ated test for whether a diamond is really ne
essary, we examine all targetembeddings with at most one diamond. We do not, however, need to 
onsiderembeddings 
ontaining more than one diamond. For any target embedding with atmost one diamond, other than a seed, we 
an �nd a parent with fewer edges and atmost one diamond (proved in Theorem 4.2.1); therefore we 
an eliminate all targetembeddings with more than one diamond.There are a few more details ne
essary to make sure we generate exa
tly onerepresentative for ea
h isomorphism 
lass of diamond-free target embeddings. A
anoni
al form for an embedding is an obje
t representing the embedding su
hthat two embeddings are isomorphi
 if and only if they have the same 
anoni
alform. The parti
ular 
anoni
al form we use is dis
ussed in Se
tion 5.1. When we
onsider an embedding as a possible parent for a given 
hild, we generate a 
opy



14

(a) K5 (b) K5 (
) K5

(d) K5 (e) K5 (f) K5

(g) K3;3 (h) K3;3Figure 2.5: The eight seed embeddings for our algorithm.



15of the 
hild's parent by a reverse move, and use the 
anoni
al form to 
ompare thepossible parent with the parent. We also de�ne move labels in Se
tion 5.2, whi
hare sequen
es of vertex labels expressing where in a parent embedding we 
an makea move to get to the 
hild embedding. Sometimes two di�erent moves 
an generatethe same 
hild from the same parent; move labels, along with the automorphismgroup 
al
ulated during the 
anoni
al labelling, allow us re
ognize that situationand generate the 
hild exa
tly on
e.The following pseudo
ode des
ribes our algorithm for �nding a parent, withall the appli
able restri
tions. Note that the parent-�nding algorithm returns twothings: the parent P itself, and a 
anoni
al move label for a move to make on P togive the 
hild C. Sin
e every C we will pass into this 
ode has some parent meetingthe 
onditions we test, the algorithm must return some parent and move label. Wenever attempt to �nd the parent for a seed. It is important that Parent(C1) andParent(C2) be the same for any isomorphi
 C1 and C2; in our implementation, wea
hieve that by 
alling Parent only with 
anoni
ally labelled input embeddings.Parent(C) :for ea
h reverse move M we 
an apply to C, in some deterministi
 orderapply M to C to obtain Pif P is a target embedding 
ontaining at most one diamond
anoni
ally label P , �nding its automorphisms as a side e�e
tR move label for the inverse of MR least image of R under any automorphism of Preturn (P;R)end ifend forNote that be
ause every target embedding with at most one diamond has aparent whi
h is a target embedding with at most one diamond (ex
ept seeds, whi
hare never used as inputs to Parent), Parent must return some parent before the



16loop terminates. The subroutine Parent is written with 
are to make its returnvalue a deterministi
 fun
tion of the 
anoni
ally-labelled input. As a result, even ifthe same 
hild 
ould be rea
hed from the same parent by two inequivalent moves,the move from parent to 
hild will only mat
h the move label R on
e, and so wewill still generate the 
hild exa
tly on
e.We use Parent in a re
ursive algorithm to do the a
tual generation. The follow-ing pseudo
ode des
ribes an algorithm 
alled Generate, whi
h takes a target em-bedding P with at most one diamond as an argument, and writes out all diamond-free target embeddings des
ended from P , in
luding P if it is itself diamond-free, upto some preset limit on the number of edges and verti
es. To generate an exhaustivelist, we simply 
all Generate on
e with ea
h of the eight seeds.Generate(P ) :if P has more verti
es or edges than the preset limitsreturnend ifif P is diamond-freeoutput Pend iffor ea
h move label M des
ribing a move from fC0;1;D2;4; T1;1g thatwe 
an apply to Pif M is the lexi
ally least image of itself under any automorphism of P�nd C by applying the move to P des
ribed by M
anoni
ally label C, �nding its automorphisms as a side e�e
tif C 
ontains at most one diamond and (P;M) = Parent(C)Generate(C)end ifend ifend for



17Examination of this pseudo
ode will reveal a few potential ineÆ
ien
ies; forinstan
e, if P already 
ontains one less edge than the limit, then there is no pointeven 
onsidering D2;4 moves whi
h would 
reate 
hildren too large to output. Inour C language implementation of the algorithm we address many of these kinds ofissues; the des
ription here is intended to explain the algorithm as 
learly as possiblerather than provide an exhaustive guide to the features of the implementation.



18
Chapter 3
Choosing a set of moves
The question of whi
h moves to use was 
entral to the design of our generationalgorithm, and in the 
ourse of our work we tried several di�erent sets. In this
hapter we �rst des
ribe the set we �nally settled on, 
onsisting of the three movetypes fC0;1;D2;4; T1;1g. In Se
tion 3.1 we prove this set to be suÆ
ient to generateall target embeddings, then in Se
tion 3.2 we prove it minimal and dis
uss why itis an espe
ially attra
tive minimal move set. Finally, in Se
tion 3.3, we des
ribesome of the other 
hoi
es we 
onsidered, be
ause the pro
ess of evolution from theoriginal 
on
ept to this three-move set may be of interest.In this 
hapter we dis
uss target graphs: bi
onne
ted graphs with genus oneand all verti
es of degree at least three. We dis
uss target graphs �rst, rather thanbeginning with the restri
ted 
lass we eventually 
onsidered, so as to simplify theproofs. We use the term target graphs for these graphs, rather than for the morerestri
ted graphs output by our software, so as not to have to make ex
eptionsthroughout this 
hapter. Making this de�nition does require us to make ex
eptionslater, when we dis
uss diamond-free target graphs, but in those 
ontexts we alsoneed to dis
uss target graphs 
ontaining at most one diamond, target graphs 
on-taining exa
tly one diamond, and so on. In this 
hapter, it is useful to be able toignore diamonds as far as possible.



193.1 A three-move suÆ
ient setBefore beginning the proofs relating to existen
e of parents, we note that all theproperties de�ning a target embedding are a
tually properties of the underlyingtarget graph. The only way an embedding of a target graph 
ould fail to be atarget embedding would be if the genus of the embedding (not the graph) were notequal to one. None of the moves de�ned in Se
tion 2.4 
an in
rease the genus ofan embedding, and although a reverse move in general 
an de
rease the genus ofan embedding, it 
annot do so if the embedding was already genus one and thegraph remains toroidal. An embedding of a toroidal graph 
annot have genus zero.Therefore, we will generally talk about the existen
e of target graph parents fortarget graph 
hildren, rather than dis
ussing embeddings. If a target graph C hasa reverse move to a target graph P , then any torus embedding of C has a reversemove to some torus embedding of P , so the results apply equally well to targetembeddings.Fundamentally, what are the moves we need in our set? Sin
e the graph minorhierar
hy is 
entral to the embedding problem, and the set of embeddable graphs ona surfa
e is easily 
hara
terized in terms of forbidden minors [37℄, it seems naturalthat we should use moves resembling the reverse minor operations: splitting avertex, or adding an edge. As long as we 
onsider only 
onne
ted graphs, there isno need to insert degree zero verti
es.Adding an edge seems simple enough, and 
orresponds to our C0;1 move. Split-ting a vertex is a more 
ompli
ated operation. It would be ni
e to restri
t it in someway, to make 
omputer implementation easier. It would also be ni
e to disallowsplits that 
reate degree two verti
es, sin
e degree two verti
es 
learly make no dif-feren
e to the topologi
al properties of the graph. Note that S1;1 
an be imaginedas splitting one of the neighbours to 
reate a degree two vertex, instead of our usualdes
ription of it as subdividing an edge. In our three-move set, we restri
t the splitoperation to always 
reate a degree three vertex.



20
Figure 3.1: A super-diamond.But with the split operation so restri
ted, we fa
e the question of how to 
reatediamonds, whi
h are the subje
t of Chapter 4. We 
ould disallow diamonds, aswe disallowed degree two verti
es, but then we would have no obvious way to
reate an in�nite number of larger \banana-like" kinds of subgraphs, in
luding thesuper-diamond of �ve verti
es and seven edges, shown in Figure 3.1. We 
ouldperhaps disallow all su
h stru
tures, by requiring that target embeddings be 3-
onne
ted, but then we might be fa
ed with testing for 3-
onne
tedness frequentlyin the software, as well as possible theoreti
al 
ompli
ations. Our de
ision was torequire only bi
onne
tedness from target embeddings, and have a spe
ial move, theD2;4 move, for 
reating diamonds.The above intuitive des
ription argues for why ea
h of the moves in our three-move set may be ne
essary, but does little to justify the 
laim that they are suÆ
ientto generate all target embeddings. Indeed, the suÆ
ien
y of this move set is far fromobvious. The following obvious theorem is the beginning of our formal argumentfor suÆ
ien
y of the three-move set; we then 
omplete the proof, and explore otherfeatures of this move set and its ability to generate target embeddings.Theorem 3.1.1 If a graph C 
an be obtained from a graph P by a D2;4 move, thenP and C have the same orientable genus.Proof. If P is embeddable on a surfa
e S, and (u; v) is the edge we 
an repla
ewith a diamond to obtain C, then we 
an start with an embedding of P on S andintrodu
e two new verti
es w and x. We repla
e v with the subsequen
e hw; xi in



21
u v

w

xFigure 3.2: Adding a diamond without 
hanging the genus.the 
lo
kwise adja
en
y list of u, and repla
e u with the subsequen
e hx; wi in the
lo
kwise adja
en
y list of v. We also give w the 
lo
kwise adja
en
y list hu; v; xiand x the list hu; w; vi. The result of these operations is illustrated in Figure 3.2;the dashed line shows the position of the original edge (u; v). The resulting graphis C. We have added four edges, two fa
es, and two verti
es; by the formula in thede�nition of genus for embeddings, we have not 
hanged the genus of the embedding.So if P is embeddable on S, then so is C.Although there may also be other ways to add a diamond to the embedding ofP (see Se
tion 4.3), it suÆ
es that we 
an make the repla
ement in this one wayand maintain the genus of the embedding. This proof 
on
erns the genus of graphs,and the existen
e of any embedding of C on the torus shows that the genus of C isat most one.Conversely, if C is embeddable on a surfa
e S, we 
an start with an embeddingof C on S and reverse the D2;4 move, removing four edges, two verti
es, and upto two fa
es. The number of fa
es removed may be less than two be
ause we maysometimes remove an edge that appeared twi
e on a fa
e. Thus, the genus of theresulting embedding of P may be less than the genus of the embedding of C, but is
ertainly no greater; so P is also embeddable on P . Re
all that \P embeddable onS" is true if there is an embedding of P with genus less than or equal to the genusof S.Therefore for any surfa
e S, P is embeddable on S if and only if C is embeddableon S; the graphs are embeddable on the same surfa
es, and have the same orientable



22genus. �By the result known as Kuratowski's Theorem [26, 19, 
ited in [3℄℄, any graphthat is not planar must 
ontain a subgraph homeomorphi
 to K5 or K3;3; we 
allthat subgraph the Kuratowski subgraph. Thus, any target embedding must 
ontaina subembedding of a graph homeomorphi
 to K5 or K3;3. We make use of thatproperty in proving the existen
e of parents for target embeddings. Given a targetembedding E, we 
an always �nd a subembedding of E whi
h is an embedding ofa graph homeomorphi
 to K5 or K3;3. We 
olour the 
hosen subembedding red,and de�ne the red-degree of a vertex in E to be the number of red edges in
identto that vertex. The verti
es in the red subgraph with red-degree not equal to twoare 
alled main verti
es [29℄. Note that no vertex 
an have red-degree one, be
ausethen the red subgraph 
ould not be homeomorphi
 to K5 or K3;3. We may 
hangethe 
olouring later, but will always preserve the property that the red subgraphis homeomorphi
 to K5 or K3;3, and therefore nonplanar. The following lemma isuseful in manipulating the red 
olouring.Lemma 3.1.2 If a graph G with a red-
oloured subgraph homeomorphi
 to K5 orK3;3 
ontains a triangle with verti
es fu; v; wg and edges e = (u; v), f = (v; w),and g = (w; u), and no edges in
ident to u are red ex
ept possibly e and g, thenthe set of red edges in the triangle must be fe; gg, ffg, or the empty set, and we
an freely ex
hange the two nonempty possibilities while keeping the red subgraphhomeomorphi
 to K5 or K3;3.Proof. Sin
e no other edges in
ident to u are red and the red-degree of u 
annotbe one, e and g must be both red or both not red. All three edges in the triangle
annot be red be
ause then u would have red-degree two and by eliminating u thered subgraph would 
ontain a multiple edge and not be homeomorphi
 to K5 orK3;3. That leaves only the listed possibilities for the set of red edges in the triangle.If H1 is the red subgraph when f is the only red edge in the triangle, and H2is the red subgraph when e and g are red but f is not, then the graph obtained by



23starting from H1 and subdividing f is isomorphi
 to H2. Re
all that no other edgesin
ident to u 
an be red. Then H1 is homeomorphi
 to H2 and so if one of them ishomeomorphi
 to K5 or K3;3, the other must also be. �The red 
olouring allows us to prove results about edges that 
an safely beremoved or 
ontra
ted without making the graph planar, be
ause as long as we donot disturb the red subgraph too mu
h, the graph must remain nonplanar. Therewill be times when we 
hange the 
olouring, to make 
ertain edges red or not, butin all 
ases, we preserve the property that the red subgraph is homeomorphi
 to K5or K3;3.Lemma 3.1.3 Let C be a target graph 
ontaining a red-
oloured subgraph homeo-morphi
 to K5 or K3;3, as des
ribed above. If we 
ontra
t an edge e in C with adegree three endpoint u by a reverse T1;1 move, where e may or may not be red butthe other two edges in
ident to u are not both red, and assuming that the reverseT1;1 move does not 
reate a multiple edge, then the resulting graph P is not planar.Proof. Sin
e C 
ontains a red subgraph homeomorphi
 to K5 or K3;3, the graph P
an only be a planar graph if the edge 
ontra
tion makes the red subgraph planar.We 
an also 
hange the 
olouring as des
ribed in Lemma 3.1.2 without 
hanging thehomeomorphism of the red subgraph to K5 or K3;3. Contra
ting an edge 
an makethe red subgraph not homeomorphi
 to K5 or K3;3 in only two ways: by identifyingtwo main verti
es, or by identifying a vertex u that is not a main vertex with aneighbour v that is red, but where the edge (u; v) is not red.Be
ause the two edges other than e in
ident to u are not both red and u hasdegree three, the red-degree of u 
an be at most two. It 
annot be one be
ause novertex has red-degree one, so it must be zero or two. Then u is not a main vertexof the red subgraph. If the red-degree of u is zero then 
ontra
ting the edge 
annotmake the red subgraph planar be
ause all the red verti
es and edges are un
hangedby the operation. If the red-degree of u is two, that also means that e is red, and



24
w x

v

u

y

Figure 3.3: Vertex names for the proof of Theorem 3.1.4.then we are 
ontra
ting a red edge with an endpoint that is not a main vertex, andso the red subgraph is still homeomorphi
 to K5 or K3;3. �With Lemma 3.1.3 providing a suÆ
ient 
ondition under whi
h we 
an make areverse T1;1 move and preserve nonplanarity, we are ready to begin �nding possibleparents for target graphs. The following theorem shows that if we 
an generate alldiamond-free target embeddings, then we 
an generate all target embeddings withone or more diamonds. This theorem does not pla
e any restri
tions on the numberof diamonds in the parent.Theorem 3.1.4 Any target graph C that 
ontains a diamond 
an be obtained froma target graph P with fewer edges by some move in the set fC0;1;D2;4; T1;1g.Proof. Let (u; v) be the diamond edge, and w and x be the two neighboursshared by u and v, as shown in Figure 3.3. If there is an edge (w; x) then we 
anremove that edge with a reverse C0;1 move. The graph P has fewer edges thanC. The graphs P and C must have the same genus be
ause by Theorem 3.1.1 we
an repla
e the diamond with an edge in ea
h one, without a�e
ting the genus, toobtain two graphs that are the same ex
ept for the presen
e of a multiple edge andso have the same genus.The graph P is bi
onne
ted be
ause there are still two internally vertex disjointpaths between w and x, namely hw; u; xi and hw; v; xi. Finally, P has all verti
esof degree at least three. Only w and x have their degrees redu
ed by the reversemove. If w had its degree redu
ed to two, then either x was a 
ut vertex of C, or



25C was K4; similarly, if x had its degree redu
ed to two, then either C was K4 or wwas a 
ut vertex of C.If there is no edge (w; x) in C, we 
onsider the degrees of w and x. If oneof them (we say without loss of generality w) has degree three, we 
all its thirdneighbour (besides u and v) y. We will 
ontra
t the edge between w and y with areverse T1;1 move to get a target graph P with fewer edges than C. The 
ontra
tionof (w; y) 
annot 
reate a multiple edge be
ause then y and w would have to bepart of a triangle, and the third vertex would have to be u or v. But we alreadyknow three distin
t neighbours for ea
h of those already; the only way fw; y; ug orfw; y; vg 
ould be a triangle would be if x and y were the same vertex, in whi
h
ase there would be an edge (w; x), and that possibility was 
onsidered above. Sin
eboth endpoints have minimum degree three, the edge 
ontra
tion 
annot redu
e thedegree of any vertex. Contra
ting (w; y) 
ould only redu
e the 
onne
tivity of thegraph if fw; yg were a two-vertex 
ut, and then ea
h of them would also be a 
utvertex, 
ontradi
ting the bi
onne
tedness of C. Contra
ting an edge 
annot in
reasethe genus of a graph. Thus, it only remains to show that 
ontra
ting (w; y) doesnot redu
e the genus of the graph.Suppose we eliminate the diamond with a reverse D2;4 move to 
reate a graphH, whi
h 
ontains at least one degree two vertex (namely w) and so is not a tar-get graph, but is nonplanar by Theorem 3.1.1. We 
an 
olour a red subgraph ofH homeomorphi
 to K5 or K3;3 as above, then repla
e the diamond to obtain a
olouring of C. If the edge (w; x) was red in H then we 
olour red the edges (w; u)and (u; x); other than that, all the edges introdu
ed when we repla
e the diamondremain un
oloured. Then (w; u) and (w; v) are not both red, so by Lemma 3.1.3the graph P is nonplanar and therefore P is a target graph.The only remaining 
ase for the theorem o

urs if w and x both have degreegreater than three, with no edge (w; x). In that 
ase, we 
an perform a reverse D2;4move to eliminate the diamond, giving a graph P . A reverse D2;4 move must leavethe genus of the graph un
hanged, by Theorem 3.1.1. The reverse move does not



26
reate a multiple edge be
ause there is no edge (w; x) in C. Be
ause w and x havedegree greater than three in C and ea
h has its degree redu
ed by one, their degreesin P are still are least three. The graph P must be bi
onne
ted be
ause if therewere a pair of verti
es y and z whi
h had two paths between them and distin
t atthe endpoints in C but not in P , then both those paths must have passed throughw and x. Then x or y would have to be a 
ut vertex in C, unless they ea
h had noother neighbours besides u and v; either 
hoi
e 
ontradi
ts the de�nition of C asa target graph. Therefore P has genus one, is bi
onne
ted, and has all verti
es ofdegree at least three, and so is a target graph. �When looking for a parent of a diamond-free target embedding, our reverse movemust ne
essarily be a reverse C0;1 or T1;1 move, be
ause the reverse D2;4 move 
anonly be applied to a target embedding 
ontaining a diamond, and sometimes noteven then. It is easy to �nd edges that 
an be removed while preserving nonpla-narity; any non-red edge will do. Finding edges we 
an 
ontra
t while preservingnonplanarity is also easy.We 
an only apply a reverse C0;1 move when both endpoints of the edge weremoved have degree greater than three, or else the resulting embedding wouldhave verti
es of degree two and would not be a target embedding. We 
an onlyapply a reverse T1;1 move to 
ontra
t an edge with at least one endpoint of degreethree, and only when the edge is not part of a triangle, to avoid 
reating multipleedges. With either reverse move, we must preserve the bi
onne
tedness of the graph.The following lemma gives a suÆ
ient 
ondition for 
hanges in a graph to preservebi
onne
tedness.Lemma 3.1.5 Let G1 be a bi
onne
ted graph. Let H1 be a bi
onne
ted subgraph ofG1 joined to the rest of G1 by exa
tly two distin
t verti
es u and v; that is, u and vare the verti
es of H1 adja
ent to verti
es of G1 not in H1. Let H2 be a bi
onne
tedsubgraph of H1 
ontaining u and v, and let G2 be the graph formed from G1 byrepla
ing H1 with H2. Then G2 is bi
onne
ted.



27Proof. Let w and x be any two distin
t verti
es in G2. If both w and x are in H2,then there must be a 
y
le in
luding these two verti
es in H2 and so in G2, by thebi
onne
tedness of H2. If ea
h of w and x either is not in H2, or is one of u and v,then we 
an �nd a 
y
le in
luding both of them in G1. If that 
y
le in
ludes anyedges of H1, then its interse
tion with H1 must 
onsist of a path from u to v. Thenwe �nd a path from u to v in H2, and repla
e the path from u to v in H1 with thepath from u to v in H2, to give us a 
y
le in
luding w and x in G2.The remaining 
ase is where one of w and x is not in H2, and the other is inH2 and is not u or v. Say without loss of generality that w is in H2 and is not u orv. Then we �nd a 
y
le C1 in
luding w and x in G1. The interse
tion of C1 withH1 must 
onsist of a path between u and v. We �nd a 
y
le C2 in H2 that in
ludesboth u and w. If v is in C2 then we 
an split C2 into two internally vertex disjointpaths from u to v, 
hoose one that in
ludes w, and use that to repla
e the part ofC1 that passed through H1, giving a 
y
le in G2 that in
ludes both w and x.If v is not in C2, we �nd two internally vertex disjoint paths from w to v throughH2. Let P1 be one of those that does not 
ontain u. Let y be the last vertex in P1that is in C2; sin
e w is in the path and in C2, y must exist. We split C2 into twointernally vertex disjoint paths from u to y, 
hoose one that in
ludes w, and takethe union of that with the segment of P1 from y to v, to �nd a path P2 from u to v
ontained in H2 and 
ontaining w. We repla
e the interse
tion of C1 and H1 withP2, to give a 
y
le in G2 
ontaining w and x. See Figure 3.4.Therefore, for all distin
t w and x in G2 we 
an �nd a 
y
le in G2 
ontaining wand x; we 
an split that 
y
le into two internally vertex disjoint paths from w to x,and so G2 is bi
onne
ted. �The next lemma shows that under some 
onditions whi
h target graphs happento satisfy, we 
an �nd an edge whose removal leaves the graph bi
onne
ted.Lemma 3.1.6 Any bi
onne
ted graph G 
ontaining at least three verti
es and atmost two verti
es of degree two, must 
ontain some edge whose removal leaves the



28

H2

P

C

P
1

2

2

x

u

v

wy

Figure 3.4: Finding a path from u to v 
ontaining w, in H2.
Figure 3.5: K4 minus an edge.graph bi
onne
ted.Proof. By examination of all smaller graphs (there are only a few), K4 minusone edge, shown in Figure 3.5, is the unique bi
onne
ted graph with at least threeverti
es, at most two verti
es of degree two, and the smallest possible number ofedges. We 
an remove the edge between that graph's two verti
es of degree three,and leave a bi
onne
ted graph.If G has more than �ve edges, we �nd a 
y
le F in G 
ontaining all the degreetwo verti
es, if any. This must be possible be
ause there are at most two degreetwo verti
es, G is bi
onne
ted, and in a bi
onne
ted graph we 
an �nd a 
y
le
ontaining any pair of verti
es. Sin
e G has at least three verti
es, they 
annot allbe degree two, and any vertex 
an only have zero or two in
ident edges in F , sothere must be an edge (u; v) in G that is not in F , and its endpoints u and v must



29ea
h have degree at least three in G. If removal of (u; v) leaves the remaining graphG� (u; v) bi
onne
ted, then we are done.Otherwise, there must be at least one vertex w of G whi
h is a 
ut vertex inG � (u; v). Removal of any 
ut vertex w must split G � (u; v) into exa
tly two
onne
ted 
omponents, be
ause otherwise w would be a 
ut vertex in G also. Thenu and v must be in two di�erent bi
onne
ted 
omponents of G� (u; v), and all theedges of F must be in one bi
onne
ted 
omponent of G� (u; v) be
ause F is itselfa bi
onne
ted subgraph; re
all that (u; v) was 
hosen not to be in F . Then one ofu and v, say without loss of generality u, must be in a bi
onne
ted 
omponent ofG � (u; v) whi
h 
ontains no edges in F and is atta
hed to the rest of G � (u; v)only at one 
ut vertex; we 
all that bi
onne
ted 
omponent H and that 
ut vertexx. Note that x need not be the same as w be
ause w is any 
ut vertex of G� (u; v)whereas x is the parti
ular 
ut vertex joining H to the rest of G� (u; v).The subgraph H 
annot 
onsist only of u be
ause then u would be a 
ut vertexof G, and H 
annot 
onsist only of u and one other vertex with an edge betweenthem, be
ause then u would have degree two in G. So H must 
ontain at leastthree verti
es. The subgraph H 
annot in
lude any vertex that had degree two inG, be
ause H has no edges in F , and all edges in
ident to verti
es with degree twoin G were edges in F . The only verti
es in H whi
h have smaller degree in H thanthey had in G, are u and x; H in
ludes all edges from G in
ident to any of the otherverti
es in H. So the verti
es u and x are the only ones that 
ould have degree twoin H.Then H is a bi
onne
ted graph with at least three verti
es, at most two verti
esof degree two, and fewer edges than G be
ause it does not 
ontain the edge (u; v).We 
an look re
ursively for an edge e to remove from H that will leave H � ebi
onne
ted. Then by Lemma 3.1.5, removing e from G leaves G� e bi
onne
ted.� Preserving nonplanarity as well as bi
onne
tedness is only a little more diÆ
ult.



30In the following proof, we use a similar te
hnique to split the graph into two pie
es,but instead of �nding a 
y
le and using it to remove part of the graph, we remove thered subgraph from 
onsideration at the �rst stage of the re
ursion. After that, weknow that any remaining edges 
an be removed while keeping the graph nonplanar,and so we simply apply Lemma 3.1.6. Note that Lemma 3.1.7 does not ne
essarilyprovide a useful reverse move from C, be
ause the edge sele
ted 
ould have a degreethree endpoint, resulting in a degree two vertex in P . However, in that 
ase theedge still provides a useful starting point for the sear
h for reverse moves in thesuÆ
ien
y theorem.Lemma 3.1.7 If C is a target graph with a red-
oloured subgraph homeomorphi
to K5 or K3;3, then either C is K5 or K3;3, or C 
ontains an edge e that is not redand 
an be removed to give a graph P whi
h is a target graph ex
ept for possibly
ontaining degree two verti
es.Proof. If C is a target graph other than K5 or K3;3, then it must 
ontain an edgee that is not red. Otherwise, it would 
ontain at least one degree two vertex. Ifwe remove e from C, the genus of the resulting graph C � e must be the sameas the genus of C, be
ause removing an edge 
annot in
rease the genus and thered subgraph is preserved. Removing e 
annot 
reate a multiple edge in C � e. IfC � e is bi
onne
ted, then it satis�es all 
onditions for P ; otherwise, we will �nd adi�erent edge to remove.Suppose removing the edge e would render C�e not bi
onne
ted, by 
reating oneor more 
ut verti
es. Removal of any one 
ut vertex u splits C�e into two 
onne
ted
omponents. Removal of u 
annot split C � e into more than two 
omponents,be
ause then (as shown in Figure 3.6), u would be a 
ut vertex in C also. Thegraph C� e then 
ontains at least two bi
onne
ted 
omponents. Be
ause the genusof a graph is the sum of the genera of its bi
onne
ted 
omponents [8℄, exa
tly onebi
onne
ted 
omponent of C � e is nonplanar. Sin
e the two endpoints of e arein di�erent bi
onne
ted 
omponents of C � e, one of them must be in a planar



31

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

nonplanar planar

e

u

not
allowed

Figure 3.6: Removal of the 
ut vertex u must split C�e into exa
tly two 
onne
ted
omponents: one planar, and one nonplanar.bi
onne
ted 
omponent of C � e. Let H be a planar bi
onne
ted 
omponent ofC � e 
ontaining an endpoint of e, and v be the endpoint of e 
ontained in H.Just as in Lemma 3.1.6 above, the bi
onne
ted 
omponent H 
annot 
onsistonly of v be
ause then v would be a 
ut vertex of C, and H 
annot 
onsist of v andone other vertex with an edge between them, be
ause then v would have degreetwo in C. When 
onsidered as a subgraph of C, H is 
onne
ted to the rest of Conly though the verti
es v and w, where w is some 
ut vertex of C� e, as shown inFigure 3.7. The verti
es v and w must ea
h have degree at least two in H be
auseotherwise H would not be bi
onne
ted. Any other verti
es in H have the samedegree in H that they had in C, ne
essarily at least three be
ause C is a targetgraph.So H is a bi
onne
ted graph with at least three verti
es and at most two verti
esof degree two. By Lemma 3.1.6 we 
an remove an edge of H and leave H � ebi
onne
ted. Then by Lemma 3.1.5, P is bi
onne
ted. Sin
e H 
ontains no rededges, that edge must not be red, and its removal does not 
hange the genus of C.Therefore P is a target graph ex
ept for possibly 
ontaining degree two verti
es. �If the edge e of Lemma 3.1.7 has a degree three endpoint then we 
annot use a



32
H

v w u
e

Figure 3.7: The bi
onne
ted 
omponent H.reverse C0;1 move to remove it. It 
ould be that the edge from Lemma 3.1.7 is on atriangle, or that any degree three endpoint of this edge also has both other in
identedges red, so Lemma 3.1.3 might not allow us to 
ontra
t it with a reverse T1;1 moveeither. The following theorem shows that even in su
h 
ases, we 
an always �ndsome reverse move to use.Theorem 3.1.8 Any target graph C either is K5, K3;3, or 
an be obtained by mak-ing a move in fC0;1;D2;4; T1;1g on a target graph P with fewer edges.Proof. If C 
ontains a diamond, Theorem 3.1.4 provides a reverse move to P andwe are �nished. Otherwise, we �nd a subgraph of C homeomorphi
 to K5 or K3;3,and 
olour that subgraph red. By Lemma 3.1.7, there is an edge e whi
h is not red,su
h that removal of e would leave the graph bi
onne
ted and toroidal.If both endpoints of e have degree greater than three, then we 
an remove ewith a reverse C0;1 move; the only remaining 
ondition for P to be a target graphis for all verti
es to have degree at least three, and removing an edge between twoverti
es of degree greater than three preserves that. If one endpoint of e has degreethree, we 
all it u. The other endpoint, whi
h we 
all v, may also have degree three.The other two neighbours of u we 
all w and x. Now, how many distin
t triangles



33
u

v

w xFigure 3.8: Vertex names when u is on three triangles.in C 
an 
ontain u? The answer is at most three be
ause any triangle 
ontainingu is uniquely determined by u and two of its neighbours; there are only three waysto 
hoose two of the three neighbours of u.If u is not in any triangle in C: then we 
an 
ontra
t one of the edgesin
ident to u, other than e, with a reverse T1;1 move to �nd P . Sin
e e is not red,by Lemma 3.1.3 the resulting graph P has genus greater than one. The graph Pmust be bi
onne
ted, every vertex in P must have degree at least three, and thegenus of P must be at most one, be
ause the reverse T1;1 move always preservesthose properties. Sin
e no edge in
ident to u was on a triangle, 
ontra
ting one ofthem 
annot 
reate multiple edges. Therefore, P is a target graph.If u is in three distin
t triangles in C: then we have the situation shown inFigure 3.8, where the verti
es u, v, w, and x indu
e a subgraph isomorphi
 to K4.If any neighbour of u had degree three, then C would 
ontain a diamond, and wealready handled that 
ase. So all of v, w, and x have degree at least four.If any edge between two neighbours of u is not red, we say without loss ofgenerality that it is (w; x) and eliminate it with a reverse C0;1 move to �nd P . Sin
ethe edge is not red and has both endpoints of degree greater than three, we knowthat we 
an remove it while preserving the genus and keeping the minimum degreeat least three. The graph P is also bi
onne
ted, be
ause there are still two internallyvertex disjoint paths between w and x, namely hw; u; xi and hw; v; xi. Therefore Pis a target graph.



34If all edges between neighbours of u are red, then be
ause the edge (u; v) is notred, by Lemma 3.1.2 none of the edges in
ident to u is red and we 
an re
olour tomake (w; x) not red and (w; u) and (u; x) red. Then, as above, we remove the edge(w; x) with a reverse C0;1 move to obtain P , whi
h is a target graph.If u is in exa
tly one triangle in C: that triangle must in
lude two edgesin
ident to u. If any non-red edge in
ident to u is on the triangle, then we 
an
ontra
t along the one edge in
ident to u that is not on the triangle, with a reverseT1;1 move, to obtain P . By Lemma 3.1.3 this preserves the genus of the graph.Sin
e the edge being 
ontra
ted is not on a triangle, the reverse move 
reates nomultiple edges. And a reverse T1;1 move 
an never de
rease the degree of a vertexor redu
e the 
onne
tivity of a graph, so the remaining 
onditions are satis�ed, andP is a target graph.If u is in one triangle and both edges in
ident to u in the triangle are red, thenthe triangle 
onsists of u, w, and x. By Lemma 3.1.2, the edge (w; x) is not red,and we 
an re-
olour so that (w; x) is red and none of the edges in
ident to u arered. Then we 
ontra
t along (u; v) with a reverse T1;1 move, as above, and obtaina target graph P .If u is in exa
tly two triangles in C: one neighbour of u must be in both ofthose triangles also; we 
all this neighbour y. If y is degree three, then (u; y) is adiamond edge, and we handled the 
ase of graphs 
ontaining diamonds already. If(u; y) is red, then there is exa
tly one vertex z adja
ent to both u and y su
h that(u; z) is red; then by Lemma 3.1.2, the edge (y; z) is not red, but we 
an re
olourso that (y; z) is red and no edge in
ident to u is red.Now we have a vertex u of degree three with a neighbour y of degree greaterthan three, and the edge (u; y) is not red and is on two triangular fa
es. Let u0 be uand let u1 be one of the other neighbours of u. Sin
e (u0; y) is part of two triangles,u1 must also be a neighbour of y. If the edge (y; u1) is red, we 
an re
olour to makeit not red while keeping the red subgraph nonplanar, by 
olouring (u0; u1) red ifit was not already red, and 
olouring (u0; y) red. This has the e�e
t of splitting a



35vertex in the red subgraph, whi
h always preserves nonplanarity. The resulting redsubgraph is nonplanar but may not be homeomorphi
 to K5 or K3;3; if ne
essary,we 
an un
olour additional edges to leave a red subgraph homeomorphi
 to K5 orK3;3, and (y; u1) not red.We then repla
e u0 by u1 and repeat, to 
hoose verti
es u2; u3; : : : ; uk: for istarting at one, while ui is degree three and (ui; y) is on two triangles, we 
hooseui+1 to be the third neighbour of ui, other than ui�1 and y. The vertex uk thatterminates the repetition must be adja
ent to y and either uk has degree greaterthan three or (uk; y) is on just one triangle. Furthermore the edge (uk; y) mustnot be red be
ause we were re
olouring to ensure that at every step of the way.There must be su
h a vertex uk or else the verti
es ui would form a 
y
le with everyvertex also adja
ent to y; and then either y would be a 
ut vertex of C, or C wouldbe a wheel and therefore planar. The following pseudo
ode restates the iterationalgorithm:FindUk(C; u; y) :u0  uu1  a neighbour of u other than yif (u1; y) is redun
olour (u1; y)
olour (y; u0) and (u0; u1) redun
olour additional edges as needed to make red subgraph homeomorphi
to K5 or K3;3end ifi 1while degree(ui) = 3 and (ui; y) is on two triangles in Cif (ui+1; y) is redun
olour (ui+1; y)
olour (y; ui) and (ui; ui+1) red



36un
olour additional edges as needed to make red subgraph homeomorphi
to K5 or K3;3end ifi i + 1end whilek  ireturn ukWhen we �nish we have a vertex uk adja
ent to y, with the edge (uk; y) not red,and either that edge is on just one triangle in C or the degree of uk is greater thanthree. If the degree of uk is greater than three, then we 
an remove (uk; y) witha reverse C0;1 move to obtain P . Be
ause the edge we remove is not red and hasboth endpoints of degree greater than three, P is nonplanar and has no verti
es ofdegree less than three.Choose a neighbour uk+1 of uk, other than uk�1 and y. Sin
e C is bi
onne
ted,we 
an �nd a path from y to uk+1 and not 
ontaining uk. By adding the edges (y; uk)and (uk; uk+1) to that path, we have a 
y
le. If the 
y
le does not 
ontain the vertexuk�1, we 
an repla
e the edge (y; uk) with (uk; uk�1) and (uk�1; y) to �nd a 
y
lethrough uk and y that does not 
ontain (uk; y). Let z be the third vertex adja
entto uk�1, besides uk and y. Sin
e the edge (uk�1; y) is on two triangles, z must alsobe a neighbour of y. If the 
y
le passes through the vertex uk�1, then be
auseuk�1 has degree three, the 
y
le must in
lude the edges (y; uk�1) and (uk�1; z). We
an repla
e the sequen
e of 
onse
utive verti
es in the 
y
le huk; y; uk�1; zi withhuk; uk�1; y; zi to �nd a 
y
le through uk and y in P . Therefore, we 
an always �nda 
y
le through uk and y and not passing through (uk; y), and that 
y
le providestwo internally vertex disjoint paths between these verti
es, so removal of (uk; y)leaves a bi
onne
ted graph P . Sin
e P ful�lls the other 
onditions, it is a targetgraph.If the degree of uk is three, then the edge (uk; y) is on only one triangle. Let



37(uk; z) be the edge in
ident to uk that is not in that triangle. The edge (uk; z)
annot be in any triangle be
ause if it were in a triangle, that triangle would haveto also 
ontain either y or uk�1. If the triangle 
ontains y then the third vertexis a neighbour of y, (uk; y) is in two triangles, and we would not have stopped atuk. If fuk; uk�1; zg is a triangle, then z must be a neighbour of uk�1 other thany, and so z must be a neighbour of y be
ause (uk�1; y) is in two triangles. Thenfuk; y; zg must be a triangle, 
ontradi
ting the 
laim that (uk; y) was in only thetriangle fuk; uk�1; yg.Then (uk; z) is an edge in
ident to the degree three vertex uk and not on anytriangle, so we 
an 
ontra
t it with a reverse T1;1 move to leave a bi
onne
ted graphP with no multiple edges or verti
es of degree less than three. Be
ause the edge(uk; y) is not red, by Lemma 3.1.3, P is nonplanar. Therefore P is a target graph.� Theorem 3.1.8 shows the existen
e of a reverse move from any target graph otherthan K5 or K3;3 to a target graph with fewer edges. As noted at the start of thisse
tion, the existen
e of a target graph parent for any target graph 
hild impliesthe existen
e of a target embedding parent for any target embedding 
hild. So thesuÆ
ien
y of the move set fC0;1;D2;4; T1;1g to generate all target embeddings, withthe torus embeddings of K5 and K3;3 as seeds, follows immediately.3.2 The three-move set is minimalAlthough we have intuitive justi�
ation for ea
h of the three move types C0;1, D2;4,and T1;1, it may seem possible that some subset of these moves 
ould still generateall target graphs. Our work began with two move types (S1;1 and C0;1) whi
hwere expanded to six move types (C0;1, C1;2, C2;3, D2;4, D3;5, and D4;6) to eliminateineÆ
ien
ies asso
iated with degree two verti
es. The six-move set was then 
ut tofour moves by the adoption of the T1;1 move, whi
h eliminated the need for C2;3,



38D3;5, and D4;6.But the C1;2 move was only eliminated mu
h later, be
ause at the time the four-move set was 
hosen we were attempting to work with embeddings on arbitrarysurfa
es, and there is an in�nite set of target-like graphs on the plane, namely thewheels, whi
h 
annot be generated without C1;2. A
tually, there are no target em-beddings (under the 
urrent de�nition whi
h requires nonplanarity) that 
annot begenerated by the three-move set above; but we only proved that late in the resear
h,spurred by the experimental observation that removing C1;2 from our software didnot redu
e the list of graphs generated. Three-move suÆ
ien
y, proved in Theo-rem 3.1.8, is far from obvious. So there is some pre
edent for the idea that movesets may be redu
ed 
ounter-intuitively.In this se
tion, not only do we prove that the three-move set is minimal in thestri
t sense that any proper subset requires an in�nite set of seeds to generate alltarget graphs, but we also argue that the in�nite set of seeds required by any furtherredu
tion of the three-move set would have to be in
onveniently 
ompli
ated. Thus,further redu
tion of the move set is not useful, even if we are willing to make a
on
ession like generating most embeddings with our standard algorithm and usinga di�erent algorithm to generate the few not 
overed.Lemma 3.2.1 The set of moves fD2;4; T1;1g is not suÆ
ient to generate all targetembeddings with any �nite set of seeds.Proof. These moves may add at most two edges for every vertex they add, sowith a �nite set of seeds the embeddings we 
an generate with n verti
es have amaximum of 2n + k edges for some 
onstant k. Triangulations on the torus withn verti
es may have up to 3n edges, and for suÆ
iently large n, this will alwaysex
eed the number of edges in any n-vertex embedding we 
an generate. Therefore,there exist embeddings we 
annot generate with this set of moves and any �nite setof seeds. �



39Attempting to 
ompensate for the removal of C0;1 by expanding the set of seedswould require us to add as seeds all the torus triangulations. Generating triangu-lations for surfa
es is an interesting problem whi
h has been studied, for instan
e,by Barnette [6, 7℄, but a solution to that problem requires work 
omparable to ourwork here; and it is not obvious that the triangulations are the only things we wouldhave to add. So removing C0;1 from the set of moves would almost 
ertainly 
reatemore work than it saves.Lemma 3.2.2 The set of moves fC0;1; T1;1g is not suÆ
ient to generate all targetembeddings with any �nite set of seeds.Proof. By starting with a seed embedding and repeatedly repla
ing edges withthe stru
ture shown in Figure 3.1, whi
h we 
all a super-diamond, we 
an 
onstru
ta target embedding whi
h 
ontains an arbitrarily large number of 
opies of thisstru
ture. Indeed, we 
an 
hoose a target embedding whi
h 
ontains the super-diamond more times than there are edges in any seed embedding. In su
h a targetembedding there must be a super-diamond where none of the seven edges existedin the seed and so all of them were 
reated by moves in our set. We 
onsider whatthe last move used in the 
reation of that 
opy 
ould have been.Suppose the last move made was a C0;1 move. In that 
ase, the last edge added
ould not have been one of the �ve edges in
ident to at least one of the two degreethree verti
es. If it was one of the two remaining edges, then the embedding priorto that move must have 
ontained a diamond, and moreover a diamond that didnot exist in the seed be
ause all the seed edges are in use elsewhere. We do nothave a move in our set that 
an 
reate a diamond, so this is impossible and the lastmove 
annot have been a C0;1 move.A T1;1 move must always 
reate a degree three vertex. But the two degreethree verti
es in the super-diamond are ea
h 
ontained in two distin
t triangles.Reversing the T1;1 move from either of these verti
es to any of its neighbours would



40
Figure 3.9: Exploding a vertex to 
reate degree three verti
es ea
h adja
ent to twoothers.give us a previous state 
ontaining a multiple edge. So the last move 
annot havebeen a T1;1 move.Therefore there is no way to 
reate more 
opies of the stru
ture shown in Fig-ure 3.1 than there are edges in any seed, and so for this set of moves and any �niteset of seeds, we 
an always �nd a target embedding we 
annot 
reate. Thus, theset of moves fC0;1; T1;1g is not suÆ
ient. �Eliminating D2;4would require us to add as seeds an in�nite number of graphsdi�ering from graphs we 
an generate without D2;4, only by D2;4 moves. Thisseems at least as 
ompli
ated as in
luding D2;4 in the set of allowable moves. Theproof of Lemma 3.2.2 may seem unne
essarily 
ompli
ated. A similar proof 
ould bewritten to use ordinary diamonds instead of super-diamonds. The proof was writtenas above, using super-diamonds, be
ause the diamond-based proof would involvegraphs 
ontaining a large number of diamonds. As des
ribed in Chapter 4, we wishto avoid diamonds, and to make restri
tions on the number of diamonds that mayexist in our embeddings. Lemma 3.2.2 as proved here produ
es 
ounterexamples tosuÆ
ien
y that 
ontain no diamonds but still require the D2;4 move.Lemma 3.2.3 The set of moves fC0;1;D2;4g is not suÆ
ient to generate all targetembeddings with any �nite set of seeds.Proof. Neither of these moves 
an 
reate a degree three vertex adja
ent to twoother degree three verti
es, be
ause C0;1 always in
reases the degree of two verti
es



41beyond three without introdu
ing any new ones, and D2;4 introdu
es two new degreethree verti
es but makes them ea
h adja
ent to two verti
es of degree greater thanthree. As shown in Figure 3.9, we 
an perform a move on any vertex of a targetembedding to 
reate a new target embedding 
ontaining degree three verti
es ea
hadja
ent to two other degree three verti
es. We 
an do this on an arbitrarily largetarget embedding, so we 
an produ
e an in�nite number of 
ounterexamples to thesuÆ
ien
y of fC0;1;D2;4g. �Not only does Lemma 3.2.3 provide an in�nite number of embeddings we 
an-not generate with fC0;1;D2;4g, but the embeddings are of a form that we 
annotgenerate 
onveniently enough to throw them in as seeds. For instan
e, the duals oftriangulations on our surfa
e are usually if not always three-regular target embed-dings. All these would have to be in
luded as seeds. Also, we 
an generate fromany target embedding an exponential number of 
hildren, all target embeddingsnot generated by fC0;1;D2;4g, by exploding a subset of the verti
es in the mannerof Figure 3.9. There would be some dupli
ation among those 
hildren, but it doesnot look like an easy way to simplify our experiments. Even if we were to repla
eT1;1 with some new move for 
reating degree three verti
es with two degree threeneighbours, su
h a move would almost 
ertainly not be easier to implement thanT1;1.We 
an now prove the main result of this se
tion, the minimality of the three-move set.Theorem 3.2.4 The set of move types fC0;1;D2;4; T1;1g is suÆ
ient and minimalto generate all target embeddings, with the set of seeds equal to all embeddings onthe torus of K5 and K3;3.Proof. We have suÆ
ien
y from Theorem 3.1.8. By Lemmata 3.2.1, 3.2.2, and3.2.3, if we remove any one move type the remaining set is not suÆ
ient. Thereforeno proper subset of fC0;1;D2;4; T1;1g is suÆ
ient, so this set is minimal. �



42As well as being minimal in the te
hni
al sense of Se
tion 2.4, this set of threemove types appears to be espe
ially 
onvenient when we work with the statedde�nition of target graphs as having no degree two verti
es. In the next se
tion wedis
uss what might be a

omplished by relaxing that requirement.3.3 A two-move minimal suÆ
ient setThe software written for this resear
h began as a program to generate randomlysele
ted embeddings of toroidal graphs, by starting with a seed K5 or K3;3 andmaking S1;1 and C0;1 moves. When we later began to 
onsider the question ofexhaustive generation without dupli
ates, we started with that set of moves anda more relaxed de�nition for target embeddings that permitted them to in
ludeverti
es of degree two.Theorem 3.3.1 The set of moves fS1;1; C0;1g is suÆ
ient and minimal to generateall 
ombinatorial embeddings of graphs homeomorphi
 to target graphs, with the setof seeds equal to all embeddings on the torus of K5 and K3;3.Proof. If an embedding E is like a target embedding ex
ept that it 
ontains oneor more verti
es of degree two, then we 
an use a reverse S1;1 move to remove oneof the degree two verti
es and obtain an embedding E 0 with fewer edges whi
h issimilarly a target embedding ex
ept for possibly 
ontaining verti
es of degree two.If E 
ontains no verti
es of degree two, then it is a target embedding, and if E isnot a seed we 
an apply Lemma 3.1.7 to �nd an edge that we 
an remove with areverse C0;1 move to obtain an embedding E 0, whi
h is a target embedding ex
ept forpossibly 
ontaining some verti
es of degree two. Therefore, fS1;1; C0;1g is suÆ
ient.The set of moves 
onsisting of only S1;1 is not suÆ
ient be
ause it 
annot beused to 
reate embeddings with more verti
es of degree greater than two than existin any seed, and a target-like embedding 
ould 
ontain an arbitrary number ofverti
es of degree greater than two. Similarly, the set of moves 
onsisting of only



43C0;1 
annot 
reate verti
es at all, and so 
annot 
reate target-like embeddings withmore verti
es than any seed. Therefore, fS1;1; C0;1g is minimal. �If we allow verti
es of degree two, then the number of embeddings and thereforegraphs we must 
onsider in
reases without signi�
ant improvements in the useswe 
an make of the results. Any time we would want to embed a graph withdegree two verti
es on the torus, we 
ould instead eliminate them with reverse S1;1moves, embed the resulting graph, and then add the verti
es of degree two ba
k inafterwards. Degree two verti
es have no e�e
t on embeddability.So the question arose of how many degree two verti
es we had to permit inorder to be able to generate all target embeddings, and the answer seemed to bethree, be
ause we needed to be able to draw a 
hord a
ross a fa
e, possibly 
reatingone or two new degree three verti
es at the ends of the 
hord, and we needed tobe able to 
reate diamonds, either repla
ing or inserted in the middle of existingedges. Creating diamonds with S1;1 and C0;1, as des
ribed below, 
ould require theuse of up to three degree two verti
es at one time.If we would be 
reating degree two verti
es only under limited 
ir
umstan
esand only to immediately in
rease their degree with new edges, then we might aswell 
reate and destroy the degree two verti
es in one step. That lead naturally toa set of six moves: fC0;1; C1;2; C2;3;D2;4;D3;5;D4;6g. Ea
h of these moves 
orrespondsto a sequen
e of S1;1 and C0;1 moves, as shown in Figures 3.10 and 3.11.The six-move set appeared to be suÆ
ient to generate all target embeddings,but was diÆ
ult to implement in pra
ti
e. The D3;5 and D4;6 moves, in parti
ular,presented diÆ
ulties be
ause of the sizes of the subembeddings that had to be
onstru
ted and inserted. Our data stru
tures involved two re
ords 
ontainingthree pointers ea
h for every edge, requiring at least 42 pointers to be updatedone by one in order to remove one old edge and add six new ones in a D4;6 move.Although there is nothing in prin
iple diÆ
ult about updating a data stru
ture thisway, in pra
ti
e su
h moves proved 
umbersome to implement and debug.



44

Figure 3.10: Chord moves as sequen
es of C0;1 and S1;1 moves.

Figure 3.11: Diamond moves as sequen
es of C0;1 and S1;1 moves.



45
Figure 3.12: Simulating C2;3 with C1;2 and T1;1.The six-move set, be
ause of its 
omplexity, was also 
umbersome to deal withon the theoreti
al level. It appeared that the suÆ
ien
y of the six-move set wouldbe easy enough to prove. We do not prove it here be
ause with the introdu
tion ofthe three-move set and proof of the two-move set's suÆ
ien
y independent of thesix-move set, a 
ompli
ated proof for the six-move set no longer seems useful. Itwas not 
lear whether the six-move set was minimal, nor how to prove that.The T1;1 move was introdu
ed to simplify the set of moves. As shown in Fig-ures 3.12 and 3.13, the use of the T1;1 move along with C1;2 and D2;4 allows us toa
hieve the e�e
t of the more 
ompli
ated C2;3, D3;5, and D4;6 moves. That leadsnaturally to a set of four moves, fC0;1; C1;2;D2;4; T1;1g. It is not generally possible tosimulate a C1;2 move with a C0;1 move followed by a T1;1 move, be
ause if we wishedto perform the C1;2 move inside a triangular fa
e, the initial C0;1 move would haveto 
reate a multiple edge.The C1;2 move appears ne
essary be
ause, if we imagine ourselves generatingplanar embeddings in the same way we generate torus embeddings, a wheel withmany verti
es 
learly 
annot be generated by any of the other moves in the four-move set. A wheel other than K4 
ontains no diamonds, so D2;4 is unusable; it
ontains only one vertex of degree greater than three, so C0;1 is unusable; and aT1;1 move would require the parent to 
ontain multiple edges. It seems reasonable,then, that there should be nonplanar graphs whi
h also require C1;2. The ne
essityof C1;2 appeared so obvious that its proof 
ould safely be left almost to the end ofthe proje
t. So our intent during most of the proje
t was to prove suÆ
ien
y ofthe six-move set, then suÆ
ien
y of the four-move set by the equivalen
es above.



46

Figure 3.13: Simulating D3;5 and D4;6 with D2;4 and T1;1.



47Then we would prove minimality of the four-move set, possibly with a note on thepossibilities of using the original two moves, for a more wasteful but mu
h simplerapproa
h.The dis
overy that C1;2 was not ne
essary, or at least not ne
essary when dealingwith embeddings on the torus, was triggered by the diÆ
ulty of proving minimalityof the four-move set. Despite the note above that C1;2 
annot be dire
tly simulatedby C0;1 and T1;1, we 
ould not a
tually �nd any target embeddings for whi
h itwas ne
essary; not even in our 
omputer experiments with hundreds of millions ofembeddings. Obtaining a suÆ
ien
y proof, showing that in fa
t the four-move setis not minimal, was diÆ
ult but eventually possible.Unfortunately, we have no simple explanation for why C1;2 
an be eliminated;unlike C2;3, there is no easy sequen
e of other moves that 
an repla
e C1;2 in all 
ases.At best we 
an point to Theorem 3.1.8, whi
h shows (after a 
ompli
ated argumentwith several 
ases) that any target embedding whi
h might appear to require C1;2,
an be generated in some other way with the other three moves. Although thethree-move set requires an elaborate proof and appears to be in some sense justbarely suÆ
ient, it is suÆ
ient, and having only three moves simpli�es the softwarea great deal.



48
Chapter 4
Diamonds
In this 
hapter we dis
uss a further re�nement of the algorithm, intended to makethe output more useful by eliminating embeddings of less interesting graphs. Graphs
ontaining diamonds present fewer 
hallenges in embedding be
ause we 
an sim-ply eliminate the diamonds, embed the remaining graphs, and then reinsert thediamonds. We begin with a des
ription in Se
tion 4.1 of diamonds and their 
onse-quen
es. Then in Se
tion 4.2 we prove that the algorithm 
an be limited to examin-ing target graphs with at most one diamond, and still generate all the diamond-freetarget graphs. Finally, in Se
tion 4.3 we dis
uss how diamonds 
an be embeddedin several ways on the torus, and the 
onsequen
es of that fa
t for our work.4.1 Some notes on diamondsWe have already mentioned that the presen
e of diamonds in a graph does not
hange its genus, sin
e we 
an always perform a reverse D2;4 move to �nd a smallergraph embeddable on exa
tly the same surfa
es. Just like degree two verti
es andmultiple edges, diamonds 
an be viewed as uninteresting embellishments to existingedges. For any graph G that we 
onsider really interesting, there will be a largenumber of less interesting graphs 
onsisting of G with one or more diamonds sub-



49stituted into its edges. It would be preferable to eliminate them from 
onsideration.But as des
ribed in Chapter 3, forbidding diamonds entirely, by eliminating theD2;4 move, would require us to have some other way to 
reate the more 
ompli
atedstru
tures whi
h 
urrently require diamonds. Perhaps we 
ould make diamondsunne
essary by requiring target graphs to be 3-
onne
ted, but then the proofs thatwe 
an maintain that 
onstraint, already diÆ
ult for bi
onne
tedness, 
ould be
omeeven more diÆ
ult. Also, some intended appli
ations of the output, for instan
eto the sear
h for torus obstru
tions (see Se
tion 7.2) would su�er if the outputwere limited to 3-
onne
ted embeddings. It seems useful to permit at least a fewdiamonds.We 
ould make attempt to pla
e a similar limit on how many degree two verti
esare ne
essary at any one time to generate all target embeddings with moves infS1;1; C0;1g, as dis
ussed in Se
tion 3.3, but it appears that we would still need atleast three degree two verti
es to be able to generate diamonds with those moves.Similarly, if we permitted multiple edges we might also need to permit enough ofthose to be in
onvenient.Permitting diamonds presents less of a problem than permitting multiple edgesor degree two verti
es, be
ause every diamond in
ludes two verti
es whi
h are notavailable to be in
luded in any other diamond. When we generate graphs up to a�xed number of verti
es n, the n-vertex graphs 
ontaining diamonds must 
orre-spond to graphs with n � 2 or fewer verti
es, and the fast growth in the numberof embeddings with in
reasing n guarantees that there will be far fewer targetembeddings with n � 2 verti
es than with n verti
es. So the a
tual number ofdiamond-
ontaining embeddings should not be overwhelming.Nonetheless, we 
hoose to avoid diamond-
ontaining embeddings as far as pos-sible. Lemma 3.2.2 shows that some diamonds are ne
essary with our move set, sowe 
annot simply require all parents and 
hildren to be diamond-free and expe
tto generate all other target embeddings that way. In the next se
tion we show thatwe need tolerate only one diamond in an embedding at a time; the set of target



50
Figure 4.1: The two situations where a reverse D2;4 move would 
reate a diamondembeddings with at most one diamond 
an be generated without requiring the useof embeddings with more than one diamond.4.2 Only one diamond is ne
essaryIn order to 
reate graphs that do not 
ontain diamonds but do 
ontain things likesuper-diamonds, we need to make use of parents 
ontaining diamonds. How manydiamonds must we tolerate in parents in order to be able to generate all diamond-free 
hildren? The following theorem shows that the answer is just one.Theorem 4.2.1 If C is a target embedding 
ontaining at most one diamond, theneither C is a seed or C 
an be obtained from a target embedding P with fewer edgesand 
ontaining at most one diamond, by a move in fC0;1;D2;4; T1;1g.Proof. By Theorem 3.1.8, we 
an �nd a reverse move from any non-seed C to sometarget embedding. We 
onsider the ways that su
h a reverse move 
ould 
reate adiamond, and show that we 
an always �nd a reverse move that will not in
reasethe number of diamonds past one.A reverse D2;4 move simultaneously redu
es the degree of two verti
es and makesthem adja
ent to ea
h other. However, it also destroys a diamond. There are two
ases: the new edge 
ould form the 
rossbar of the diamond (be
oming the diamondedge as su
h) or it 
ould go into the side of the diamond. These two 
ases are shownin Figure 4.1. In ea
h 
ase, it is 
lear from the �gure that the e�e
t of the reverse



51
y

w u

x vFigure 4.2: How a reverse T1;1 move 
an 
reate a diamond.move is limited to the verti
es shown. With the new edge forming the 
rossbar ofthe diamond, both its endpoints 
an only be part of that one diamond, so only onediamond is 
reated. With the new edge forming a side of the diamond, only onevertex has its degree redu
ed to three, and so, again, only one diamond is 
reated.Sin
e one diamond is always destroyed by the reverse D2;4 move, this reverse move
an never in
rease the total number of diamonds in the embedding. Theorem 3.1.8has already established that P is a target embedding when it is obtained by areverse D2;4 move. Note that in the ex
eptional 
ase of making a D2;4 move on K4,the resulting graph C has two diamond edges in it and a reverse D2;4 move gives usthe original K4, with six diamond edges. We 
onsider only target graphs with atmost one diamond, so that situation is ex
luded.A reverse T1;1 move always in
reases the degree of a vertex past three, so it 
annever 
reate a diamond by 
reating a degree three vertex. Any diamond 
reatedby a reverse T1;1 move must result from the 
ontra
tion of a 4-
y
le in the targetembedding, as shown in Figure 4.2. The edge (u; v) is the one being 
ontra
ted.Su
h a 
ontra
tion 
ould in fa
t 
reate two diamonds at on
e, if we imagine thestru
ture repeated again on the other side of the edge (u; v), as shown in Figure 4.3.We 
an instead 
ontra
t the edge (u; w) in C to obtain P unless u and y are adja
ent,or the edge (v; x) unless v and y are adja
ent. The verti
es u and v 
annot both beadja
ent to y, be
ause then the original reverse T1;1 move would have been forbiddenfor 
reating a multiple edge.We 
an assume without loss of generality that u is not adja
ent to y, and so we
an 
ontra
t (u; w). The reverse T1;1 move always preserves 
onne
tivity and the



52
u

vFigure 4.3: How a reverse T1;1 move 
an 
reate two diamonds.minimum degree of verti
es; no multiple edges are 
reated be
ause we are using itto 
ontra
t an edge that is not on any triangle. It remains only to show that we
an preserve nonplanarity.
u v

w x

y

! w x

y

z !
y

z !
y

z

x !
!

y

z

x !
y

x

v

u !
y

x

v

u

Figure 4.4: Why 
ontra
ting (u; w) does not 
hange the genus.Suppose we 
ontra
t (u; v), notwithstanding that it would 
reate a diamond,and label the resulting vertex z. Sin
e that was the reverse move 
hosen by The-orem 3.1.8, the resulting graph is still nonplanar, although it might 
ontain toomany diamonds. Then we eliminate verti
es w and x with a reverse D2;4 move,whi
h by Theorem 3.1.1 
annot make the graph planar. We subdivide the edge(y; z), labelling the new vertex x; that also 
annot make the graph planar. Thenwe add a new edge from y to z; adding an edge 
annot make the graph planar. Wesplit z ba
k into u and v, as they were before; splitting a vertex 
annot make the



53
xuv

z w

yFigure 4.5: How a reverse C0;1 move 
an 
reate a diamond.graph planar. Finally we add an edge from x to u. This pro
ess and its result areshown in Figure 4.4. We have obtained, by a series of operations that maintain thenonplanarity of the graph, exa
tly the same embedding we would have obtained by
ontra
ting (u; w) in the original embedding C. Therefore this embedding, whi
hwe 
all P , is of a nonplanar graph and so P is a target embedding 
ontaining nomore diamonds than C 
ontained.A reverse C0;1 move 
an 
reate a diamond only by redu
ing the degree of adegree four vertex whi
h (ex
ept for the edge being removed) forms a diamondwith a degree three vertex, as shown in Figure 4.5. The edge (u; v) is the onebeing removed. We know that (u; v) 
ould not have been red in the 
olouring usedin Theorem 3.1.8, be
ause then the edge removal would not have been permitted.Note that v 
ould also be degree four and 
reate a diamond, so that this reversemove 
ould 
reate two diamonds at on
e.If one of w and y, say without loss of generality w, has degree greater thanthree, then we will remove the edge (u; w) instead of (u; v). Suppose we did removethe edge (u; v), even though it would make the graph 
ontain too many diamonds;sin
e that is the reverse move found by Theorem 3.1.8, the resulting graph mustbe nonplanar. We then apply a reverse D2;4 move to repla
e the diamond by anedge (w; y); this must leave a nonplanar graph G by Theorem 3.1.1. If we 
olourthe resulting graph with a red subgraph homeomorphi
 to K5 or K3;3, we 
an then



54repla
e the diamond and then (u; v); in so doing we 
olour the repla
ed edges (w; x)and (x; y) red if the edge (w; y) was red, and 
olour no other new edges. The resultis a red-
oloured subgraph homeomorphi
 to K5 or K3;3 in the original C, with theedge (u; w) not red. Therefore we 
an remove the edge (u; w) to obtain a nonplanargraph P .Sin
e C�(u; v) is known to be bi
onne
ted and w has degree greater than three,we 
an 
hoose a neighbour z of w, where z is not u, x, or y, and �nd a path inC � (u; v) from z to y without passing through w. Then that path, plus the edges(w; z) and (y; u) provide one path from w to u in P ; and the path hw; x; ui is ase
ond path from w to u in P , internally vertex disjoint from the �rst. Thereforeremoval of (u; w) leaves P bi
onne
ted. Sin
e both u and w have degree greaterthan three, every vertex of P has degree at least three. All the 
onditions are nowsatis�ed and P is an embedding of a target graph.If w and y both have degree three in C, then we 
annot remove the edge (u; w)with a reverse C0;1 move to obtain a target embedding. But then we 
an 
ontra
tthe edge between w and its neighbour z with a reverse T1;1 move to obtain P . Su
h areverse move ne
essarily preserves bi
onne
tedness and minimum degree. It 
annot
reate multiple edges unless z and v are the same vertex, a 
ase whi
h we handlelater. If w is degree three and we are 
ontra
ting (w; z), then it only remains toshow that this leaves the graph nonplanar. The verti
es w and y 
annot both bedegree three and adja
ent to v, or v would be degree two or a 
ut vertex.It only remains to show that the graph in P is nonplanar. As above, we imag-ine removing (u; v) from C even though it would 
reate a diamond, repla
ing thediamond with an edge (w; y), and 
olouring the result with a red subgraph home-omorphi
 to K5 or K3;3. Reversing these steps and maintaining the 
olouring, weobtain a 
olouring for C where the edges (w; u) and (w; x) are not both red. Thenby Lemma 3.1.3, we 
an 
ontra
t the edge (w; z) and leave the graph nonplanar.Therefore P is a target embedding.



55One possibility remains with the reverse C0;1 move: that w 
ould be degreethree and v and z 
ould be the same vertex, so that there is a triangle with verti
esfu; v; wg and we 
annot 
ontra
t the edge (w; v) without 
reating a multiple edge.In that 
ase, the graph C must 
ontain a super-diamond, as shown in Figure 3.1.Obviously, an embedding (either the target embedding C or some an
estor ne
essaryto 
reate it) 
ould 
ontain an arbitrarily large number of super-diamonds. However,the super-diamond does not 
ontain a diamond itself, and it 
an be 
reated froman edge by making a D2;4 move followed by a T1;1 move and a C0;1 move, 
reatingand destroying one diamond along the way. So if we need to build an embedding
ontaining one or more of these and possibly a diamond as well, we 
an �rst buildthe 
orresponding embedding with the diamond and super-diamonds repla
ed byedges and any degree two verti
es and multiple edges eliminated. Then we 
aninsert the diamond and super-diamonds, one at a time, never having more than onediamond in the embedding at one time, and then we 
an do any �nal splitting andadding of edges as in Theorem 3.1.4 to 
reate the desired embedding. �If we are primarily interested in embeddings of diamond-free graphs, then The-orem 4.2.1 allows us to prune our 
omputation tree 
onsiderably. Noting that ourseed embeddings, of K5 and K3;3, are all diamond-free, we 
an implement the prun-ing in the generator software simply by dis
arding any parents or 
hildren that havemore than one diamond. We also restri
t a
tual output to embeddings of diamond-free graphs, although it is ne
essary to examine embeddings with one diamond inorder to generate all diamond-free embeddings.4.3 Twisted diamondsWe normally imagine diamonds as being embedded ni
ely on the plane, as in thedrawing in Figure 2.1. But on the torus, there are more possibilities. Two otherways to embed a diamond on the torus are shown in Figure 4.6. We 
all any



56
v

u

w x

u

v

w x

Figure 4.6: Some twisted diamonds.diamond that is not embedded in the obvious planar way depi
ted in Figure 2.1, atwisted diamond.Twisted diamonds are ne
essary be
ause some target embeddings, even somewithout diamonds like the one shown in Figure 4.7, 
an only be generated froman
estors that 
ontain twisted diamonds. If we imagine making reverse moveson Figure 4.7, the only target embeddings we 
an �nd as possible parents, areembeddings that 
ontain twisted diamonds. Theorem 4.2.1 shows that we needtolerate only one diamond, but it might happen that that diamond must be twisted.So we 
annot simply forbid twisted diamonds; our D2;4 move must be able to
reate them. The de�nition of the D2;4 move given in Se
tion 2.4 is designed to beable to 
reate any possible twisted diamond, and the move label for it des
ribed inSe
tion 5.2 is designed to des
ribe any possible D2;4 move. Here, we des
ribe theD2;4 move in detail, to 
larify its operation.Let (u; v) be a diamond edge in a target embedding C, and let w be the nextvertex after v in the 
lo
kwise adja
en
y list of u and x be the remaining neighbourof u. This is the same naming of diamond verti
es shown in Figure 3.3 earlier, buthere we emphasize that the diamond 
ould be embedded in any of several ways;some other embeddings of the same subgraph are shown in Figure 4.6. In all thosediagrams, the 
lo
kwise adja
en
y list of u is hv; w; xi.



57

Figure 4.7: A diamond-free target embedding that 
annot be generated without atwisted diamond.

Figure 4.8: Illustration of the general D2;4 move.



58If we imagine removing the vertex v and all its in
ident edges, then we wouldhave an embedding P 0, whi
h is the same as the embedding P obtained by repla
ingthe diamond with a path hw; u; xi. To obtain C from P 0, we must insert v into afa
e 
ontaining the vertex u; v goes inside that fa
e and its in
ident edges 
onne
tit to some appearan
e of ea
h of u, w, and x around the fa
e. Be
ause v must
ome after x and before w in the 
lo
kwise adja
en
y list of u, there is only oneway to add the edge (u; v) even if u appears twi
e on the fa
e. The other two edgesin
ident to v, however, may atta
h to any appearan
es of w and x on the fa
e. We
an break down the addition of v and its edges further into the steps of addingan edge between the two appearan
es of w and x that will be adja
ent to v, thensubdividing that edge to 
reate v, and �nally adding the edge (u; v).To remove a diamond, we 
an label it as above, remove v and its edges, thenremove y and repla
e the edges (w; u) and (u; x) with an edge (w; x). We 
an removeany diamond this way, twisted or not. By reversing the steps and making sure thatwe 
an 
hoose any appearan
es of w and x on the fa
e, we obtain the de�nition ofthe D2;4 move, whi
h 
an 
reate any diamond, twisted or not. In detail, the stepsare as follows:1. Choose a fa
e F of an embedding P .2. Choose an edge e in F .3. Let w and x be the endpoints of e so that w 
omes immediately before x ina 
lo
kwise traversal of F . There may be two ways to do that if e appearstwi
e on the same fa
e.4. Choose one appearan
e of ea
h of w and x on F (ea
h may appear more thanon
e).5. Subdivide (w; x), 
reating u.



596. Add an edge through F between the 
hosen appearan
es of w and x. Thisdivides F into two distin
t fa
es.7. Subdivide the new edge, 
reating v. Be
ause the edge appears on two distin
tfa
es, v 
an only appear on
e on any given fa
e.8. Add an edge from v to u, so that v appears before w and after x in the
lo
kwise adja
en
y list of u. There is only one way to do this be
ause vappears only on
e on any given fa
e.These steps 
an insert any embedding of a diamond, no matter how many timesa vertex may appear on a fa
e in P . When looking for all possible moves to applyto P in the algorithm Generate (see Se
tion 2.5), we loop through all possible
hoi
es of F , u, v, and the additional appearan
es of u and v. Then we are sureof examining every possible twisted diamond and thus generating all diamond-freetarget embeddings. In the next 
hapter we dis
uss how to re
ognize and preventdupli
ation, so that even if we 
an des
ribe the same diamond move in more thanone way (for instan
e, by making a di�erent 
hoi
e about whi
h vertex is u), wewill still only generate ea
h 
hild on
e.



60
Chapter 5
Other aspe
ts of the algorithm
There still remain some details whi
h have not been des
ribed but whi
h are ne
-essary for the implementation of the algorithm. Those details are dis
ussed in this
hapter. First, in Se
tion 5.1, we des
ribe a 
anoni
al form for embeddings, whi
hleads to an isomorphism test. In Se
tion 5.2 we dis
uss move labels, used to ensurethat ea
h equivalent move is made exa
tly on
e from ea
h parent. Our algorithmrequires the use of a planarity testing algorithm, and in Se
tion 5.3 we des
ribe anenhan
ement used to redu
e the number of planarity tests we must perform.5.1 A 
anoni
al form for embeddingsThe generation algorithm as des
ribed requires us, ea
h time we derive a possible
hild embedding C from a possible parent P , to �nd the a
tual parent for C.Then we re
urse to C and its des
endants if and only if P is the parent of C. Thislimitation prevents us from pro
essing C at more than one pla
e in the 
omputationtree. Saying that P must be the parent of C begs the question of how to 
ompareP with Parent(C). Che
king all possible labellings would 
onsume O(n!) time foran n-vertex embedding. Sin
e embeddings in
lude graphs, and graph isomorphismis a diÆ
ult problem, not known to be solvable in polynomial time, the need for an



61embedding isomorphism test may appear to be a signi�
ant obsta
le.Fortunately, embeddings are mu
h easier to 
ompare than graphs. Given a la-belled 
ombinatorial embedding of a 
onne
ted graph, we 
an generate in O(n2)time, using the algorithm below, a sequen
e of symbols representing the isomor-phism 
lass of the embedding. That sequen
e of symbols is 
alled the 
anoni
alform; two embeddings have the same 
anoni
al form if and only if they are isomor-phi
.Suppose we have a 
ombinatorial embedding, and we have already 
hosen adire
tion (
lo
kwise or 
ounter
lo
kwise) and assigned the labels zero and one totwo adja
ent verti
es. We perform a breadth-�rst sear
h, starting with the vertexlabelled zero as the root and using the vertex labelled one as its �rst 
hild. At ea
hvertex, we visit the neighbours in the 
hosen dire
tion, 
lo
kwise or 
ounter
lo
k-wise, starting from the parent. The order of edges visited by this sear
h is thenfully determined. When the verti
es of the embedding are labelled with nonneg-ative integers, we 
an re
ord the breadth-�rst sear
h with a sequen
e of integers.It remains only to 
hoose whi
h traversal dire
tion and pair of adja
ent verti
esto use. One obvious way to make that 
hoi
e would be to try all possible startingpoints and use the lexi
ally least representation of the embedding.However, doing four breadth-�rst sear
hes for every edge in the embedding seemsineÆ
ient. It would be preferable to redu
e the number of possible starting pointsas far as possible. As des
ribed below, we begin our 
anoni
al form with the in-tegers hn;m; fi, the 
ounts of verti
es, edges, and fa
es respe
tively. Those arethe same for all representations of the embedding. We then insert two more inte-gers before re
ording the sequen
e generated by the breadth-�rst sear
h, namelyhn� degree(u); n� degree(v)i where u is the starting vertex (labelled zero) and v isits �rst neighbour (labelled one). Sin
e the three terms hn;m; fi are the same in allsequen
es representing the embedding, then the lexi
ally least sequen
e must ne
-essarily have minimum possible n� degree(u), and minimum n� degree(v) subje
tto the previous 
ondition. In other words, u must have maximum degree among



62the verti
es in E, and v must have maximum degree subje
t to that.These 
onditions limit the number of possible starting points for the sear
h; ifthere is a degree �ve vertex in E, for instan
e, then we need not run the sear
h forany u with degree three or four; we know that the result 
ould not be lexi
ally least.We 
hose to maximize the degrees of u and v instead of minimizing them, be
ause weexpe
t our embeddings to usually have relatively many verti
es of small degree andrelatively few of large degree. Choosing maximum-degree verti
es for the startingpoint should tend to give a smaller number of starting points to examine. Of 
oursethere are embeddings where many or all verti
es have the maximum degree, andthen this 
ondition gives little or no speed bene�t; but it is 
heap to implement, andin pra
ti
e it saves time often enough to provide a signi�
ant speed improvementoverall.We use the integer �1 to represent the end of an adja
en
y list. The sequen
ere
ording the breadth-�rst sear
h then 
onsists of three integers denoting the num-ber of verti
es, edges, and fa
es in the embedding, two more integers to for
e adesirable ordering as des
ribed above, and then the adja
en
y lists of vertex zero,vertex one, and so on, up to the last vertex in the embedding. Ea
h adja
en
y listis in the order determined by the breadth-�rst sear
h, and terminated by �1; thebreadth-�rst sear
h also assigns the vertex labels ex
ept for zero and one. The pseu-do
ode below des
ribes the breadth-�rst sear
h to label an embedding E, startingfrom adja
ent verti
es u and v and traversing in dire
tion d, whi
h is 
lo
kwise or
ounter
lo
kwise.BFS(E; d; u; v) :initialize seq with hn;m; fi, the numbers of verti
es, edges, and fa
es in Eappend hn� degree(u); n� degree(v)i to seq (explained above)all verti
es begin unlabelledlabel u with 0label v with 1



63nextlabel  2for i 0 to n� 1w vertex labelled ifor ea
h neighbour x of w, starting with the one with minimum labelamong those that have a label, and pro
eeding in the dire
tion dif x has no label yetlabel x with nextlabelnextlabel  nextlabel + 1end ifappend label of x to seqend forappend �1 to seqend forreturn seqIf we run this traversal on E with all possible values of d, u, and v (note thatwhen (w; x) is an edge in E, we must try both u = w; v = x and u = x; v =w), then the lexi
ally least result is the 
anoni
al form for the embedding. Sin
ewe know that u must have maximum degree and v must have maximum degreesubje
t to that, we need only run the traversal for values of u and v satisfyingthose 
onditions. Sin
e this sequen
e in
ludes an ordered adja
en
y list for everyvertex, it is easy to 
onstru
t a 
ombinatorial embedding isomorphi
 to E fromthe 
anoni
al form. Thus, two embeddings with the same 
anoni
al form must beisomorphi
. Conversely, two isomorphi
 embeddings must have the same 
anoni
alform. Changing the labelling of verti
es or the starting point of a list has no e�e
ton the 
anoni
al form be
ause the breadth-�rst sear
h determines its own labellingand starting points. Reversing all adja
en
y lists (mirror-reversing the embedding)has no e�e
t on the 
anoni
al form be
ause we make the sear
h both 
lo
kwise and
ounter
lo
kwise.



64As a side e�e
t of the 
anoni
al form 
al
ulation, we obtain the automorphismgroup of the embedding in the form of a list of all permutations from the originallabelling to a labelling that yields the 
anoni
al representation. If the embeddinghas some symmetry, then there will be more than one starting point that produ
esthe 
anoni
al representation, so there will be more than one su
h permutation. Sin
eea
h permutation is generated by one of our breadth-�rst sear
hes, and there 
anbe at most 4m of those in a graph with m edges (two starting points for ea
h edgemultiplied by two for 
lo
kwise or 
ounter
lo
kwise), that provides an upper limiton the number of permutations. After applying to the embedding the 
anoni
allabelling, whi
h is a permutation �0 from the list of permutations we generated, wealso repla
e ea
h entry �k with �k Æ ��10 , so that we have the automorphism groupas the set of permutations of the 
anoni
al vertex labels that leave the breadth-�rst sear
h representation un
hanged. The automorphism group is used with movelabels in eliminating dupli
ate moves.5.2 Move labelsAs we observed when attempting to implement an embedding generator, we 
aneliminate almost all dupli
ation of isomorphi
 embeddings in the output by �ndinga parent for ea
h possible 
hild, and keeping the 
hild if and only if it was generatedfrom the parent a

ording to the 
anoni
al form above. This restri
tion prunes the
omputation tree a great deal. However, it is still possible that a 
hild 
ould bekept more than on
e, resulting in dupli
ate embeddings in the output. That 
ouldhappen if there is more than one way to make a move on the parent to produ
e thesame 
hild.If the parent is highly symmetri
, there 
ould be many dupli
ate moves. Forexample, in Figure 5.1, any of four edges 
an be repla
ed by a diamond to give thepi
tured 
hild. The software must have a way to re
ognize that these four edgesare equivalent, and only apply the move to one of them.



65

Figure 5.1: A D2;4 move 
an be applied to any of four edges in this parent to givethe same 
hild.We address this need by assigning a name 
alled a move label to ea
h way we
an make a move on the parent. The move label is a sequen
e of vertex labels. Wealready know the automorphism group of the parent be
ause we 
omputed that asa side e�e
t of 
omputing the 
anoni
al form. So by applying ea
h element of theautomorphism group to the move label of the move under 
onsideration, and takingthe lexi
ally least result, we obtain a 
anoni
al form for the move label. Then wea
tually make the move if and only if its move label mat
hes the 
anoni
al form.Lemma 5.2.1 If the vertex sequen
e hu; v; wi o

urs 
onse
utively 
lo
kwise or
ounter
lo
kwise around some fa
e of an embedding of a graph G with no verti
esof degree less than three, then it does so only on
e in the entire embedding.Proof. The o

urren
e of this sequen
e on
e means that u and w are both neigh-bours of v, and moreover that they appear 
onse
utively in the 
y
li
 adja
en
y listof v. Sin
e we do not allow multiple edges, u and w 
an ea
h only appear on
e inthe 
y
li
 adja
en
y list of v. If the sequen
e of labels hu; v; wi on a fa
e o

ursmore on
e in the embedding, then u and w must be 
onse
utive on both sides: thenext neighbour of v after u must be w in both the 
lo
kwise and 
ounter
lo
kwisedire
tions. Therefore u and w must be the only neighbours of v, whi
h 
ontradi
ts



66the de�nition of G as having no verti
es of degree less than three. �Lemma 5.2.1 means that by giving the labels of three 
onse
utive verti
eshu; v; wi on a fa
e, we 
an uniquely identify the fa
e, the parti
ular appearan
es ofthose three verti
es on the fa
e, and a dire
tion for traversing the fa
e. Con
eptu-ally, we are identifying an appearan
e of v; to disambiguate the many pla
es it mayappear in the embedding, we give its su

essor around the fa
e, w. To spe
ify whi
hfa
e we mean, if there are two 
ontaining that edge, we also give the immediateprede
essor of v, whi
h is u; that also identi�es the dire
tion of traversal.
y’

y w’

z

w

x

(a) C0;1 islabelled byhy0; x; y; w0; z; wi.
x

y

y’

x

u’

u

v’

y

v(b) D2;4 is labelled byhy0; x; y; u0; u; v0; vi.
x

y

z

x

y

z(
) T1;1 islabelled byhx; y; zi.Figure 5.2: How to label moves.As a result, we 
an label a C0;1 move with a sequen
e of six vertex labels: threeto identify one endpoint of the new edge, and three to identify the other endpoint.A T1;1 move is labelled with the vertex to split, and the two neighbours that willbe
ome neighbours of the degree three vertex 
reated by the move. Labelling aD2;4 move is more 
ompli
ated. Con
eptually, this move 
onsists of adding a newedge between two verti
es that are already adja
ent, then subdividing the old andnew edges and adding another edge between their midpoints. We use three vertexlabels hy0; x; yi to identify the old edge and the fa
e in whi
h we operate. We must



67
vu

w

x

z

yFigure 5.3: A potential C0;1 move, whi
h 
ould be labelled in four di�erent ways.then spe
ify where to draw the new edge, by naming its two endpoints. The labelhu0; x; ui names one endpoint and hv0; y; vi names the other, as for the C0;1 move,but sin
e x and y were already spe
i�ed in naming the old edge, we need only sevennumbers to name the entire move: hy0; x; y; u0; u; v0; vi.One problem with this approa
h is that there may be several inequivalent waysto label the same move. For instan
e, with the C0;1 move, we 
ould label it 
lo
kwiseor 
ounter
lo
kwise starting from either endpoint of the edge being 
reated. If theautomorphism group of the parent is trivial, all four of these would result in di�erent
anoni
al labellings. When assigning the 
anoni
al move label to a move, then, wemust �nd the lexi
al minimum of all images of all possible labels for the move.When we evaluate possible moves in a software loop, we 
arefully de
ide whi
hlabellings will be asso
iated with whi
h iterations of the loop, and take the leastof the labellings assigned to the 
urrent iteration as the thing to 
ompare with the
anoni
al image.For instan
e, our move-sele
tion pro
ess for the C0;1 move goes around ea
h fa
ein only one dire
tion, 
lo
kwise or 
ounter
lo
kwise, but attempts to draw a 
horda
ross the fa
e from every vertex to every other vertex on the fa
e. In Figure 5.3,we traverse a fa
e 
lo
kwise and attempt to draw the 
hord between verti
es u andv twi
e: on
e 
on
eptually from u to v and on
e from v to u. When drawing the
hord from u to v we label it with the least of hx; u; w; z; v; yi and hw; u; x; y; v; zi



68
0 1

2

4 3

5

4

1

3

2

0

5 0 1

2

4 5

3

Figure 5.4: Two di�erent moves may 
reate the same 
hild from the same parent.and when drawing the 
hord from v to u we label it with the least of hz; v; y; x; u; wiand hy; v; z; w; u; xi. The 
anoni
al label for the move is the least image of any ofthese. Assuming that the automorphism group is trivial, we will de
ide to makethe move exa
tly on
e on this fa
e. If the automorphism group were not trivial wemight make the move on some other fa
e instead; but in any 
ase, we would makeit exa
tly on
e in the embedding.A more serious problem o

urs when two inequivalent moves lead from thesame parent to the same 
hild. Figure 5.4 shows an example of su
h a situation.First, note that the parent's automorphism group 
onsists of the identity and apermutation that swaps vertex zero with vertex one and vertex three with vertexfour. Two di�erent C0;1 moves are shown by dashed lines. The 
anoni
al movelabel for one is h0; 2; 5; 5; 4; 1i and for the other h0; 3; 5; 1; 4; 0i. These moves are notequivalent; for instan
e, one endpoint of the �rst move is on a triangular fa
e and



69that is not the 
ase for the se
ond move.The lower half of the �gure shows the result of ea
h move, using the same vertexlabelling as in the parent to make 
lear what happens to the verti
es. Althoughthe drawings of the 
hildren have been adjusted to show their relationship to ea
hother rather than to the parent, it is 
lear by 
areful examination of ea
h vertexthat these are the 
hildren produ
ed by the two moves. As is also 
lear from thediagram, these two 
hildren are the same up to a mirror reversal and relabelling ofthe verti
es. They have the same 
anoni
al form.Fortunately, move labels provide an easy solution to this kind of problem aswell. When we examine a move we 
ould make on an embedding P , we �rst 
he
kthat the move's label mat
hes its own least image under the automorphism groupof P . If it does, we 
onstru
t the resulting embedding C, 
onstru
t the parent ofC, and 
he
k that the parent is isomorphi
 to P . So far we have done nothing toprevent the situation of Figure 5.4. But when we 
all Parent(C), it also returns amove label des
ribing a way to get from the parent to C. We then 
he
k not onlythat P mat
hes the parent of C, but also that the move label we used to �nd Cmat
hes the move label returned by Parent(C).Just as with sele
tion of parents, it does not matter at all how we 
hoose themove label to return from Parent, provided we 
hoose some move label that a
tu-ally will be visited and does lead from the parent to the 
hild. However, Parent(C)must always 
hoose the same move label for all isomorphi
 values of C, and theeasiest way to be sure of that is to for
e Parent to examine only the 
anoni
alform of C. Any additional information available to the software, as for instan
e theedge marks des
ribed in the next se
tion, is 
arefully ex
luded from in
uen
ing thesele
tion of the parent and move label.



705.3 Edge markingWhen we sele
t a parent for a given C, it is important that the parent be anembedding whose 
hildren we a
tually will examine. Otherwise, the 
hild will neverbe pro
essed. Sin
e we examine only target embeddings, the parent must be a targetembedding; therefore, it must be bi
onne
ted, have no verti
es of degree less thanthree, and have orientable genus one. If we are limiting the number of diamondsto at most one, then we look for a parent 
ontaining at most one diamond. Togenerate embeddings eÆ
iently, we must be able to qui
kly test, or avoid testing,ea
h of these 
onditions.Most of the target embedding 
onditions are easy to deal with. Genus no greaterthan one, for instan
e, is guaranteed be
ause the 
hild has genus one and none ofour reverse moves 
an in
rease the genus. Minimum degree of verti
es is easy toassure. We simply forbid making any reverse move that would redu
e the degree ofa vertex to less than three. Che
king for bi
onne
tedness requires a simple, linear-time traversal of the graph. But it may be mu
h more expensive to 
he
k that apossible parent is not planar.Some planarity testing algorithms are simple to implement but do not a
hievelinear time 
omplexity, like the one known as Demou
ron's Algorithm [15℄; oth-ers are linear-time but require 
ompli
ated stru
tures like PQ-trees [10, 14℄. Thelinear-time planarity algorithm of Boyer and Myrvold [11℄ is designed for easy im-plementation, but is still 
ompli
ated enough to present some problems. So if wemake an embeddability test, or possibly several of them, for every potential 
hildwe visit, then we 
ould spend most of our programming labour or 
omputation timedoing that alone.First of all, we 
an arrange the tests we apply to potential parents in orderof in
reasing 
ost, so that if we 
an reje
t a potential parent for a reason we 
andetermine 
heaply, we will do so and avoid doing the more expensive tests. But itstill seems undesirable to do planarity testing if we 
an possibly avoid it, espe
ially



71as the graphs be
ome larger. On a very large toroidal graph, for instan
e, it seemsunlikely that removing any one edge would ever render it planar.We redu
e the number of planarity tests by using edge marks. If an edge e inan embedding E is 
ontained in every subembedding of E homeomorphi
 to K5 orK3;3, then e is marked. The 
onverse is usually, but not always, true: edges thatare not 
ontained in every Kuratowski subgraph may or may not be marked. Notethat this 
on
ept di�ers from the red 
olouring used in proving the existen
e ofparents, be
ause there we 
hose a spe
i�
 subgraph homeomorphi
 to K5 or K3;3and 
oloured all of it. Edge marks, however, only need to be applied to edges thatare in all subgraphs homeomorphi
 to K5 or K3;3. All target embeddings 
ontainedges that would be 
oloured red, but some target embeddings have no edges thatneed to be marked.Removing an edge with a reverse C0;1 move 
an only make the graph planar ifin so doing we destroy every nonplanar subgraph in the embedding. So any timewe would remove an edge to obtain the parent and that edge is not marked, we getthe planarity test result (\not planar") for free. In that 
ase the edge 
an remainunmarked.If we attempt to remove a marked edge, we must still do the planarity test.But if we do the test and it returns \not planar", then we know that the edge didnot really need to be marked; obviously there exists some nonplanar subgraph notdestroyed by the removal of the edge. So in that 
ase, we 
an unmark the edge.Sin
e we are examining all possible 
hildren for ea
h embedding, marked edges tendto be tested, and unmarked if appropriate, sooner rather than later. So in pra
ti
e,the set of marked edges is usually 
lose to minimal. The following theorem showsthat we 
an easily maintain a set of marked edges.Theorem 5.3.1 If the edges of a parent P are marked su
h that an edge is markedif it is in every subgraph of P homeomorphi
 to K5 or K3;3, then we 
an obtain amarking for the 
hild C also satisfying that 
ondition by following these rules:



72� Edges marked in P are marked in C.� New edges introdu
ed by C0;1 moves are not marked.� New edges introdu
ed by D2;4 moves are not marked.� New edges introdu
ed by T1;1 moves are marked.Furthermore, if we ever do a planarity test on a graph G � e 
onsisting of agraph G minus an edge e, and G� e is found to be nonplanar, then we 
an unmarke in G.Proof. When we obtain C from P by a C0;1 move, obviously every subgraph of Pis a subgraph of C also. So any edge that is in every subgraph of C homeomorphi
to K5 or K3;3 must also be in every subgraph of P homeomorphi
 to K5 or K3;3.The set of edges that must be marked in C is a subset of the set of edges that mustbe marked in P , so if we make the marked edges of C equal to the marked edge ofP , we obtain a legal marking.When we obtain C from P by a D2;4 move, we do not mark any of the newedges. Call the endpoints of the edge being removed u and v. If the edge (u; v)was unmarked in P then obviously there is some subgraph homeomorphi
 to K5or K3;3 in P that did not in
lude that edge, and that subgraph is retained in C.Even if the edge being removed was marked, removal of any one of the new edgesmaintains a path between u and v, and so does not make C planar by destroyingall subgraphs homeomorphi
 to K5 or K3;3.We mark all edges added by T1;1 moves in order to err on the side of 
aution,be
ause it is possible that an edge added by su
h a move 
ould be in every subgraphhomeomorphi
 to K5 or K3;3, even when no other edges need to be marked. Forinstan
e, supposed we take an embedding of K3;3, subdivide all nine edges as withS1;1 moves, and then perform a D2;4 move on every edge of the result; so we havean embedding of K3;3 with every edge repla
ed by two diamonds in a row.



73Any one edge from the resulting embedding 
ould be removed without renderingthe graph planar. Suppose we split the degree four vertex joining two diamonds inthis 
onstru
tion. We 
ould either preserve both diamonds or destroy them both,depending on how we make the split. If we preserve the diamonds, the new edge ison every subgraph homeomorphi
 to K5 or K3;3 and so needs to be marked. Ratherthan attempting to make some elaborate test for whi
h new edges from T1;1 movesneed to be marked, we simply mark them all. Any edges marked unne
essarily bythat rule will soon be unmarked as a result of a planarity test anyway.Finally, we 
an remove the mark from an edge e if removal of e leaves the graphnonplanar, be
ause that is the de�nition of marking. Edges must be marked if theirremoval makes the graph planar, and may or may not be marked if their removaldoes not make the graph planar. �



74
Chapter 6
Experimental results
Our algorithm is designed for pra
ti
al implementation. This 
hapter begins withSe
tion 6.1, whi
h des
ribes our implementation of an embedding generator basedon this work. In Se
tion 6.2 we des
ribe some results obtained by running ourgenerator, and give tables of the embeddings and graphs found. We also 
ommentbrie
y on the number of embeddings per graph.6.1 Implementation of the algorithmWe implemented several versions of an embedding generator during the proje
t,as the theoreti
al work developed. The �nal version, used to 
al
ulate the resultsgiven here, 
ontains approximately 5,100 lines of C language sour
e 
ode, plussome additional utilities written in C and Perl, the GNU getopt library fun
tion[21℄, and a make�le to manage the 
ompilation pro
ess. This version is basedon Theorem 4.2.1 and the algorithm of Se
tion 2.5, to generate lists of diamond-free target embeddings by examining all target embeddings 
ontaining at most onediamond.Development was 
ondu
ted on the author's dual 433MHz Intel Celeron-basedpersonal 
omputer, under the GNU/Linux operating system. The 
omputational



75experiments were 
ondu
ted there and on various 
omputers running Solaris atthe University of Vi
toria and Ro
hester Institute of Te
hnology. All the CPUtimes listed here are for the Celeron unless otherwise spe
i�ed, and are measuredin user-spa
e CPU time to redu
e the e�e
t of other pro
esses running on the same
omputers.The embedding generator in
ludes some additional features, like the edge-mark-ing te
hnique of Se
tion 5.3 to redu
e the number of planarity tests performed, andthe te
hnique des
ribed by M
Kay [28, Se
tion 8℄ for splitting the 
omputation intoparallel sli
es. We in
lude an implementation of the planarity algorithm of Demou-
ron, Malgrange, and Pertuiset [15℄. Although this algorithm does not o�er thelinear asymptoti
 time 
omplexity of some other planarity algorithms, it performswell with the relatively small graphs our 
ode pro
esses.The data stru
ture we use for embeddings is a simpli�ed version of that des
ribedby Boyer and Myrvold for their planarity algorithm [11, Se
tion 4℄. Ea
h vertexhas a 
ir
ular doubly-linked list of re
ords representing the neighbours around thatvertex in 
lo
kwise order; the two re
ords representing the endpoints of ea
h edgeare joined by pointers 
alled twin links. We do not use the spe
ial feature of treatingthe two linked-list pointers equivalently, be
ause we do not need to be able to reversethe order of a list in 
onstant time.As well as the linked-list representation of the embedding, we also maintain anadja
en
y matrix as a pa
ked bit array. Adja
en
y matri
es inherently require O(n)or O(n2) time for some operations that 
ould be done faster on other stru
tures.But our implementation, although it 
an handle almost any number of verti
es intheory with the appropriate 
ompiled-in options, is limited to embeddings of up toabout eleven or twelve verti
es in pra
ti
e simply by output size and 
omputationtime. Pa
ked bit arrays of this size 
an be implemented so eÆ
iently on 
urrent bit-parallel 
omputers that the adja
en
y matri
es are extremely fast and 
onvenient,despite their asymptoti
 disadvantages.One spe
ial feature of the present software allows running the generation pro-



76
ess in reverse: with an embedding provided as input, it prints out the parent ofthe input embedding, the parent of that embedding, and so on, until a seed em-bedding is rea
hed or a 
onsisten
y 
he
k fails. That pro
edure proved invaluablewhen debugging the parent-sele
tion 
ode, sin
e a 
ommon failure mode was forthe software to sele
t as a parent an embedding (or an in
onsistent data stru
-ture vaguely resembling an embedding) that would not ever be generated by thegeneration algorithm.6.2 Diamond-free targets up to n = 10We ran the embedding generator to make a list of all diamond-free target embed-dings on up to nine verti
es, and stored the results as 
ompressed text �les with oneline, 
ontaining the 
anoni
al form, for ea
h embedding. The resulting �les storeapproximately 17 million embeddings of 75 thousand graphs in approximately 120megabytes of disk spa
e. This run was split into three equal sli
es and 
onsumedapproximately 9.4 hours of CPU time.Sin
e a similar set of �les for the ten-vertex 
ase would be too large to store 
on-veniently, we split the 
omputation into 100 sli
es and had the program output onlythe graph for ea
h diamond-free target embedding. We then 
ounted the numberof embeddings for ea
h isomorphism 
lass of graphs. Generating these embeddingsrequired approximately 13 days of CPU time. The resulting �les, 
ontaining graphsin nauty 
anoni
al form [27℄ and a 
ount of embeddings for ea
h graph, 
onsumeapproximately 19 megabytes 
ompressed. There were approximately 3.9 milliongraphs with 462 million embeddings in this run. Storing the embeddings would beprohibitive: extrapolating the spa
e 
onsumption of the nine-vertex graphs givesan estimate of at least 3,200 megabytes to store all the ten-vertex embeddings ofdiamond-free target graphs, even in 
ompressed form.To provide a referen
e for debugging purposes, we also obtained an independentlist of diamond-free target graphs with up to nine verti
es, by using the geng



77software by M
Kay [28℄ to generate all graphs on up to nine verti
es with all verti
eshaving minimum degree three and few enough edges to be toroidal. We passed thosegraphs through a simple �lter to remove the ones 
ontaining diamonds, and usedthe torus embedding software of Neufeld and Myrvold [34℄ to �nd the graphs withgenus one.Generating the independent list of diamond-free target graphs required approx-imately four months of CPU time (
ompare to 9.4 hours to generate the same listwith our generator program), but the result proved to be invaluable for debuggingour generator. Most programming mistakes in our own software manifested eitheras dupli
ate embeddings in the output, or as target graphs that failed to appearin the output, so we tested our pa
kage by 
he
king for dupli
ates, then usingnauty [27℄ to �nd a list of graphs in our output up to isomorphism, and 
he
kingthat list against the referen
e list.The list from our 
urrent generator agrees with the referen
e list, and that addsto our 
on�den
e not only that our software is 
orre
t but that the pa
kages usedto make the referen
e list are also 
orre
t. Sin
e our generator uses a 
ompletelydi�erent algorithm from the algorithms used by geng and the torus embedder,it seems highly unlikely that both lists would a

identally omit exa
tly the samegraphs.Our 
ounts of diamond-free target embeddings and graphs with up to ten verti
esare shown in Tables 6.1 and 6.2 respe
tively. We also found the maximum numberof torus embeddings for any one diamond-free target graph with a �xed number ofverti
es n and edges m; these numbers are shown in Table 6.3.In Table 6.4 we show the mean 
ount of torus embeddings per graph for ea
hvalue of n, obtained by dividing the number of embeddings by the number of graphs.Note that the number of embeddings per graph in
reases with more verti
es up toeight, but then de
reases a little for nine-vertex graphs and de
reases 
onsiderablymore for ten-vertex graphs. However, the maximum number of embeddings fora single target graph at ea
h value of n, shown in the bottom line of Table 6.3,



78
n = 5 6 7 8 9 10m = 9 210 6 711 45 1412 110 218 913 113 1,287 36414 24 3,702 4,822 24115 4 4,990 28,851 8,106 7416 3,184 88,564 96,129 7,01217 911 150,724 556,190 170,44318 168 144,888 1,814,463 1,771,17119 21 79,845 3,574,097 9,951,88120 2 26,194 4,408,741 33,834,40021 1 5,613 3,475,526 74,055,93922 790 1,784,251 108,160,01923 69 611,193 107,805,32124 7 142,144 74,469,98225 21,760 36,069,91026 2,000 12,326,12627 112 2,938,90528 467,43429 44,73930 2,109total 6 305 14,498 530,740 16,494,953 462,075,465Table 6.1: Counts of diamond-free target embeddings on the torus.



79
n = 5 6 7 8 9 10m = 9 110 1 111 2 112 2 6 213 2 14 1314 1 23 59 1115 1 23 180 132 916 17 339 784 17117 9 441 2,757 2,00318 5 415 6,473 12,72619 2 307 10,757 51,06020 1 187 13,548 142,35821 1 103 13,565 295,86322 51 11,271 482,27723 22 7,920 640,51824 7 4,639 706,70725 2,113 643,66426 628 466,21327 101 250,36928 90,64929 19,19030 1,866total 1 10 102 2,126 74,699 3,805,643Table 6.2: Counts of diamond-free target graphs on the torus.



80
n = 5 6 7 8 9 10m = 9 210 6 711 25 1412 88 68 513 66 239 4514 24 372 199 4415 4 866 570 158 2016 491 1,084 498 10017 281 2,232 1,056 30818 64 1,818 2,216 1,01019 11 2,112 3,384 2,11020 2 828 4,196 3,86021 1 375 5,164 5,80822 66 2,918 9,14423 8 1,380 9,74824 1 499 7,47625 162 3,82826 24 1,52127 2 71828 16629 4830 6all m 6 88 866 2,232 5,164 9,748Table 6.3: Maximum numbers of torus embeddings for diamond-free target graphs.



81n = 5 6 7 8 9 106.00 30.50 142.14 249.64 220.82 121.42Table 6.4: Mean number of torus embeddings per diamond-free target graph.
ontinues to in
rease with additional verti
es, at least for the numbers of verti
eswe examined. An embedding of the single diamond-free target graph we examinedwith most torus embeddings, 9,748 of them, is shown in Figure 6.1.



82

19

76

0

4

5

8

2 3

Figure 6.1: One of the 9,748 torus embeddings of the unique ten-vertex diamond-free target graph with maximum number of torus embeddings.



83
Chapter 7
Appli
ations and future work
Although the lists of diamond-free target embeddings generated by our software anddes
ribed in the previous 
hapter may have some interest in themselves, the algo-rithm is intended to be useful in some spe
i�
 appli
ations. This 
hapter des
ribessome of those appli
ations. We begin by des
ribing a fast lookup-based toroidalitytest in Se
tion 7.1. In Se
tion 7.2 we apply that test to the sear
h for topologi
alobstru
tions to embeddability on the torus. Future work with this algorithm 
ouldfo
us on sear
hes for additional obstru
tions. Another possible dire
tion for futurework would be the appli
ation of these te
hniques to other surfa
es, des
ribed inSe
tion 7.3. We end the 
hapter with a summary of our 
on
lusions, in Se
tion 7.4.7.1 A lookup-based toroidality testerWe 
an use the output of the embedding generator to build a database of diamond-free target graphs, and then use that database as the basis for a fast toroidalitytest. Given a graph G with n verti
es and the database of diamond-free targetgraphs with up to n verti
es, we 
an eliminate any verti
es of degree less than threefrom G, �nd its bi
onne
ted 
omponents, and 
he
k them for planarity. If morethan one bi
onne
ted 
omponent is nonplanar then G must have genus greater than



84one; if all are planar then G is planar; otherwise, we look up the one nonplanarbi
onne
ted 
omponent in the database. The following pseudo
ode des
ribes thealgorithm:FastGenus(G) :genus  0while G is not emptyH  some bi
onne
ted 
omponent of Gif H is nonplanarrepla
e diamonds with edges by reverse D2;4 moves, and eliminateverti
es of degree less than three with reverse S1;1 movesif H is in the list of diamond-free target graphsgenus  genus + 1else return \greater than one"end ifif genus > 1return \greater than one"end ifend ifG G�Hend whilereturn genusOur implementation of FastGenus 
onsists of a �lter that writes out, for ea
hinput graph G, either K4 if G is planar; a 
onstant genus two graph if G has genusat least two; or a graph isomorphi
 to the nonplanar bi
onne
ted 
omponent of Gex
ept for diamonds and verti
es of degree less than three, if G has exa
tly onenonplanar bi
onne
ted 
omponent. So the output of the �lter is a graph that fallsinto the same 
ategory (genus zero, genus one, or genus at least two) as the input;



85if the genus is zero then the output is K4, and if the genus is one then the outputis some labelling, possibly not 
anoni
al, of a diamond-free target graph.We pass the output of our �lter through the nauty [27℄ 
anoni
al labellingutility; then we look up the result in a table to �nd the 
ategory for the graph.To handle input graphs up to ten verti
es, the table has about 3.9 million entriesand 
onsumes about 39 megabytes of disk spa
e (ten bytes per entry). The table
ontains K4, and the diamond-free target graphs from the generator program; ifthe output of the �lter is not in the table, then we know the input graph G musthave had genus at least two. Running the test on large bat
hes of graphs, using our�lter, nauty, and the sorting and lookup utilities provided by the operating system,we 
an 
ategorize about ten thousand graphs per CPU se
ond.7.2 Sear
hing for torus obstru
tionsThe generalized Kuratowski theorem states that for any surfa
e S, there is a �nitelist of graphs 
alled topologi
al obstru
tions su
h that a graph G is embeddable onthe surfa
e if and only if it does not 
ontain a subgraph homeomorphi
 to a graphon the list. The theorem 
an also be stated in terms of minors: G is embeddableif and only if it does not 
ontain as a minor one of the graphs on a �nite listof minor-order obstru
tions. The result was proved for non-orientable surfa
es byAr
hdea
on and Huneke [4℄ and for orientable surfa
es by Bodendiek and Wagner[9℄. Robertson and Seymour proved a stronger 
onje
ture that in
ludes the generalKuratowski theorem [37℄. These 
itations are from a survey by Ar
hdea
on [3℄.For the plane, the sets of topologi
al and minor order obstru
tions are bothequal to fK5; K3;3g. For the proje
tive plane, there are 103 topologi
al obstru
tions
orresponding to 35 forbidden minors [1, 2, 20℄. The torus embedding 
ode ofNeufeld and Myrvold [34, 33℄ led to a 
omplete list of torus obstru
tions with upto ten verti
es, and a partial list of larger obstru
tions.A few obstru
tions for various surfa
es 
an also be generated by simple rules;



86for instan
e, suppose we take k + 1 
opies of K5, 
hoose one vertex from ea
h, andidentify all the 
hosen verti
es. The result, 
ontaining 4k + 5 verti
es, must be atopologi
al and minor-order obstru
tion for the k-handled torus be
ause it 
ontainsk + 1 bi
onne
ted 
omponents ea
h with genus one, and removing or 
ontra
tingany edge redu
es the genus of that 3-
onne
ted 
omponent to zero, redu
ing thegenus of the entire graph by a theorem of Battle, Harary, Kodama, and Youngs[8℄. We know of no known embeddability obstru
tions apart from these kinds of
onstru
tions and the results mentioned above for the plane, proje
tive plane, andtorus.A topologi
al obstru
tion G for the torus has the property that G is not toroidalbut removing any one edge from G gives a toroidal graph. This property leadsnaturally to a te
hnique for �nding obstru
tions: if we take a list of all toroidalgraphs, add one edge to ea
h of them in all possible ways, and remove any toroidalgraphs from the resulting list, all topologi
al obstru
tions for the torus will bein
luded in the resulting list. All topologi
al obstru
tions are diamond-free asa 
onsequen
e of Theorem 3.1.1, and if we 
on�ne our attention to bi
onne
tedobstru
tions, we 
an �nd them all on the list derived from our software's list ofdiamond-free target graphs.We took the list of about 3.9 million diamond-free target graphs generated by oursoftware for up to ten verti
es, subdivided between zero and two edges in all possibleways to get graphs with no more than ten verti
es, and eliminated dupli
ate graphs.Then we added an edge to ea
h graph in all possible ways, eliminated dupli
ates,and removed all graphs that were on the list of diamond-free target graphs. Thatprodu
ed a list of 1,028,118 graphs, in
luding all topologi
al obstru
tions for thetorus with up to ten verti
es. The step of subdividing edges was ne
essary in orderto be able to 
reate obstru
tions where every edge is in
ident to a degree threevertex; su
h a graph 
learly 
annot be 
reated by adding just an edge to a graphwith no verti
es of degree less than three. The only bi
onne
ted obstru
tion wefound with every edge in
ident to a degree three vertex is the graph K7;3, shown in



87
Figure 7.1: The graph K7;3, a topologi
al obstru
tion to torus embeddability.Figure 7.1.For every graph G on this list of 
andidate obstru
tions, we removed one edgein all possible ways and made another list of all those graphs G � e. We appliedthe fast lookup-based torus test des
ribed in the previous se
tion to the list ofG� e graphs, and generated a list of all graphs G that were not toroidal but whereremoving an edge e would always make G � e toroidal; in other words, a list oftopologi
al obstru
tions. A summary of that list is shown in Table 7.1. The CPUtime 
onsumption for this obstru
tion sear
h was diÆ
ult to measure be
ause thepro
essing was divided between several di�erent pie
es of sorting, merging, andlookup software. We estimate the 
onsumption at six hours, about a third spentrunning the system sort utility, and ex
luding the 13 days required to 
ompile thedatabase as dis
ussed in Se
tion 6.2.We 
he
ked the 707 obstru
tions on our list with nauty to make sure they weredistin
t, and with the simpli�
ation utility from our lookup-based torus test to makesure they were bi
onne
ted. We also veri�ed that ea
h of our believed topologi
alobstru
tions really was a topologi
al obstru
tion, using the torus tester of Neufeldand Myrvold [34, 33℄. Our 
ounts of obstru
tions agree with theirs ex
ept in the
ase of ten verti
es and 26 edges, where we 
ount one more obstru
tion. Afterobtaining their list of 656 ten-vertex topologi
al obstru
tions [31℄, we found thatthe one missing obstru
tion was the one shown in Figure 7.2. We were unable todetermine why their sear
h missed this obstru
tion.



88n = 8 9 10m = 19 0 2 1420 0 4 821 0 2 3422 1 9 4023 0 17 19024 1 6 17025 1 2 10226 0 5 7627 0 0 2128 0 0 129 0 0 030 0 0 1total 3 47 657Table 7.1: Bi
onne
ted topologi
al obstru
tions for the torus with up to ten verti
es.
9

8

7

61

3

5

4

2

0

Figure 7.2: The obstru
tion not found by Neufeld and Myrvold [34, 33℄.



897.3 Other surfa
esMu
h of this work 
ould also be applied to other surfa
es besides the torus. Indeed,mu
h of the programming in our proje
t was originally done with an extensionto arbitrary surfa
es in mind. Generating embeddings of proje
tive planar graphsembedded on the proje
tive plane would require us to extend the 
on
ept of a 
om-binatorial embedding to express embeddings on nonorientable surfa
es, but that isnot diÆ
ult. A te
hnique involving positive and negative signs pla
ed on the edgesof the embedding is used in the proje
tive planarity algorithms of Mohar [29℄ andMyrvold and Roth [32℄. While developing the toroidal graph generator, we imple-mented but did not test or use some subroutines to handle embeddings extendedthis way.For the proje
tive plane, the edge signs are the only enhan
ement obviouslyne
essary. The proofs of Chapters 3 and 4 should be easy to extend to the proje
tiveplane. For surfa
es of higher genus, both orientable and non-orientable, the problemmay be somewhat more 
ompli
ated.First, there is the question of what embeddings to use as seeds. The same set ofeight seeds we used for the torus would seem to be a good 
hoi
e for the proje
tiveplane also, but it is not 
lear what seeds to use, for example, for the two-handledtorus. Should we use the set of topologi
al obstru
tions for the torus? If we did,it would raise a problem, be
ause some torus obstru
tions are not 
onne
ted, letalone bi
onne
ted; we would have to either revise our de�nition of target graphs toallow the use of those as seeds, or somehow prove them unne
essary.The se
ond problem involves verifying the genus of target graphs. Our algorithmfor the torus requires that we test, when examining possible parents, that ea
h graphreally is genus one; the 
onstru
tion provides that the genus is no more than one,and we use a planarity test to verify that the genus is no less than one. We 
oulduse the planarity test when generating graphs on the proje
tive plane also. Butwhen generating graphs on a surfa
e of higher genus we would need a higher-genus



90testing algorithm; for instan
e, a torus tester to generate graphs on the two-handledtorus.The torus tester of Neufeld and Myrvold [34℄ seems too slow to be useful in this
ontext, where millions of graphs must be pro
essed; but perhaps it 
ould be spedup by some kind of memoization te
hnique, be
ause the same graphs will be testedmany times. The lookup-based toroidality tester we 
onstru
ted in Se
tion 7.1 
ouldalso be useful. Note that the implemented proje
tive planarity tester of Myrvoldand Roth [32℄, and the known list of obstru
tions for the proje
tive plane [1, 2, 20℄,suggest a relatively easy appli
ation to the Klein bottle.We 
ould 
onsider generating embeddings on the plane. Indeed, some earlyversions of our software (before we 
ompleted the theoreti
al work) were designedto also generate planar embeddings. On the plane, of 
ourse, there is no 
on
ernabout testing genus; we 
an start with planar embeddings as seeds and then the
onstru
tion moves 
an keep them planar. However, something would have to bedone about the wheels, whi
h are an in�nite set of bi
onne
ted planar graphs withno degree three verti
es, ea
h of whi
h is not amenable to any reverse C0;1, D2;4, orT1;1 move to leave a bi
onne
ted planar graph with no degree three verti
es.Also, some spe
ial a

ommodation might possibly have to be made forK4, whi
his a graph with the unique feature that every one of its edges is a diamond edge.The proof of Theorem 3.1.8, for instan
e, depends on the fa
t that a target graph
annot be a wheel. The only move that 
an be made on an embedding of K4 is aD2;4 move that destroys �ve diamonds and 
reates one, whi
h 
ould 
ause problemsfor the line of reasoning developed in Se
tion 4.2.7.4 Con
lusionsWe have des
ribed an algorithm to generate one representative from every isomor-phism 
lass of diamond-free target embeddings up to a 
hosen number of verti
esor edges, and proved that algorithm 
orre
t. We have des
ribed some additional



91issues relating to implementation, and our own C language implementation of thealgorithm. Some experimental results from our implementation have been pre-sented, in
luding the determination of all bi
onne
ted topologi
al obstru
tions totorus embeddability 
ontaining ten or fewer verti
es. Finally, we have proposedsome additional appli
ations for the algorithm.



92
Bibliography[1℄ D. Ar
hdea
on. A Kuratowski theorem for the proje
tive plane. Thesis, OhioState University, 1980.[2℄ D. Ar
hdea
on. A Kuratowski theorem for the proje
tive plane. Journal ofGraph Theory, 5:243{246, 1981.[3℄ D. Ar
hdea
on. Topologi
al graph theory: A survey. Congressus Numeratum,115:5{54, 1996.[4℄ D. Ar
hdea
on and J. P. Huneke. A Kuratowski theorem for nonorientablesurfa
es. Journal of Combinatorial Theory, Series B, 46:173{231, 1989.[5℄ A. Argyle. Toroidal embeddings of K3;3 and K5. CSC 499 Te
hni
al Proje
t,University of Vi
toria, 1999.[6℄ D. Barnette. Generating the triangulations of the proje
tive plane. Journal ofCombinatorial Theory, Series B, 33:222{230, 1982.[7℄ D. Barnette. Generating the 4-
onne
ted and strongly 
onne
ted triangulationson the torus and proje
tive plane. Dis
rete Mathemati
s, 85:1{16, 1990.[8℄ J. Battle, F. Harary, Y. Kodama, and J. Youngs. Additivity of the genus of agraph. Bulletins of the Ameri
an Mathemati
al So
iety, 68:565{568, 1962.[9℄ R. Bodendiek and K. Wagner. Solution to K�onig's graph embedding problem.Math. Na
hr., 140:251{272, 1989.[10℄ K. S. Booth and G. S. Lueker. Testing for the 
onse
utive ones property,interval graphs, and graph planarity using PQ-tree algorithms. Journal ofComputer and System S
ien
es, 13:335{379, 1976.[11℄ J. Boyer and W. Myrvold. Stop minding your P's and Q's: A simpli�edO(n) planar embedding algorithm. In Pro
eedings of the Tenth Annual ACM-SIAM Symposium on Dis
rete Algorithms (Baltimore, Maryland, January 17{19, 1999), pages 140{146, 1999.



93[12℄ G. Brinkmann and B. M
Kay. Fast generation of some 
lasses of planar graphs.preprint.[13℄ J. Cai. Counting embeddings of planar graphs using DFS trees. SIAM Journalon Dis
rete Mathemati
s, 6(3):335{352, 1993.[14℄ N. Chiba, T. Nishizeki, A. Abe, and T. Ozawa. A linear algorithm for embed-ding planar graphs using PQ-trees. Journal of Computer and System S
ien
es,30:54{76, 1985.[15℄ G. Demou
ron, Y. Malgrange, and R. Pertuiset. Graphes planaires. RevueFran�
aise Re
her
he Op�erationnelle, 8:33{47, 1964.[16℄ J. R. Fiedler, J. P. Huneke, R. B. Ri
hter, and N. Robertson. Computing theorientable genus of proje
tive graphs. Journal of Graph Theory, 20(3):297{308,1995.[17℄ I. S. Filotti. An algorithm for embedding 
ubi
 graphs in the torus. Journalof Computer and System S
ien
es, 2:255{276, 1980.[18℄ M. Fontet. A linear algorithm for testing isomorphism of planar graphs. InS. Mi
haelson and R. Milner, editors, Third International Colloquium on Au-tomata, Languages and Programming, pages 411{424, University of Edinburgh,July 20{23 1976. Edinburgh University Press.[19℄ O. Frink and P. Smith. Abstra
t 179. Bulletins of the Ameri
an Mathemati
alSo
iety, 36:214, 1930.[20℄ H. Glover, J. Huneke, and C. Wang. 103 graphs that are irredu
ible for theproje
tive plane. Journal of Combinatorial Theory, Series B, 27:332{370, 1979.[21℄ GNU Proje
t. GNU getopt. Free Software Foundation, In
., 675 Mass Ave,Cambridge, MA 02139, USA, 1995. Computer software, from the Fet
hmail4.1.1 distribution by Eri
 S. Raymond.[22℄ M. Henle. A 
ombinatorial introdu
tion to topology. Dover Publi
ations, In
.,New York, 1994.[23℄ J. Hop
raft and J. Wong. Linear time algorithm for isomorphism of planargraphs. In 6th ACM SIGACT. Asso
iation for Computing Ma
hinery, NewYork, 1974.[24℄ M. Juvan, J. Marin�
ek, and B. Mohar. Embedding graphs in the torus in lineartime. In Integer Programming and Combinatorial Optimization, volume 920 ofLe
ture Notes in Computer S
ien
e, pages 360{363. Springer, Berlin, 1995.



94[25℄ L. C. Kinsey. Topology of Surfa
es. Undergraduate Texts in Mathemati
s.Springer-Verlag, New York, 1993.[26℄ K. Kuratowski. Sur le probl�eme des 
ourbes gau
hes en topologie. FundamentaMathemati
ae, 15:271{283, 1930.[27℄ B. D. M
Kay. nauty user's guide (version 1.5). Te
hni
al Report TR-CS-90-02,Department of Computer S
ien
e, Australian National University, 1990.[28℄ B. D. M
Kay. Isomorph-free exhaustive generation. Journal of Algorithms,26(2):306{324, Feb. 1998.[29℄ B. Mohar. Proje
tive planarity in linear time. Journal of Algorithms, 15:482{502, 1993.[30℄ B. Mohar. A linear time algorithm for embedding graphs in an arbitrarysurfa
e. SIAM Journal of Dis
rete Mathemati
s, 12(1):6{26, 1999.[31℄ W. Myrvold. Personal 
ommuni
ation.[32℄ W. Myrvold and J. Roth. Simpler proje
tive plane embedding. Submitted toDis
rete Mathemati
s, June 2000.[33℄ E. Neufeld. Pra
ti
al toroidality testing. Master's thesis, Department of Com-puter S
ien
e, University of Vi
toria, 1993.[34℄ E. Neufeld and W. Myrvold. Pra
ti
al toroidality testing. In Pro
eedings of theEighth Annual ACM-SIAM Symposium on Dis
rete Algorithms (New Orleans,Louisiana, January 5{7, 1997), pages 574{580, 1997.[35℄ B. Peruni�
i�
 and Z. Duri�
. An eÆ
ient algorithm for embedding graphs inthe proje
tive plane. In Pro
eedings of the Fifth Quadrennial InternationalConferen
e on the Theory and Appli
ations of Graphs with spe
ial emphasis onAlgorithms and Computer S
ien
e Appli
ations (Kalamazoo, Mi
higan, June4{8, 1984), pages 637{650, 1985.[36℄ R. Read and D. Corneil. The graph isomorphism disease. Journal of GraphTheory, 1:339{363, 1977.[37℄ N. Robertson and P. Seymour. Graph minors VIII: A Kuratowski theoremfor general surfa
es. Journal of Combinatorial Theory, Series B, 48:255{288,1990.



VITASurname: Skala Given Names: Matthew AdamPla
e of Birth: Vi
toria, British Columbia, CanadaEdu
ational Institutions Attended:University of Vi
toria 1995 to 2001Camosun College 1994 to 1995Degrees Awarded:B.S
. University of Vi
toria 1999Honours and Awards:NSERC Postgraduate S
holarship (PGS A) 2000 to 2001University of Vi
toria Fellowship 1999 to 2000President's Resear
h S
holarship 2000BC ASI Graduate S
holarship 1999Publi
ations and Presentations:Skala, M., and Myrvold, W. (2001) Fast Generation of Graphs Embedded on theTorus. Presented at 32nd Southeastern International Conferen
e on Combinatori
s,Graph Theory, and Computing, Baton Rouge, Louisiana, February 26{Mar
h 2,2001.Goodenough, D.G., Charlebois, D., Bhogal, A.S., Dyk, A., and Skala, M. (1999)SEIDAM: A Flexible and Interoperable Metadata-Driven System for Intelligent For-est Monitoring. Pro
eedings of the International Geos
ien
e and Remote SensingSymposium 1999 (IGARSS'99), Hamburg, Germany, pp. 1338{1341.Skala, M. (1998) A Limited-Di�usion Algorithm for Blind Substring Sear
h. Pro-
eedings of the 10th Annual Canadian Information Te
hnology Se
urity Sympo-sium, 1{8 June 1998, Ottawa, Ontario, pp. 397{410.



UNIVERSITY OF VICTORIA PARTIAL COPYRIGHT LICENSE
I hereby grant the right to lend my thesis to users of the University of Vi
toriaLibrary, and to make single 
opies only for su
h users or in response to a requestfrom the Library of any other university, or similar institution, on its behalf orfor one of its users. I further agree that permission for extensive 
opying of thisthesis for s
holarly purposes may be granted by me or a member of the Universitydesignated by me. It is understood that 
opying or publi
ation of this thesis for�nan
ial gain by the University of Vi
toria shall not be allowed without my writtenpermission.Title of Thesis:Generation of Graphs Embedded on the TorusAuthor Matthew Adam SkalaAugust 27, 2001


