
Cycle counting: the next generation...

α

..

β

..

γ

..

δ

..

ε

..

ζ

..

η

..

θ

..

ι

..

κ

..

λ

..

µ

..

o

..

ρ

..

σ

.

Matthew Skala
30 January 2013



Outline

󱜳 Cycle counting

󱜳 ECCHI

󱜳 Knight’s Tours

󱜳 Equivalent circuits

󱜳 The next generation



Cycle counting

Let G be a labelled graph. How many distinct H exist such that H
is a cycle and is a subgraph of G? (Decision version: accept iff the
answer is at least k.)

.....

This is a #P-complete problem, equivalent in hardness to counting
the certificates of an NP-complete problem, even though “is there a
cycle?” is not itself NP-complete. We could ask much the same
question about Hamiltonian cycles.



Applications for cycle counting

󱜳 Reliability.

󱜳 Extremal graphs.

󱜳 Prototypical #P-complete graph problem.

󱜳 Combinatorics for its own sake.



Backtracking

Do a DFS, backtrack when you detect a cycle, do a little bit of extra
handling to deal with the cycle starting point. Run it to the end, you
will see every cycle.

This is pretty much optimal if you want to list (not just count) the
cycles.

The difficulty: you are doing at least a constant amount of work for
every cycle you count.



How many cycles are there?

Lots.

For a family of dense graphs with n vertices, often something like n!
cycles. “Something like n!” means “Ω(n!c−n) for some constant c.”
Exponentials are small compared to factorials!

You can’t afford to do anything once per cycle.



A simple induction

Choose an edge e = (u, v). Every cycle must either pass through that
edge or not.

..u . v.
e

c(G) = p(u, v,G \ e) + c(G \ e)

For the “path” subproblem a similar induction applies. But this is just
backtracking in disguise.



A different inductive step

Suppose we are looking for a path from u to v and there is a
cut-vertex w between them. Then a path from u to v is any path
from u to w followed by any path from w to v, and we can multiply.

..u .w. v.H1

. H2

p(u, v,G) = p(u,w,H1) · p(w, v,H2)



Yet another inductive step

With a 2-vertex cut between u and v, the cases are more
complicated, but we can still break it up into adding, multiplying, and
subtracting smaller cases.

..u .

w1

.

w2

. v.H1

. H2



ECCHI (the Enhanced Cycle Counter and
Hamiltonian Integrator)

󱜳 Canonically label subproblems using nauty [McKay, 1981].

󱜳 Cache the answers to subproblems in a hash table.

󱜳 Forget cached subproblems if we run out of memory.

󱜳 Looking at a subproblem: just write the answer if it’s trivial, get
the answer from the cache if it’s to be found there, else split it
with whichever is the strongest heuristic that applies and add the
resulting subproblems to the to-do pile.

󱜳 Implemented in C with multithreading, to run on a single
multicore PC.



Application to extremal graph theory

Joint work with Durocher and Li: Among all graphs with n vertices
and girth (length of smallest cycle) g, which ones have the most
cycles?

For small n, answerable by simply testing them all. Works up to
n ≈ 15.

The cost of generating the graphs to test dominates over the cost of
counting the cycles.

What about larger graphs?



The Knight’s Tour

Classic chess puzzle: Hamiltonian cycle in a graph where vertices are
the chessboard squares, with an edge between each pair connected by
a knight’s move.

..

n

.

N

.

n

.

N



Counting Knight’s Tours [McKay, 1997]

Count, by backtracking, the partial tours that cover half the board:

.

There are 70433448 of these, associated with 7934470 patterns of
connections among the sixteen vertices of the interface. Then
somehow stitch these counts together: the total is 13267364410532.

This is an ad hoc technique making use of human intuition regarding
the structure of the problem.



How many cycles in a hypercube?

“Isn’t there a nice recurrence for it?”

k general Hamiltonian
2 1 1
3 28 6
4 14704 1344
5 51109385408 906545760
6 ? 35838213722570883870720

No larger results are known, and no nice recurrence. The current
version of ECCHI easily reproduces these up to k = 5 (in a minute
or two; I use them as test cases), but cannot reasonably be applied
to k ≥ 6.



Important side issue: correctness

At the 16 March 2012 lab meeting I had a slide very similar to the
previous one, but reporting a count of 14754666508334433250560
Hamiltonian cycles in the 6-cube due to Deza and Shklyar [arxiv.org
posting, 2010]. The new count of 35838213722570883870720 is due to
Haanpaa and Ostergard [“to appear” journal article, 2012] correcting
the errors of Deza and Shklyar.

McKay’s 1997 count of Knight’s Tours on the 8×8 board was also a
correction to a previous differing count from Löbbing and Wegener
[1996].

So: if a computer produces a number, should we believe it? If we
wrote the software ourselves, should we believe it more or less than
we might believe someone else’s published result?



More philosophy

Appel and Haken [1976] opened this can of worms with the
Four-Colour Theorem. Zeilberger lists his computer as co-author, e.g.
on a proof of the Cosmological Theorem [Conway 1987; Ekhad and
Zeilberger 1997].

Should we let Zeilberger get away with such shennanigans? Does
having the name “Ekhad” to blame if the Cosmological Theorem turns
out not to be true, solve a problem? Is there a problem to solve?

What will I do if ECCHI doesn’t agree with either of the existing
results for the 6-cube?

If we can’t verify whether a statement is true, can it be said to have
a truth value at all?

What is truth?



A better subproblem

Count the cycles that include all the black vertices. Using white
vertices is allowed but not required.

................



The new subproblem generalizes many others

Before, we had four different subproblems: count cycles or count
paths × Hamiltonian or not. These can only partly share their
implementations. Now:

󱜳 We can force an edge to be included by inserting a black
degree-2 vertex in it.

󱜳 To count paths: join the endpoints with a forced edge.

󱜳 To count Hamiltonian: make all the vertices black.

󱜳 We can also count multi-path patterns, like McKay’s half-tours.

󱜳 Many new inductive steps are possible.



The bad news

󱜳 Implementing the new subproblem makes ECCHI slower.

󱜳 The new inductive steps are additive instead of multiplicative.

󱜳 It’s rare to even be able to use the old two-vertex cut rule, let
alone any fancier inductive steps.

󱜳 Cache hits are 1% or less on Hamiltonian subproblems.

󱜳 No improvement for large graphs, and we don’t need improvement
for small graphs.





Equivalent circuits

Electronic circuits subject to certain constraints are governed by
linear differential equations, and linear functions are closed under
composition. Therefore any circuit is equivalent to some circuit of a
very simple form. (Norton’s Theorem, Thévenin’s Theorem, etc.)

.............

⇒
..

A vector of constant dimension can describe a circuit of any size.



Building up more complicated circuits

A two-port circuit multiplies the vector by a matrix.

..

a

.

B

.

⇒

.

aB



Building up more complicated circuits

A constant matrix exists that expresses what happens when you put
two circuits in parallel.

..

b

.

a

.

⇒

.

(a⊗ b)P



Counting with matrices

󱜳 Split the graph into chunks with small interfaces between them.

󱜳 Solve all patterns within a chunk to get a vector or matrix (or a
tensor, if you must) for each chunk.

󱜳 Multiply them together to get an overall answer.

󱜳 Can be applied recursively.

󱜳 Vector dimension is “something like n!” in the size of the
interface.

󱜳 This is why cycle counting and many other #P-complete graph
problems are easy for graphs of constant treewidth.

󱜳 Eigenvalues of the matrices allow proving asymptotic bounds for
large graphs.



Matrices subsume many previous approaches

󱜳 ECCHI’s heuristics look like matrix multiplication at the bottom
levels, with backtracking above.

󱜳 McKay’s Knight’s Tour count does matrix multiplication (a⊗ a)P
at the top level and backtracking to compute the vector a.

󱜳 Known results for the 6-cube (both correct and incorrect) use a
similar structure, two or more levels of matrix stuff at the top.

󱜳 As in any hard problem, expensive heuristics are most worthwhile
at the top levels. That’s why current ECCHI doesn’t work well on
large graphs.



The next generation

󱜳 More abstract, object-oriented design (C⇒C++): move to a toolkit
for building cycle counters

󱜳 Easier to change the subproblem definition (even beyond cycle
counting?)

󱜳 Easier to choose which heuristics to use, and the meta-heuristic
that controls them

󱜳 Components for caching, lookup tables, and distribution

󱜳 Extensive test suite for components and overall system

󱜳 Ultimately: machine intuition


