
Realizing Site Permutations

Stephane Durocher, Saeed Mehrabi,

Debajyoti Mondal, Matthew Skala



Site permutations
We are sitting somewhere on the Euclidean plane. We want to describe our location
in relation to some fixed, known “sites.”

One way to do it would be to use some numbers, such as distances or angles to the
sites from our current vantage point.

What if instead, we have to express our location as a permutation of the sites?



Sweep-line permutations
Okay, we’re not actually at a location; we are at infinity and looking in a direction.
When we sweep a line across the arrangement of sites, in what order does it encounter
the sites?

.........

Alternatively, and equivalently, if we project all the sites onto a ray, in what order
do they occur along the ray?



Distance permutations
Starting from our vantage point, what is the closest site? What is the next closest?
And so on…

..........

Imagine this as sending out a non-directional sonar ping and recording the order in
which the echoes come back without their exact timing.



Cyclic permutations
Sweep a ray, originating at our vantage point, counterclockwise through a circle.
Record the cyclic permutation—so 1234 is considered the same as 2341.

....

4

..

2

..

5

..

3

...

1

..

Imagine this as rotating a radar beam in a circle and writing down the order in which
we get the returns, without their exact azimuths.



The realization problem
For one of these schemes, given the locations of the sites and a permutation π, find
a point (or the set of points, or a direction) whose permutation under the selected
scheme is π.

We can do this, with appropriate variations, in linear time for all three schemes. We
assume a real RAM and general position.
Typical application: if we have a map, and a sensor that returns one of these per-
mutations, we want to find our location (or at least a location) consistent with the
sensor readings.



Related previous work
Sweep-line permutations: as we move the sweep direction through a circle, the se-
quence of sweep-line permutations thus produced is called an allowable sequence
and is the subject of much combinatorial work (Goodman and Pollack 1980, etc.). It
characterizes the order type of the arrangement of sites.

Distance permutations: introduced for distance-based indexing data structure (put
points in bins according to permutation, near points should have near permutations;
Chávez, Figueroa, and Navarro, 2005). Known number realized depending on number
of sites and dimensions, Θ(k2d) (Skala, 2009)

Radial permutations: Bieri and Schmidt (1996) find them all in Θ(n4) time, interest-
ing because size of output is Θ(n5). Tovar, Freda, and LaValle (2010) discuss them
for robot navigation.
“Clusters of stars” (Streinu, 1997): like radial permutations but we rotate a line
instead of a ray, with or without directions. Reconstructing site arrangement from
each site’s permutation of the others.



Generalized Voronoi diagrams

D

A

B

C

{A,D}

A

{A,B}
B

{B,C}

C

{C,D}

D

{B,D}



Voronoi diagram for distance permutations

A

B

C

B|D

C|D

A|BA|C

D

B|C

A|D



Voronoi diagram for cyclic permutations

...

a

..

b

..
c

.

abc

.

acb

.

acb

.

acb



Realizing sweep-line permutations

• For each pair of sites x, y, where x comes before y in the permutation, that
means the sweep line must hit x before it hits y. That corresponds to a 180◦

interval of sweep line directions.

• Because of transitivity, we only really care about enforcing the constraints be-
tween sites that are succesive in the permutation; therefore, a linear number of
constraints.

• Take the intersection of all those intervals. The general position assumption
guarantees it will be a single interval.

• Linear time to find the interval of all directions that will realize the permutation.



Realizing distance permutations

• Transitivity, as before, reduces the number of constraints we must enforce to
linear, namely those corresponding to successive sites.

• Each constraint says “must be on this side of the line that bisects the two sites”;
that is a linear constraint.

• Find a point satisfying linear constraints: that is linear programming.

• Solvable in linear time by Megiddo’s linear-time fixed-dimension LP. (In arbi-
trary constant dimension, if we use the more complicated one.)



Satisfying all constraints

...

s5

..
s6

..

s1

..

s2

..

s3

..
s4

..

v



Satisfying all but one constraint

...

s4

..

s5

.. s6..

s1

..

s2

..

s3

..

v



Satisfying the constraints is not enough

...
s1

.. s2..

s3

..

s4

..

s5

..

s6

..

s7

..

s8

..

s9

..

s10

..

s11

..

v



Realizing radial permutations

• If it is possible to satisfy all constraints, and there is a solution, then any point
that satisfies all constraints must be a solution.

• So try to satisfy all constraints. (Megiddo, 1983, linear time)

• If we can solve the LP problem: test whether the result has the correct permu-
tation, and we’re done.

• If we can’t solve the LP problem: we get a certificate that happens to be three
incompatible constraints. If any point satisfies all but one constraint, the violated
constraint must be one of those.

• Attempt three more LP problems, leaving out each constraint from the certifi-
cate, and we’re done.



Conclusions and future work

• Three ways to determine a permutation: sweep a line in a specified direction,
take sites in order of distance, or sweep a ray and get a cyclic permutation.

• Realization problem: find an input (unit vector or point as appropriate) to give
a desired permutation.

• For sweep-line permutations, it’s easy, just intersect the intervals. (Finds all
answers.)

• For distance permutations, it’s linear programming.

• For radial permutations, it’s linear programming with possibly one constraint
relaxed and a check that the answer really is satisfactory; and we can do all that
in linear time.

• Future work: other schemes for determining site permutations; other kinds of
constraint satisfaction involving site permutations; other spaces.


