
Generation of Graphs Embedded on the TorusbyMatthew Adam SkalaB.S., University of Vitoria, 1999A Thesis Submitted in Partial Ful�llment of theRequirements for the Degree ofMASTER OF SCIENCEin the Department of Computer SieneWe aept this thesis as onformingto the required standard
Dr. Wendy Myrvold, Supervisor (Dept. of Computer Siene)Dr. Ulrike Stege, Departmental Member (Dept. of Computer Siene)Dr. Gary MaGillivray, Outside Member (Dept. of Mathematis and Statistis)Dr. Rihard Anstee, External Examiner (Dept. of Mathematis, University ofBritish Columbia) Matthew Adam Skala, 2001University of VitoriaAll rights reserved. This thesis may not be reprodued in whole or in part, byphotoopy or other means, without the permission of the author.

iiSupervisor: Dr. Wendy MyrvoldABSTRACTAn algorithm is presented and proved to generate one representative from everyisomorphism lass of embeddings on the torus of graphs with ertain properties.Implementation issues, possible appliations, and experimental results from an im-plementation of the algorithm are desribed, inluding the determination of all bi-onneted topologial obstrutions to torus embeddability ontaining ten or fewerverties.Examiners:
Dr. Wendy Myrvold, Supervisor (Dept. of Computer Siene)Dr. Ulrike Stege, Departmental Member (Dept. of Computer Siene)Dr. Gary MaGillivray, Outside Member (Dept. of Mathematis and Statistis)Dr. Rihard Anstee, External Examiner (Dept. of Mathematis, University ofBritish Columbia)

iii
Contents

Abstrat iiContents iiiList of Tables vList of Figures viAknowledgments viii1 Introdution 12 De�nitions and notation 42.1 Graphs . 42.2 Surfaes and embeddings . 72.3 Target embeddings . 92.4 Moves and sets of moves . 102.5 The generation algorithm . 123 Choosing a set of moves 183.1 A three-move suÆient set . 193.2 The three-move set is minimal . 373.3 A two-move minimal suÆient set 42

iv4 Diamonds 484.1 Some notes on diamonds . 484.2 Only one diamond is neessary . 504.3 Twisted diamonds . 555 Other aspets of the algorithm 605.1 A anonial form for embeddings 605.2 Move labels . 645.3 Edge marking . 706 Experimental results 746.1 Implementation of the algorithm . 746.2 Diamond-free targets up to n = 10 767 Appliations and future work 837.1 A lookup-based toroidality tester 837.2 Searhing for torus obstrutions . 857.3 Other surfaes . 897.4 Conlusions . 90

v
List of Tables

6.1 Counts of diamond-free target embeddings on the torus. 786.2 Counts of diamond-free target graphs on the torus. 796.3 Maximum numbers of torus embeddings for diamond-free target graphs. 806.4 Mean number of torus embeddings per diamond-free target graph. . 817.1 Bionneted topologial obstrutions for the torus with up to tenverties. 88

vi
List of Figures

2.1 A diamond. 52.2 Some representative graphs. 62.3 A drawing of a graph on the plane, and a orresponding ombinato-rial embedding. 82.4 Some examples of moves . 112.5 The eight seed embeddings for our algorithm. 143.1 A super-diamond. 203.2 Adding a diamond without hanging the genus. 213.3 Vertex names for the proof of Theorem 3.1.4. 243.4 Finding a path from u to v ontaining w, in H2. 283.5 K4 minus an edge. 283.6 Removal of the ut vertex u must split C � e into exatly two on-neted omponents: one planar, and one nonplanar. 313.7 The bionneted omponent H. 323.8 Vertex names when u is on three triangles. 333.9 Exploding a vertex to reate degree three verties eah adjaent totwo others. 403.10 Chord moves as sequenes of C0;1 and S1;1 moves. 443.11 Diamond moves as sequenes of C0;1 and S1;1 moves. 443.12 Simulating C2;3 with C1;2 and T1;1. 45

vii3.13 Simulating D3;5 and D4;6 with D2;4 and T1;1. 464.1 The two situations where a reverse D2;4 move would reate a diamond 504.2 How a reverse T1;1 move an reate a diamond. 514.3 How a reverse T1;1 move an reate two diamonds. 524.4 Why ontrating (u; w) does not hange the genus. 524.5 How a reverse C0;1 move an reate a diamond. 534.6 Some twisted diamonds. 564.7 A diamond-free target embedding that annot be generated withouta twisted diamond. 574.8 Illustration of the general D2;4 move. 575.1 A D2;4 move an be applied to any of four edges in this parent togive the same hild. 655.2 How to label moves. 665.3 A potential C0;1 move, whih ould be labelled in four di�erent ways. 675.4 Two di�erent moves may reate the same hild from the same parent. 686.1 One of the 9,748 torus embeddings of the unique ten-vertex diamond-free target graph with maximum number of torus embeddings. . . . 827.1 The graph K7;3, a topologial obstrution to torus embeddability. . 877.2 The obstrution not found by Neufeld and Myrvold [34, 33℄. 88

viii
Aknowledgments
The author's work was supported by an NSERC Postgraduate Sholarship (PGSA) from May 2000 onwards, and by a University of Vitoria Fellowship prior tothat. Thanks also to the author's aademi supervisor, Wendy Myrvold, for all herhelp and support; to Staszek Radziszowski for omputer proessing resoures; andto Meredith Tanner for some words of wisdom.

Chapter 1
Introdution
Graphs desribe patterns of onnetions between things, in an abstrat and powerfulway. We an deal with graphs mathematially as purely abstrat entities, withoutinvoking any onept of spae. But as soon as we try to visualise a graph, we haveto plae it in a physial spae, and immediately we enounter topologial questions.One of the simplest topologial questions we an ask about a graph is whether ornot we an draw the graph on a given surfae without any of the edges rossing.That is the entral question onsidered in this work.Embedding problems appear in many real-world situations. For instane, if weuse a graph to represent a network of rail lines between ities, we may wish toknow whether we an lay out the traks to maintain the pattern of onnetionswithout needing any bridges. A similar situation ours on a smaller physial salein the design of eletroni iruits. There, eah hip may ontain many omponents,and eah board may ontain many hips, and in both ases there is a pattern ofonnetions between them whih must be maintained. In these kinds of situationswe may be allowed to use some limited number of rossings between onnetions,but suh rossings are expensive and may not always be available.Graphs embedded on surfaes are of interest in more purely theoretial situationsalso. Some things we would like to do with graphs are easier to do when the graphs

2are embedded. For instane, the graph isomorphism problem, whih is not known tobe polynomial-time in the general ase [36℄, an be solved in linear time for graphsembedded on the plane [18, 23℄. Sine graphs that embed on spei� surfaes appearespeially desirable both for physial appliations and in more abstrat situations,it beomes natural to ask how we an �nd suh graphs. Perhaps we ould evenhope for exhaustive lists of them.The plane is naturally the �rst surfae on whih we might want to embed graphs,and many results are known on planar graphs. The graph isomorphism problemis easier for planar graphs than for general graphs, as mentioned above. Severalalgorithms are known for testing whether a graph is planar [10, 11, 14, 15℄. Somework has also been done on generation of planar graphs [12℄. The projetive plane isinteresting as the simplest non-orientable surfae. Graphs known to be projetiveplanar an have their orientable genus omputed in polynomial time [16℄. Somealgorithms are known for embedding graphs on the projetive plane [29, 32, 35℄ andfor generating limited lasses of projetive planar graphs [6, 7℄.In this work we onsider graphs embedded on the torus. More spei�ally, wegenerate all embeddings of diamond-free target graphs (de�ned in Setion 2.3) onthe torus. The torus appears to be the next logial step after examination of theplane and projetive plane, and this work began with the question of generatingrandomly-hosen test ases for the \pratial torus embedding" ode of Neufeldand Myrvold [34℄. We expanded the projet to over exhaustive generation oftarget embeddings. It then gave a method for obtaining torus obstrutions (seeSetion 7.2) without needing a separate torus embedding algorithm.Algorithms to embed graphs on the torus have been studied by Juvan, Marin�ek,and Mohar [24℄ as well as by Neufeld and Myrvold [34, 33℄. There is an algorithmby Filotti [17℄ for embedding ubi graphs on the torus. Some general results forembedding on arbitrary surfaes, for instane the linear-time embedding algorithmof Mohar [30℄, ould be applied to the torus. Unfortunately, that algorithm has notbeen implemented and appears diÆult to implement pratially. The generation

3results of Barnette [7℄ for 4-onneted graphs an also be applied to the torus aswell as the projetive plane. In our generation work, we have hosen a set of targetgraphs intended to make the resulting lists as useful as possible for study of theembedding problem, while still being easy to generate.We have also hosen to generate embeddings of toroidal graphs rather thanmerely the graphs themselves. This hoie appears to make the generation algo-rithm easier, but it also allows us to study how many embeddings exist for eahgraph. The equivalent question on the plane has been studied by Chiba, Nishizeki,Abe, and Ozawa [14℄, and Cai gives a simpli�ed algorithm for ounting planar em-beddings [13℄. Beause we generate embeddings exhaustively, we an �nd how manytorus embeddings any given graph has simply by ounting them in the output.The next hapter ontains de�nitions of terms and notation used in this work.We then disuss in Chapter 3 the operations we perform on embeddings, and provethat our algorithm an generate all target embeddings. In Chapter 4 we disussthe e�et of a subgraph alled a \diamond" (de�ned in Setion 2.1) and speialdiamond-related onsiderations for our algorithm. After that, we disuss someimplementation issues in Chapter 5, and present experimental results in Chapter 6.We onlude in Chapter 7 with proposed appliations and future work.

4
Chapter 2
De�nitions and notation
Before disussing our results, we de�ne some terms and notation used throughoutthe work. First we desribe basi onepts of graphs and graph theory in Setion 2.1.In Setion 2.2 we introdue the onept of a surfae and disuss graphs embedded onsurfaes. In Setions 2.3 and 2.4 we desribe the lass of embeddings we generate,and the moves and starting points used to generate them. Then in Setion 2.5, wedesribe the generation algorithm.2.1 GraphsA graph G onsists of a �nite set V of verties and a �nite set E of edges whereeah edge in E is assoiated with an unordered pair (u; v) of elements of V ; theedge (u; v) is inident to or has as endpoints the verties u and v. We disallowmultiple edges (more than one edge with the same endpoints), and loops (edges ofthe form (u; u)).The number of edges inident to a vertex is the degree of the vertex. The vertiesu and v are adjaent if there is an edge (u; v) in the graph, and the verties adjaentto a vertex u are alled the neighbours of u.Two graphs G1 and G2 are alled isomorphi if there is a bijetion � from the

5
u

v

w x

Figure 2.1: A diamond.verties of G1 to the verties of G2 suh that (u; v) is an edge in G1 if and only if(�(u); �(v)) is an edge in G2.To subdivide an edge (u; v) in a graph means to introdue a new vertex w, addedges (u; w) and (w; v), and remove the edge (u; v). Two graphs are homeomorphiif there is a graph G suh that they eah an be obtained from G by relabellingverties and subdividing edges.A graph G is alled a subgraph of a graph H if the edge and vertex sets of Gare subsets of the edge and vertex sets, respetively, of H. Let V be the vertex setof G, a subgraph of H. If G ontains every edge in H whose endpoints are both inV , then G is alled the subgraph of H indued by V .If two adjaent degree three verties u and v share the same other two neigh-bours, in other words the neighbours of u are fv; w; xg and the neighbours of v arefu; w; xg, then the resulting subgraph, shown in Figure 2.1, is alled a diamond andthe edge between u and v is a diamond edge. There may or may not be an edgebetween w and x. A graph is diamond-free if it ontains no diamond edges.Consider a graph with verties fv1; v2; : : : ; vng and edgesf(v1; v2); (v2; v3); : : : ; (vn�1; vn); (vn; v1)gfor some n greater than or equal to three. A graph isomorphi to this one is alleda yle of length n. Similarly, a graph with n verties, all pairwise adjaent to eahother, but no multiple edges or loops, is alled the omplete graph on n vertiesand denoted by Kn. Observe that K3 is a yle of length three, whih we will

6

(a) K5 (b) K3;3 () A �ve-vertexwheelFigure 2.2: Some representative graphs.all a triangle. We also refer to K3;3, obtained by taking two disjoint sets X andY of three verties eah, using their union as the vertex set, and adding an edgefrom eah vertex in X to eah vertex in Y . The graphs K5 and K3;3 are shown inFigure 2.2.If we start with a yle of at least three verties and add one more vertex withedges from the new vertex to eah vertex of the yle, the resulting graph is alled awheel. A �ve-vertex wheel is shown in Figure 2.2. Observe that the smallest wheelis isomorphi to K4.A sequene of distint verties hv1; v2; : : : ; vki, where eah pair of onseutiveverties is adjaent, is alled a path with endpoints v1 and vk. Two paths are alledinternally vertex disjoint if they have no verties in ommon exept possibly theendpoints. A graph G is onneted if for every pair of verties a and b in G, Gontains a path from a to b. A graph G is bionneted if it is onneted, and thegraph obtained by deleting any one vertex is still onneted. More generally, G isk-onneted if G has greater than k verties and we an remove any set of fewerthan k verties and the edges inident to them and always have the remaining graphbe onneted.A k-onneted omponent of a graph G is a subgraph H of G suh that H is

7k-onneted but is not a proper subgraph of any other k-onneted subgraph of G.A set of k verties whose removal inreases the number of onneted omponents isalled a k-ut, and the single vertex in a 1-ut is alled a ut vertex. Note that ourk-uts an be desribed more preisely as k-vertex uts; it is also possible to de�nea k-edge ut of edges whih an be removed to disonnet a graph, but we do notuse that onept in this work.To ontrat an edge (u; v) means to remove the edge (u; v), then identify u andv. The reverse operation of ontrating an edge is alled splitting a vertex. We saythat a graph G is a minor of a graph H if G an be obtained from H by the minoroperations of removing edges, removing verties of degree zero, and ontratingedges.2.2 Surfaes and embeddingsAlthough we will not disuss the topology of surfaes extensively, exept as it appliesdiretly to this graph-theoreti work, we will de�ne a surfae as a topologial spaein whih any two distint points have disjoint neighbourhoods, and every point has aneighbourhood topologially equivalent to a two-dimensional open dis. Intuitively,a surfae is a spae that looks like a plane, when examined within a small enoughneighbourhood.The lassi�ation of surfaes is well known, and desribed in detail in intro-dutory textbooks on topology, suh as that by Kinsey [25℄. Surfaes are uniquelydetermined by the properties of genus and orientability. The genus may be anynonnegative integer, and if the surfae has genus greater than zero, it may be ori-entable or non-orientable. The plane, equivalent to the sphere, is the only surfaeof genus zero, and is orientable. Genus may be thought of intuitively as desribingthe number of handles or bridges on the surfae, and orientability as desribingwhether or not the surfae has a well-de�ned sense of lokwise.After the plane the remaining orientable surfaes are alled the torus, with genus

8one, and the k-handled torus for eah k greater than one, with genus k. We allthe non-orientable surfae with genus one the projetive plane, and with genus twothe Klein bottle.In this work we deal with ombinatorial embeddings, whih represent drawingsof graphs on orientable surfaes. A ombinatorial embedding onsists of a list, foreah vertex in the graph, of the neighbours of that vertex in lokwise order. Anexample of a ombinatorial embedding is shown in Figure 2.3. The adjaeny listsare yli, in that we an start at any neighbour; the lists hu; v; w; xi and hv; w; x; uiare equivalent. Reversing a list would violate the lokwise ordering and is notallowed. Two ombinatorial embeddings are isomorphi if one an be obtainedfrom the other by relabelling verties, hoosing a starting point for eah adjaenylist, and possibly reversing all adjaeny lists at one (whih an be imagined asmirror-reversing the embedding).
0

1

23

4

0 : h1; 4; 2i1 : h0; 2; 3; 4i2 : h1; 0; 3i3 : h4; 1; 2i4 : h0; 1; 3iFigure 2.3: A drawing of a graph on the plane, and a orresponding ombinatorialembedding.Drawing a graph on a surfae divides the surfae into regions alled faes, anda simple algorithm applied to a ombinatorial embedding an ount the faes and�nd the sequene of verties around eah fae [3, Setion 2.5℄. If every fae ontainsthree verties, then the embedding is alled a triangulation. From the ombinatorialembedding of a onneted graph with n verties, m edges, and f faes, we analulate the genus of the embedding g with the formula g = (m � n � f + 2)=2[22℄.

9A ombinatorial embedding desribes a drawing of a graph on the orientablesurfae with the orresponding genus. The existene of ombinatorial embeddingsallows us to de�ne embeddability : a graph G is said to be embeddable on an ori-entable surfae S if there exists an embedding of G with genus no greater thanthe genus of S. The orientable genus of a graph is the least genus of an orientablesurfae on whih the graph is embeddable. Graphs with orientable genus zero arealled planar and with genus one toroidal.2.3 Target embeddingsA move is an operation we an perform on a ombinatorial embedding to produeanother ombinatorial embedding with more edges. The generation algorithm (de-sribed in Setion 2.5) starts from a set of embeddings alled seeds (de�ned below)and applies moves from a �xed set of types to generate target embeddings. Wedesribe our hoies for the target embeddings here, and move types and seeds inthe next setion.De�nition 2.3.1 A target graph is a graph G suh that:� G has orientable genus one;� G has no verties of degree less than three; and� G is bionneted.A target embedding is a ombinatorial embedding of a target graph on the torus.The omplete algorithm as we eventually implemented it uses an additional restri-tion, generating diamond-free target embeddings, beause we onsider diamond-freeembeddings more topologially interesting. We de�ne target embeddings as aboveto simplify the disussion in Chapter 3. We then build the more spei� resultsappliable to the �nal form of our software, in Chapter 4.

10The seeds for a given set M of moves are those target embeddings that annotbe generated from other target embeddings by moves inM . Sine a move inreasesthe number of edges in an embedding, it follows that any target embedding may begenerated from some seed by a sequene of moves in M .2.4 Moves and sets of movesHere we de�ne all the types of moves we onsider in this work. All these movesmaintain the genus of an embedding and a�et at most a onstant number of ver-ties and edges, and all our moves inrease the number of edges in the embedding.With one exeption, all the moves also preserve the other onditions on target em-beddings: bionnetivity and no verties of degree less than three. The expetionis that that the S1;1 move introdues a degree two vertex. Although moves formallytake plae on embeddings, we often disuss the orresponding graph operationsusing the same symbols.We denote types of moves with symbols like Mn;m, where M is a mnemoniletter representing the general kind of move, n is the number of verties added bythis move, and m is the number of edges added by this move, whih is always atleast one. We also de�ne reverse moves, as the inverses of the forward moves. Re-verse moves do not always preserve the onstraints preserved by the orrespondingforward moves; for instane, removing an edge an redue the onnetivity of thegraph in an embedding, whereas adding an edge an never redue the onnetivity.An S1;1 move onsists of subdividing an edge (u; v) into two edges by adding anew vertex. The edge (u; v) is removed, a new vertex w is introdued, and edges(u; w) and (w; v) are added. Note that the new vertex has degree two, so theresulting embedding is not a target embedding. The S1;1 move type is used inde�ning other moves that do preserve the target properties.A C0;1 move onsists of adding an edge in a fae of the embedding, between twoverties not already adjaent to eah other. To make a C1;2 move, we �rst subdivide

11

(a) S1;1 (b) C0;1
() C1;2 (d) C2;3
(e) D2;4 (f) D3;5
(g) D4;6 (h) T1;1Figure 2.4: Some examples of moves

12an edge as with an S1;1 move, then add a new edge from the new vertex to someother vertex on a fae ontaining the divided edge. The move type C2;3 onsists ofusing two S1;1 moves to subdivide two edges on the same fae, then adding an edgethrough the fae, between the two new verties.Move types D2;4, D3;5, and D4;6 eah onsist of removing an edge of the em-bedding and replaing it with a subgraph inluding a diamond, as shown in Fig-ures 2.4(e), 2.4(f), and 2.4(g). If the edge being removed appears twie on thesame fae, or if it is inident to a vertex that appears more than one on the samefae, then there may be two or more inequivalent ways to embed the newly-addedsubgraph while maintaining the rest of the embedding. This issue is disussed indetail in Chapter 4.A T1;1 move onsists of splitting a vertex into two adjaent verties, in suha way that at least one of the new verties has degree three. The restrition toreating a degree three vertex may seem mysterious, but the only oasions wherewe have a reason to make a vertex-splitting move are those where we are reatinga degree three vertex anyway. Making the restrition expliit allows us to simplifythe omputer software based on these results.We say that a set of move types M is suÆient with a given set of seeds if everytarget embedding an be generated from one of the seeds by a sequene of movesfrom M . Obviously, if M is suÆient then every superset of M is also suÆient,and if M is not suÆient, then no subset of S is suÆient. We all a set of movesminimal if it is suÆient but has no proper subset that is suÆient.2.5 The generation algorithmAlthough many of the details involve onepts that have yet to be disussed, wepresent the overall generation algorithm here, to motivate the details presented insubsequent hapters. We follow a general algorithm of orderly generation similar tothat desribed by MKay [28℄. Our goal is to generate one representative for eah

13isomorphism lass of diamond-free target embeddings, up to a hosen number ofverties and/or edges.We use the move set fC0;1;D2;4; T1;1g and the set of seeds onsisting of all embed-dings on the torus ofK5 orK3;3. There are eight embeddings (up to isomorphism) inthat set, enumerated by Argyle [5℄, and they are shown in Figure 2.5. In Chapter 3we show that these moves and seeds are suÆient to generate all target embeddings,and in Chapter 4 we show that they ontinue to be suÆient when we introdue alimit of at most one diamond in eah embedding.Any target embedding C either is one of the seeds, or has a parent P whih isanother target embedding with fewer edges than C, suh that C an be obtainedfrom P by a C0;1, D2;4, or T1;1 move. If P is the parent of C, then C is a hild ofP . The existene of parents is proved in Chapter 3, along with some disussion ofother sets of moves and seeds we onsidered using.In order to generate all diamond-free target embeddings, we sometimes need toexamine target embeddings ontaining one diamond, as disussed in Chapter 4. Itis not lear whih target embeddings with one diamond are neessary to generateall diamond-free target embeddings. Rather than spending omputation time in aompliated test for whether a diamond is really neessary, we examine all targetembeddings with at most one diamond. We do not, however, need to onsiderembeddings ontaining more than one diamond. For any target embedding with atmost one diamond, other than a seed, we an �nd a parent with fewer edges and atmost one diamond (proved in Theorem 4.2.1); therefore we an eliminate all targetembeddings with more than one diamond.There are a few more details neessary to make sure we generate exatly onerepresentative for eah isomorphism lass of diamond-free target embeddings. Aanonial form for an embedding is an objet representing the embedding suhthat two embeddings are isomorphi if and only if they have the same anonialform. The partiular anonial form we use is disussed in Setion 5.1. When weonsider an embedding as a possible parent for a given hild, we generate a opy

14

(a) K5 (b) K5 () K5

(d) K5 (e) K5 (f) K5

(g) K3;3 (h) K3;3Figure 2.5: The eight seed embeddings for our algorithm.

15of the hild's parent by a reverse move, and use the anonial form to ompare thepossible parent with the parent. We also de�ne move labels in Setion 5.2, whihare sequenes of vertex labels expressing where in a parent embedding we an makea move to get to the hild embedding. Sometimes two di�erent moves an generatethe same hild from the same parent; move labels, along with the automorphismgroup alulated during the anonial labelling, allow us reognize that situationand generate the hild exatly one.The following pseudoode desribes our algorithm for �nding a parent, withall the appliable restritions. Note that the parent-�nding algorithm returns twothings: the parent P itself, and a anonial move label for a move to make on P togive the hild C. Sine every C we will pass into this ode has some parent meetingthe onditions we test, the algorithm must return some parent and move label. Wenever attempt to �nd the parent for a seed. It is important that Parent(C1) andParent(C2) be the same for any isomorphi C1 and C2; in our implementation, weahieve that by alling Parent only with anonially labelled input embeddings.Parent(C) :for eah reverse move M we an apply to C, in some deterministi orderapply M to C to obtain Pif P is a target embedding ontaining at most one diamondanonially label P , �nding its automorphisms as a side e�etR move label for the inverse of MR least image of R under any automorphism of Preturn (P;R)end ifend forNote that beause every target embedding with at most one diamond has aparent whih is a target embedding with at most one diamond (exept seeds, whihare never used as inputs to Parent), Parent must return some parent before the

16loop terminates. The subroutine Parent is written with are to make its returnvalue a deterministi funtion of the anonially-labelled input. As a result, even ifthe same hild ould be reahed from the same parent by two inequivalent moves,the move from parent to hild will only math the move label R one, and so wewill still generate the hild exatly one.We use Parent in a reursive algorithm to do the atual generation. The follow-ing pseudoode desribes an algorithm alled Generate, whih takes a target em-bedding P with at most one diamond as an argument, and writes out all diamond-free target embeddings desended from P , inluding P if it is itself diamond-free, upto some preset limit on the number of edges and verties. To generate an exhaustivelist, we simply all Generate one with eah of the eight seeds.Generate(P) :if P has more verties or edges than the preset limitsreturnend ifif P is diamond-freeoutput Pend iffor eah move label M desribing a move from fC0;1;D2;4; T1;1g thatwe an apply to Pif M is the lexially least image of itself under any automorphism of P�nd C by applying the move to P desribed by Manonially label C, �nding its automorphisms as a side e�etif C ontains at most one diamond and (P;M) = Parent(C)Generate(C)end ifend ifend for

17Examination of this pseudoode will reveal a few potential ineÆienies; forinstane, if P already ontains one less edge than the limit, then there is no pointeven onsidering D2;4 moves whih would reate hildren too large to output. Inour C language implementation of the algorithm we address many of these kinds ofissues; the desription here is intended to explain the algorithm as learly as possiblerather than provide an exhaustive guide to the features of the implementation.

18
Chapter 3
Choosing a set of moves
The question of whih moves to use was entral to the design of our generationalgorithm, and in the ourse of our work we tried several di�erent sets. In thishapter we �rst desribe the set we �nally settled on, onsisting of the three movetypes fC0;1;D2;4; T1;1g. In Setion 3.1 we prove this set to be suÆient to generateall target embeddings, then in Setion 3.2 we prove it minimal and disuss why itis an espeially attrative minimal move set. Finally, in Setion 3.3, we desribesome of the other hoies we onsidered, beause the proess of evolution from theoriginal onept to this three-move set may be of interest.In this hapter we disuss target graphs: bionneted graphs with genus oneand all verties of degree at least three. We disuss target graphs �rst, rather thanbeginning with the restrited lass we eventually onsidered, so as to simplify theproofs. We use the term target graphs for these graphs, rather than for the morerestrited graphs output by our software, so as not to have to make exeptionsthroughout this hapter. Making this de�nition does require us to make exeptionslater, when we disuss diamond-free target graphs, but in those ontexts we alsoneed to disuss target graphs ontaining at most one diamond, target graphs on-taining exatly one diamond, and so on. In this hapter, it is useful to be able toignore diamonds as far as possible.

193.1 A three-move suÆient setBefore beginning the proofs relating to existene of parents, we note that all theproperties de�ning a target embedding are atually properties of the underlyingtarget graph. The only way an embedding of a target graph ould fail to be atarget embedding would be if the genus of the embedding (not the graph) were notequal to one. None of the moves de�ned in Setion 2.4 an inrease the genus ofan embedding, and although a reverse move in general an derease the genus ofan embedding, it annot do so if the embedding was already genus one and thegraph remains toroidal. An embedding of a toroidal graph annot have genus zero.Therefore, we will generally talk about the existene of target graph parents fortarget graph hildren, rather than disussing embeddings. If a target graph C hasa reverse move to a target graph P , then any torus embedding of C has a reversemove to some torus embedding of P , so the results apply equally well to targetembeddings.Fundamentally, what are the moves we need in our set? Sine the graph minorhierarhy is entral to the embedding problem, and the set of embeddable graphs ona surfae is easily haraterized in terms of forbidden minors [37℄, it seems naturalthat we should use moves resembling the reverse minor operations: splitting avertex, or adding an edge. As long as we onsider only onneted graphs, there isno need to insert degree zero verties.Adding an edge seems simple enough, and orresponds to our C0;1 move. Split-ting a vertex is a more ompliated operation. It would be nie to restrit it in someway, to make omputer implementation easier. It would also be nie to disallowsplits that reate degree two verties, sine degree two verties learly make no dif-ferene to the topologial properties of the graph. Note that S1;1 an be imaginedas splitting one of the neighbours to reate a degree two vertex, instead of our usualdesription of it as subdividing an edge. In our three-move set, we restrit the splitoperation to always reate a degree three vertex.

20
Figure 3.1: A super-diamond.But with the split operation so restrited, we fae the question of how to reatediamonds, whih are the subjet of Chapter 4. We ould disallow diamonds, aswe disallowed degree two verties, but then we would have no obvious way toreate an in�nite number of larger \banana-like" kinds of subgraphs, inluding thesuper-diamond of �ve verties and seven edges, shown in Figure 3.1. We ouldperhaps disallow all suh strutures, by requiring that target embeddings be 3-onneted, but then we might be faed with testing for 3-onnetedness frequentlyin the software, as well as possible theoretial ompliations. Our deision was torequire only bionnetedness from target embeddings, and have a speial move, theD2;4 move, for reating diamonds.The above intuitive desription argues for why eah of the moves in our three-move set may be neessary, but does little to justify the laim that they are suÆientto generate all target embeddings. Indeed, the suÆieny of this move set is far fromobvious. The following obvious theorem is the beginning of our formal argumentfor suÆieny of the three-move set; we then omplete the proof, and explore otherfeatures of this move set and its ability to generate target embeddings.Theorem 3.1.1 If a graph C an be obtained from a graph P by a D2;4 move, thenP and C have the same orientable genus.Proof. If P is embeddable on a surfae S, and (u; v) is the edge we an replaewith a diamond to obtain C, then we an start with an embedding of P on S andintrodue two new verties w and x. We replae v with the subsequene hw; xi in

21
u v

w

xFigure 3.2: Adding a diamond without hanging the genus.the lokwise adjaeny list of u, and replae u with the subsequene hx; wi in thelokwise adjaeny list of v. We also give w the lokwise adjaeny list hu; v; xiand x the list hu; w; vi. The result of these operations is illustrated in Figure 3.2;the dashed line shows the position of the original edge (u; v). The resulting graphis C. We have added four edges, two faes, and two verties; by the formula in thede�nition of genus for embeddings, we have not hanged the genus of the embedding.So if P is embeddable on S, then so is C.Although there may also be other ways to add a diamond to the embedding ofP (see Setion 4.3), it suÆes that we an make the replaement in this one wayand maintain the genus of the embedding. This proof onerns the genus of graphs,and the existene of any embedding of C on the torus shows that the genus of C isat most one.Conversely, if C is embeddable on a surfae S, we an start with an embeddingof C on S and reverse the D2;4 move, removing four edges, two verties, and upto two faes. The number of faes removed may be less than two beause we maysometimes remove an edge that appeared twie on a fae. Thus, the genus of theresulting embedding of P may be less than the genus of the embedding of C, but isertainly no greater; so P is also embeddable on P . Reall that \P embeddable onS" is true if there is an embedding of P with genus less than or equal to the genusof S.Therefore for any surfae S, P is embeddable on S if and only if C is embeddableon S; the graphs are embeddable on the same surfaes, and have the same orientable

22genus. �By the result known as Kuratowski's Theorem [26, 19, ited in [3℄℄, any graphthat is not planar must ontain a subgraph homeomorphi to K5 or K3;3; we allthat subgraph the Kuratowski subgraph. Thus, any target embedding must ontaina subembedding of a graph homeomorphi to K5 or K3;3. We make use of thatproperty in proving the existene of parents for target embeddings. Given a targetembedding E, we an always �nd a subembedding of E whih is an embedding ofa graph homeomorphi to K5 or K3;3. We olour the hosen subembedding red,and de�ne the red-degree of a vertex in E to be the number of red edges inidentto that vertex. The verties in the red subgraph with red-degree not equal to twoare alled main verties [29℄. Note that no vertex an have red-degree one, beausethen the red subgraph ould not be homeomorphi to K5 or K3;3. We may hangethe olouring later, but will always preserve the property that the red subgraphis homeomorphi to K5 or K3;3, and therefore nonplanar. The following lemma isuseful in manipulating the red olouring.Lemma 3.1.2 If a graph G with a red-oloured subgraph homeomorphi to K5 orK3;3 ontains a triangle with verties fu; v; wg and edges e = (u; v), f = (v; w),and g = (w; u), and no edges inident to u are red exept possibly e and g, thenthe set of red edges in the triangle must be fe; gg, ffg, or the empty set, and wean freely exhange the two nonempty possibilities while keeping the red subgraphhomeomorphi to K5 or K3;3.Proof. Sine no other edges inident to u are red and the red-degree of u annotbe one, e and g must be both red or both not red. All three edges in the triangleannot be red beause then u would have red-degree two and by eliminating u thered subgraph would ontain a multiple edge and not be homeomorphi to K5 orK3;3. That leaves only the listed possibilities for the set of red edges in the triangle.If H1 is the red subgraph when f is the only red edge in the triangle, and H2is the red subgraph when e and g are red but f is not, then the graph obtained by

23starting from H1 and subdividing f is isomorphi to H2. Reall that no other edgesinident to u an be red. Then H1 is homeomorphi to H2 and so if one of them ishomeomorphi to K5 or K3;3, the other must also be. �The red olouring allows us to prove results about edges that an safely beremoved or ontrated without making the graph planar, beause as long as we donot disturb the red subgraph too muh, the graph must remain nonplanar. Therewill be times when we hange the olouring, to make ertain edges red or not, butin all ases, we preserve the property that the red subgraph is homeomorphi to K5or K3;3.Lemma 3.1.3 Let C be a target graph ontaining a red-oloured subgraph homeo-morphi to K5 or K3;3, as desribed above. If we ontrat an edge e in C with adegree three endpoint u by a reverse T1;1 move, where e may or may not be red butthe other two edges inident to u are not both red, and assuming that the reverseT1;1 move does not reate a multiple edge, then the resulting graph P is not planar.Proof. Sine C ontains a red subgraph homeomorphi to K5 or K3;3, the graph Pan only be a planar graph if the edge ontration makes the red subgraph planar.We an also hange the olouring as desribed in Lemma 3.1.2 without hanging thehomeomorphism of the red subgraph to K5 or K3;3. Contrating an edge an makethe red subgraph not homeomorphi to K5 or K3;3 in only two ways: by identifyingtwo main verties, or by identifying a vertex u that is not a main vertex with aneighbour v that is red, but where the edge (u; v) is not red.Beause the two edges other than e inident to u are not both red and u hasdegree three, the red-degree of u an be at most two. It annot be one beause novertex has red-degree one, so it must be zero or two. Then u is not a main vertexof the red subgraph. If the red-degree of u is zero then ontrating the edge annotmake the red subgraph planar beause all the red verties and edges are unhangedby the operation. If the red-degree of u is two, that also means that e is red, and

24
w x

v

u

y

Figure 3.3: Vertex names for the proof of Theorem 3.1.4.then we are ontrating a red edge with an endpoint that is not a main vertex, andso the red subgraph is still homeomorphi to K5 or K3;3. �With Lemma 3.1.3 providing a suÆient ondition under whih we an make areverse T1;1 move and preserve nonplanarity, we are ready to begin �nding possibleparents for target graphs. The following theorem shows that if we an generate alldiamond-free target embeddings, then we an generate all target embeddings withone or more diamonds. This theorem does not plae any restritions on the numberof diamonds in the parent.Theorem 3.1.4 Any target graph C that ontains a diamond an be obtained froma target graph P with fewer edges by some move in the set fC0;1;D2;4; T1;1g.Proof. Let (u; v) be the diamond edge, and w and x be the two neighboursshared by u and v, as shown in Figure 3.3. If there is an edge (w; x) then we anremove that edge with a reverse C0;1 move. The graph P has fewer edges thanC. The graphs P and C must have the same genus beause by Theorem 3.1.1 wean replae the diamond with an edge in eah one, without a�eting the genus, toobtain two graphs that are the same exept for the presene of a multiple edge andso have the same genus.The graph P is bionneted beause there are still two internally vertex disjointpaths between w and x, namely hw; u; xi and hw; v; xi. Finally, P has all vertiesof degree at least three. Only w and x have their degrees redued by the reversemove. If w had its degree redued to two, then either x was a ut vertex of C, or

25C was K4; similarly, if x had its degree redued to two, then either C was K4 or wwas a ut vertex of C.If there is no edge (w; x) in C, we onsider the degrees of w and x. If oneof them (we say without loss of generality w) has degree three, we all its thirdneighbour (besides u and v) y. We will ontrat the edge between w and y with areverse T1;1 move to get a target graph P with fewer edges than C. The ontrationof (w; y) annot reate a multiple edge beause then y and w would have to bepart of a triangle, and the third vertex would have to be u or v. But we alreadyknow three distint neighbours for eah of those already; the only way fw; y; ug orfw; y; vg ould be a triangle would be if x and y were the same vertex, in whihase there would be an edge (w; x), and that possibility was onsidered above. Sineboth endpoints have minimum degree three, the edge ontration annot redue thedegree of any vertex. Contrating (w; y) ould only redue the onnetivity of thegraph if fw; yg were a two-vertex ut, and then eah of them would also be a utvertex, ontraditing the bionnetedness of C. Contrating an edge annot inreasethe genus of a graph. Thus, it only remains to show that ontrating (w; y) doesnot redue the genus of the graph.Suppose we eliminate the diamond with a reverse D2;4 move to reate a graphH, whih ontains at least one degree two vertex (namely w) and so is not a tar-get graph, but is nonplanar by Theorem 3.1.1. We an olour a red subgraph ofH homeomorphi to K5 or K3;3 as above, then replae the diamond to obtain aolouring of C. If the edge (w; x) was red in H then we olour red the edges (w; u)and (u; x); other than that, all the edges introdued when we replae the diamondremain unoloured. Then (w; u) and (w; v) are not both red, so by Lemma 3.1.3the graph P is nonplanar and therefore P is a target graph.The only remaining ase for the theorem ours if w and x both have degreegreater than three, with no edge (w; x). In that ase, we an perform a reverse D2;4move to eliminate the diamond, giving a graph P . A reverse D2;4 move must leavethe genus of the graph unhanged, by Theorem 3.1.1. The reverse move does not

26reate a multiple edge beause there is no edge (w; x) in C. Beause w and x havedegree greater than three in C and eah has its degree redued by one, their degreesin P are still are least three. The graph P must be bionneted beause if therewere a pair of verties y and z whih had two paths between them and distint atthe endpoints in C but not in P , then both those paths must have passed throughw and x. Then x or y would have to be a ut vertex in C, unless they eah had noother neighbours besides u and v; either hoie ontradits the de�nition of C asa target graph. Therefore P has genus one, is bionneted, and has all verties ofdegree at least three, and so is a target graph. �When looking for a parent of a diamond-free target embedding, our reverse movemust neessarily be a reverse C0;1 or T1;1 move, beause the reverse D2;4 move anonly be applied to a target embedding ontaining a diamond, and sometimes noteven then. It is easy to �nd edges that an be removed while preserving nonpla-narity; any non-red edge will do. Finding edges we an ontrat while preservingnonplanarity is also easy.We an only apply a reverse C0;1 move when both endpoints of the edge weremoved have degree greater than three, or else the resulting embedding wouldhave verties of degree two and would not be a target embedding. We an onlyapply a reverse T1;1 move to ontrat an edge with at least one endpoint of degreethree, and only when the edge is not part of a triangle, to avoid reating multipleedges. With either reverse move, we must preserve the bionnetedness of the graph.The following lemma gives a suÆient ondition for hanges in a graph to preservebionnetedness.Lemma 3.1.5 Let G1 be a bionneted graph. Let H1 be a bionneted subgraph ofG1 joined to the rest of G1 by exatly two distint verties u and v; that is, u and vare the verties of H1 adjaent to verties of G1 not in H1. Let H2 be a bionnetedsubgraph of H1 ontaining u and v, and let G2 be the graph formed from G1 byreplaing H1 with H2. Then G2 is bionneted.

27Proof. Let w and x be any two distint verties in G2. If both w and x are in H2,then there must be a yle inluding these two verties in H2 and so in G2, by thebionnetedness of H2. If eah of w and x either is not in H2, or is one of u and v,then we an �nd a yle inluding both of them in G1. If that yle inludes anyedges of H1, then its intersetion with H1 must onsist of a path from u to v. Thenwe �nd a path from u to v in H2, and replae the path from u to v in H1 with thepath from u to v in H2, to give us a yle inluding w and x in G2.The remaining ase is where one of w and x is not in H2, and the other is inH2 and is not u or v. Say without loss of generality that w is in H2 and is not u orv. Then we �nd a yle C1 inluding w and x in G1. The intersetion of C1 withH1 must onsist of a path between u and v. We �nd a yle C2 in H2 that inludesboth u and w. If v is in C2 then we an split C2 into two internally vertex disjointpaths from u to v, hoose one that inludes w, and use that to replae the part ofC1 that passed through H1, giving a yle in G2 that inludes both w and x.If v is not in C2, we �nd two internally vertex disjoint paths from w to v throughH2. Let P1 be one of those that does not ontain u. Let y be the last vertex in P1that is in C2; sine w is in the path and in C2, y must exist. We split C2 into twointernally vertex disjoint paths from u to y, hoose one that inludes w, and takethe union of that with the segment of P1 from y to v, to �nd a path P2 from u to vontained in H2 and ontaining w. We replae the intersetion of C1 and H1 withP2, to give a yle in G2 ontaining w and x. See Figure 3.4.Therefore, for all distint w and x in G2 we an �nd a yle in G2 ontaining wand x; we an split that yle into two internally vertex disjoint paths from w to x,and so G2 is bionneted. �The next lemma shows that under some onditions whih target graphs happento satisfy, we an �nd an edge whose removal leaves the graph bionneted.Lemma 3.1.6 Any bionneted graph G ontaining at least three verties and atmost two verties of degree two, must ontain some edge whose removal leaves the

28

H2

P

C

P
1

2

2

x

u

v

wy

Figure 3.4: Finding a path from u to v ontaining w, in H2.
Figure 3.5: K4 minus an edge.graph bionneted.Proof. By examination of all smaller graphs (there are only a few), K4 minusone edge, shown in Figure 3.5, is the unique bionneted graph with at least threeverties, at most two verties of degree two, and the smallest possible number ofedges. We an remove the edge between that graph's two verties of degree three,and leave a bionneted graph.If G has more than �ve edges, we �nd a yle F in G ontaining all the degreetwo verties, if any. This must be possible beause there are at most two degreetwo verties, G is bionneted, and in a bionneted graph we an �nd a yleontaining any pair of verties. Sine G has at least three verties, they annot allbe degree two, and any vertex an only have zero or two inident edges in F , sothere must be an edge (u; v) in G that is not in F , and its endpoints u and v must

29eah have degree at least three in G. If removal of (u; v) leaves the remaining graphG� (u; v) bionneted, then we are done.Otherwise, there must be at least one vertex w of G whih is a ut vertex inG � (u; v). Removal of any ut vertex w must split G � (u; v) into exatly twoonneted omponents, beause otherwise w would be a ut vertex in G also. Thenu and v must be in two di�erent bionneted omponents of G� (u; v), and all theedges of F must be in one bionneted omponent of G� (u; v) beause F is itselfa bionneted subgraph; reall that (u; v) was hosen not to be in F . Then one ofu and v, say without loss of generality u, must be in a bionneted omponent ofG � (u; v) whih ontains no edges in F and is attahed to the rest of G � (u; v)only at one ut vertex; we all that bionneted omponent H and that ut vertexx. Note that x need not be the same as w beause w is any ut vertex of G� (u; v)whereas x is the partiular ut vertex joining H to the rest of G� (u; v).The subgraph H annot onsist only of u beause then u would be a ut vertexof G, and H annot onsist only of u and one other vertex with an edge betweenthem, beause then u would have degree two in G. So H must ontain at leastthree verties. The subgraph H annot inlude any vertex that had degree two inG, beause H has no edges in F , and all edges inident to verties with degree twoin G were edges in F . The only verties in H whih have smaller degree in H thanthey had in G, are u and x; H inludes all edges from G inident to any of the otherverties in H. So the verties u and x are the only ones that ould have degree twoin H.Then H is a bionneted graph with at least three verties, at most two vertiesof degree two, and fewer edges than G beause it does not ontain the edge (u; v).We an look reursively for an edge e to remove from H that will leave H � ebionneted. Then by Lemma 3.1.5, removing e from G leaves G� e bionneted.� Preserving nonplanarity as well as bionnetedness is only a little more diÆult.

30In the following proof, we use a similar tehnique to split the graph into two piees,but instead of �nding a yle and using it to remove part of the graph, we remove thered subgraph from onsideration at the �rst stage of the reursion. After that, weknow that any remaining edges an be removed while keeping the graph nonplanar,and so we simply apply Lemma 3.1.6. Note that Lemma 3.1.7 does not neessarilyprovide a useful reverse move from C, beause the edge seleted ould have a degreethree endpoint, resulting in a degree two vertex in P . However, in that ase theedge still provides a useful starting point for the searh for reverse moves in thesuÆieny theorem.Lemma 3.1.7 If C is a target graph with a red-oloured subgraph homeomorphito K5 or K3;3, then either C is K5 or K3;3, or C ontains an edge e that is not redand an be removed to give a graph P whih is a target graph exept for possiblyontaining degree two verties.Proof. If C is a target graph other than K5 or K3;3, then it must ontain an edgee that is not red. Otherwise, it would ontain at least one degree two vertex. Ifwe remove e from C, the genus of the resulting graph C � e must be the sameas the genus of C, beause removing an edge annot inrease the genus and thered subgraph is preserved. Removing e annot reate a multiple edge in C � e. IfC � e is bionneted, then it satis�es all onditions for P ; otherwise, we will �nd adi�erent edge to remove.Suppose removing the edge e would render C�e not bionneted, by reating oneor more ut verties. Removal of any one ut vertex u splits C�e into two onnetedomponents. Removal of u annot split C � e into more than two omponents,beause then (as shown in Figure 3.6), u would be a ut vertex in C also. Thegraph C� e then ontains at least two bionneted omponents. Beause the genusof a graph is the sum of the genera of its bionneted omponents [8℄, exatly onebionneted omponent of C � e is nonplanar. Sine the two endpoints of e arein di�erent bionneted omponents of C � e, one of them must be in a planar

31

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

nonplanar planar

e

u

not
allowed

Figure 3.6: Removal of the ut vertex u must split C�e into exatly two onnetedomponents: one planar, and one nonplanar.bionneted omponent of C � e. Let H be a planar bionneted omponent ofC � e ontaining an endpoint of e, and v be the endpoint of e ontained in H.Just as in Lemma 3.1.6 above, the bionneted omponent H annot onsistonly of v beause then v would be a ut vertex of C, and H annot onsist of v andone other vertex with an edge between them, beause then v would have degreetwo in C. When onsidered as a subgraph of C, H is onneted to the rest of Conly though the verties v and w, where w is some ut vertex of C� e, as shown inFigure 3.7. The verties v and w must eah have degree at least two in H beauseotherwise H would not be bionneted. Any other verties in H have the samedegree in H that they had in C, neessarily at least three beause C is a targetgraph.So H is a bionneted graph with at least three verties and at most two vertiesof degree two. By Lemma 3.1.6 we an remove an edge of H and leave H � ebionneted. Then by Lemma 3.1.5, P is bionneted. Sine H ontains no rededges, that edge must not be red, and its removal does not hange the genus of C.Therefore P is a target graph exept for possibly ontaining degree two verties. �If the edge e of Lemma 3.1.7 has a degree three endpoint then we annot use a

32
H

v w u
e

Figure 3.7: The bionneted omponent H.reverse C0;1 move to remove it. It ould be that the edge from Lemma 3.1.7 is on atriangle, or that any degree three endpoint of this edge also has both other inidentedges red, so Lemma 3.1.3 might not allow us to ontrat it with a reverse T1;1 moveeither. The following theorem shows that even in suh ases, we an always �ndsome reverse move to use.Theorem 3.1.8 Any target graph C either is K5, K3;3, or an be obtained by mak-ing a move in fC0;1;D2;4; T1;1g on a target graph P with fewer edges.Proof. If C ontains a diamond, Theorem 3.1.4 provides a reverse move to P andwe are �nished. Otherwise, we �nd a subgraph of C homeomorphi to K5 or K3;3,and olour that subgraph red. By Lemma 3.1.7, there is an edge e whih is not red,suh that removal of e would leave the graph bionneted and toroidal.If both endpoints of e have degree greater than three, then we an remove ewith a reverse C0;1 move; the only remaining ondition for P to be a target graphis for all verties to have degree at least three, and removing an edge between twoverties of degree greater than three preserves that. If one endpoint of e has degreethree, we all it u. The other endpoint, whih we all v, may also have degree three.The other two neighbours of u we all w and x. Now, how many distint triangles

33
u

v

w xFigure 3.8: Vertex names when u is on three triangles.in C an ontain u? The answer is at most three beause any triangle ontainingu is uniquely determined by u and two of its neighbours; there are only three waysto hoose two of the three neighbours of u.If u is not in any triangle in C: then we an ontrat one of the edgesinident to u, other than e, with a reverse T1;1 move to �nd P . Sine e is not red,by Lemma 3.1.3 the resulting graph P has genus greater than one. The graph Pmust be bionneted, every vertex in P must have degree at least three, and thegenus of P must be at most one, beause the reverse T1;1 move always preservesthose properties. Sine no edge inident to u was on a triangle, ontrating one ofthem annot reate multiple edges. Therefore, P is a target graph.If u is in three distint triangles in C: then we have the situation shown inFigure 3.8, where the verties u, v, w, and x indue a subgraph isomorphi to K4.If any neighbour of u had degree three, then C would ontain a diamond, and wealready handled that ase. So all of v, w, and x have degree at least four.If any edge between two neighbours of u is not red, we say without loss ofgenerality that it is (w; x) and eliminate it with a reverse C0;1 move to �nd P . Sinethe edge is not red and has both endpoints of degree greater than three, we knowthat we an remove it while preserving the genus and keeping the minimum degreeat least three. The graph P is also bionneted, beause there are still two internallyvertex disjoint paths between w and x, namely hw; u; xi and hw; v; xi. Therefore Pis a target graph.

34If all edges between neighbours of u are red, then beause the edge (u; v) is notred, by Lemma 3.1.2 none of the edges inident to u is red and we an reolour tomake (w; x) not red and (w; u) and (u; x) red. Then, as above, we remove the edge(w; x) with a reverse C0;1 move to obtain P , whih is a target graph.If u is in exatly one triangle in C: that triangle must inlude two edgesinident to u. If any non-red edge inident to u is on the triangle, then we anontrat along the one edge inident to u that is not on the triangle, with a reverseT1;1 move, to obtain P . By Lemma 3.1.3 this preserves the genus of the graph.Sine the edge being ontrated is not on a triangle, the reverse move reates nomultiple edges. And a reverse T1;1 move an never derease the degree of a vertexor redue the onnetivity of a graph, so the remaining onditions are satis�ed, andP is a target graph.If u is in one triangle and both edges inident to u in the triangle are red, thenthe triangle onsists of u, w, and x. By Lemma 3.1.2, the edge (w; x) is not red,and we an re-olour so that (w; x) is red and none of the edges inident to u arered. Then we ontrat along (u; v) with a reverse T1;1 move, as above, and obtaina target graph P .If u is in exatly two triangles in C: one neighbour of u must be in both ofthose triangles also; we all this neighbour y. If y is degree three, then (u; y) is adiamond edge, and we handled the ase of graphs ontaining diamonds already. If(u; y) is red, then there is exatly one vertex z adjaent to both u and y suh that(u; z) is red; then by Lemma 3.1.2, the edge (y; z) is not red, but we an reolourso that (y; z) is red and no edge inident to u is red.Now we have a vertex u of degree three with a neighbour y of degree greaterthan three, and the edge (u; y) is not red and is on two triangular faes. Let u0 be uand let u1 be one of the other neighbours of u. Sine (u0; y) is part of two triangles,u1 must also be a neighbour of y. If the edge (y; u1) is red, we an reolour to makeit not red while keeping the red subgraph nonplanar, by olouring (u0; u1) red ifit was not already red, and olouring (u0; y) red. This has the e�et of splitting a

35vertex in the red subgraph, whih always preserves nonplanarity. The resulting redsubgraph is nonplanar but may not be homeomorphi to K5 or K3;3; if neessary,we an unolour additional edges to leave a red subgraph homeomorphi to K5 orK3;3, and (y; u1) not red.We then replae u0 by u1 and repeat, to hoose verties u2; u3; : : : ; uk: for istarting at one, while ui is degree three and (ui; y) is on two triangles, we hooseui+1 to be the third neighbour of ui, other than ui�1 and y. The vertex uk thatterminates the repetition must be adjaent to y and either uk has degree greaterthan three or (uk; y) is on just one triangle. Furthermore the edge (uk; y) mustnot be red beause we were reolouring to ensure that at every step of the way.There must be suh a vertex uk or else the verties ui would form a yle with everyvertex also adjaent to y; and then either y would be a ut vertex of C, or C wouldbe a wheel and therefore planar. The following pseudoode restates the iterationalgorithm:FindUk(C; u; y) :u0 uu1 a neighbour of u other than yif (u1; y) is redunolour (u1; y)olour (y; u0) and (u0; u1) redunolour additional edges as needed to make red subgraph homeomorphito K5 or K3;3end ifi 1while degree(ui) = 3 and (ui; y) is on two triangles in Cif (ui+1; y) is redunolour (ui+1; y)olour (y; ui) and (ui; ui+1) red

36unolour additional edges as needed to make red subgraph homeomorphito K5 or K3;3end ifi i + 1end whilek ireturn ukWhen we �nish we have a vertex uk adjaent to y, with the edge (uk; y) not red,and either that edge is on just one triangle in C or the degree of uk is greater thanthree. If the degree of uk is greater than three, then we an remove (uk; y) witha reverse C0;1 move to obtain P . Beause the edge we remove is not red and hasboth endpoints of degree greater than three, P is nonplanar and has no verties ofdegree less than three.Choose a neighbour uk+1 of uk, other than uk�1 and y. Sine C is bionneted,we an �nd a path from y to uk+1 and not ontaining uk. By adding the edges (y; uk)and (uk; uk+1) to that path, we have a yle. If the yle does not ontain the vertexuk�1, we an replae the edge (y; uk) with (uk; uk�1) and (uk�1; y) to �nd a ylethrough uk and y that does not ontain (uk; y). Let z be the third vertex adjaentto uk�1, besides uk and y. Sine the edge (uk�1; y) is on two triangles, z must alsobe a neighbour of y. If the yle passes through the vertex uk�1, then beauseuk�1 has degree three, the yle must inlude the edges (y; uk�1) and (uk�1; z). Wean replae the sequene of onseutive verties in the yle huk; y; uk�1; zi withhuk; uk�1; y; zi to �nd a yle through uk and y in P . Therefore, we an always �nda yle through uk and y and not passing through (uk; y), and that yle providestwo internally vertex disjoint paths between these verties, so removal of (uk; y)leaves a bionneted graph P . Sine P ful�lls the other onditions, it is a targetgraph.If the degree of uk is three, then the edge (uk; y) is on only one triangle. Let

37(uk; z) be the edge inident to uk that is not in that triangle. The edge (uk; z)annot be in any triangle beause if it were in a triangle, that triangle would haveto also ontain either y or uk�1. If the triangle ontains y then the third vertexis a neighbour of y, (uk; y) is in two triangles, and we would not have stopped atuk. If fuk; uk�1; zg is a triangle, then z must be a neighbour of uk�1 other thany, and so z must be a neighbour of y beause (uk�1; y) is in two triangles. Thenfuk; y; zg must be a triangle, ontraditing the laim that (uk; y) was in only thetriangle fuk; uk�1; yg.Then (uk; z) is an edge inident to the degree three vertex uk and not on anytriangle, so we an ontrat it with a reverse T1;1 move to leave a bionneted graphP with no multiple edges or verties of degree less than three. Beause the edge(uk; y) is not red, by Lemma 3.1.3, P is nonplanar. Therefore P is a target graph.� Theorem 3.1.8 shows the existene of a reverse move from any target graph otherthan K5 or K3;3 to a target graph with fewer edges. As noted at the start of thissetion, the existene of a target graph parent for any target graph hild impliesthe existene of a target embedding parent for any target embedding hild. So thesuÆieny of the move set fC0;1;D2;4; T1;1g to generate all target embeddings, withthe torus embeddings of K5 and K3;3 as seeds, follows immediately.3.2 The three-move set is minimalAlthough we have intuitive justi�ation for eah of the three move types C0;1, D2;4,and T1;1, it may seem possible that some subset of these moves ould still generateall target graphs. Our work began with two move types (S1;1 and C0;1) whihwere expanded to six move types (C0;1, C1;2, C2;3, D2;4, D3;5, and D4;6) to eliminateineÆienies assoiated with degree two verties. The six-move set was then ut tofour moves by the adoption of the T1;1 move, whih eliminated the need for C2;3,

38D3;5, and D4;6.But the C1;2 move was only eliminated muh later, beause at the time the four-move set was hosen we were attempting to work with embeddings on arbitrarysurfaes, and there is an in�nite set of target-like graphs on the plane, namely thewheels, whih annot be generated without C1;2. Atually, there are no target em-beddings (under the urrent de�nition whih requires nonplanarity) that annot begenerated by the three-move set above; but we only proved that late in the researh,spurred by the experimental observation that removing C1;2 from our software didnot redue the list of graphs generated. Three-move suÆieny, proved in Theo-rem 3.1.8, is far from obvious. So there is some preedent for the idea that movesets may be redued ounter-intuitively.In this setion, not only do we prove that the three-move set is minimal in thestrit sense that any proper subset requires an in�nite set of seeds to generate alltarget graphs, but we also argue that the in�nite set of seeds required by any furtherredution of the three-move set would have to be inonveniently ompliated. Thus,further redution of the move set is not useful, even if we are willing to make aonession like generating most embeddings with our standard algorithm and usinga di�erent algorithm to generate the few not overed.Lemma 3.2.1 The set of moves fD2;4; T1;1g is not suÆient to generate all targetembeddings with any �nite set of seeds.Proof. These moves may add at most two edges for every vertex they add, sowith a �nite set of seeds the embeddings we an generate with n verties have amaximum of 2n + k edges for some onstant k. Triangulations on the torus withn verties may have up to 3n edges, and for suÆiently large n, this will alwaysexeed the number of edges in any n-vertex embedding we an generate. Therefore,there exist embeddings we annot generate with this set of moves and any �nite setof seeds. �

39Attempting to ompensate for the removal of C0;1 by expanding the set of seedswould require us to add as seeds all the torus triangulations. Generating triangu-lations for surfaes is an interesting problem whih has been studied, for instane,by Barnette [6, 7℄, but a solution to that problem requires work omparable to ourwork here; and it is not obvious that the triangulations are the only things we wouldhave to add. So removing C0;1 from the set of moves would almost ertainly reatemore work than it saves.Lemma 3.2.2 The set of moves fC0;1; T1;1g is not suÆient to generate all targetembeddings with any �nite set of seeds.Proof. By starting with a seed embedding and repeatedly replaing edges withthe struture shown in Figure 3.1, whih we all a super-diamond, we an onstruta target embedding whih ontains an arbitrarily large number of opies of thisstruture. Indeed, we an hoose a target embedding whih ontains the super-diamond more times than there are edges in any seed embedding. In suh a targetembedding there must be a super-diamond where none of the seven edges existedin the seed and so all of them were reated by moves in our set. We onsider whatthe last move used in the reation of that opy ould have been.Suppose the last move made was a C0;1 move. In that ase, the last edge addedould not have been one of the �ve edges inident to at least one of the two degreethree verties. If it was one of the two remaining edges, then the embedding priorto that move must have ontained a diamond, and moreover a diamond that didnot exist in the seed beause all the seed edges are in use elsewhere. We do nothave a move in our set that an reate a diamond, so this is impossible and the lastmove annot have been a C0;1 move.A T1;1 move must always reate a degree three vertex. But the two degreethree verties in the super-diamond are eah ontained in two distint triangles.Reversing the T1;1 move from either of these verties to any of its neighbours would

40
Figure 3.9: Exploding a vertex to reate degree three verties eah adjaent to twoothers.give us a previous state ontaining a multiple edge. So the last move annot havebeen a T1;1 move.Therefore there is no way to reate more opies of the struture shown in Fig-ure 3.1 than there are edges in any seed, and so for this set of moves and any �niteset of seeds, we an always �nd a target embedding we annot reate. Thus, theset of moves fC0;1; T1;1g is not suÆient. �Eliminating D2;4would require us to add as seeds an in�nite number of graphsdi�ering from graphs we an generate without D2;4, only by D2;4 moves. Thisseems at least as ompliated as inluding D2;4 in the set of allowable moves. Theproof of Lemma 3.2.2 may seem unneessarily ompliated. A similar proof ould bewritten to use ordinary diamonds instead of super-diamonds. The proof was writtenas above, using super-diamonds, beause the diamond-based proof would involvegraphs ontaining a large number of diamonds. As desribed in Chapter 4, we wishto avoid diamonds, and to make restritions on the number of diamonds that mayexist in our embeddings. Lemma 3.2.2 as proved here produes ounterexamples tosuÆieny that ontain no diamonds but still require the D2;4 move.Lemma 3.2.3 The set of moves fC0;1;D2;4g is not suÆient to generate all targetembeddings with any �nite set of seeds.Proof. Neither of these moves an reate a degree three vertex adjaent to twoother degree three verties, beause C0;1 always inreases the degree of two verties

41beyond three without introduing any new ones, and D2;4 introdues two new degreethree verties but makes them eah adjaent to two verties of degree greater thanthree. As shown in Figure 3.9, we an perform a move on any vertex of a targetembedding to reate a new target embedding ontaining degree three verties eahadjaent to two other degree three verties. We an do this on an arbitrarily largetarget embedding, so we an produe an in�nite number of ounterexamples to thesuÆieny of fC0;1;D2;4g. �Not only does Lemma 3.2.3 provide an in�nite number of embeddings we an-not generate with fC0;1;D2;4g, but the embeddings are of a form that we annotgenerate onveniently enough to throw them in as seeds. For instane, the duals oftriangulations on our surfae are usually if not always three-regular target embed-dings. All these would have to be inluded as seeds. Also, we an generate fromany target embedding an exponential number of hildren, all target embeddingsnot generated by fC0;1;D2;4g, by exploding a subset of the verties in the mannerof Figure 3.9. There would be some dupliation among those hildren, but it doesnot look like an easy way to simplify our experiments. Even if we were to replaeT1;1 with some new move for reating degree three verties with two degree threeneighbours, suh a move would almost ertainly not be easier to implement thanT1;1.We an now prove the main result of this setion, the minimality of the three-move set.Theorem 3.2.4 The set of move types fC0;1;D2;4; T1;1g is suÆient and minimalto generate all target embeddings, with the set of seeds equal to all embeddings onthe torus of K5 and K3;3.Proof. We have suÆieny from Theorem 3.1.8. By Lemmata 3.2.1, 3.2.2, and3.2.3, if we remove any one move type the remaining set is not suÆient. Thereforeno proper subset of fC0;1;D2;4; T1;1g is suÆient, so this set is minimal. �

42As well as being minimal in the tehnial sense of Setion 2.4, this set of threemove types appears to be espeially onvenient when we work with the statedde�nition of target graphs as having no degree two verties. In the next setion wedisuss what might be aomplished by relaxing that requirement.3.3 A two-move minimal suÆient setThe software written for this researh began as a program to generate randomlyseleted embeddings of toroidal graphs, by starting with a seed K5 or K3;3 andmaking S1;1 and C0;1 moves. When we later began to onsider the question ofexhaustive generation without dupliates, we started with that set of moves anda more relaxed de�nition for target embeddings that permitted them to inludeverties of degree two.Theorem 3.3.1 The set of moves fS1;1; C0;1g is suÆient and minimal to generateall ombinatorial embeddings of graphs homeomorphi to target graphs, with the setof seeds equal to all embeddings on the torus of K5 and K3;3.Proof. If an embedding E is like a target embedding exept that it ontains oneor more verties of degree two, then we an use a reverse S1;1 move to remove oneof the degree two verties and obtain an embedding E 0 with fewer edges whih issimilarly a target embedding exept for possibly ontaining verties of degree two.If E ontains no verties of degree two, then it is a target embedding, and if E isnot a seed we an apply Lemma 3.1.7 to �nd an edge that we an remove with areverse C0;1 move to obtain an embedding E 0, whih is a target embedding exept forpossibly ontaining some verties of degree two. Therefore, fS1;1; C0;1g is suÆient.The set of moves onsisting of only S1;1 is not suÆient beause it annot beused to reate embeddings with more verties of degree greater than two than existin any seed, and a target-like embedding ould ontain an arbitrary number ofverties of degree greater than two. Similarly, the set of moves onsisting of only

43C0;1 annot reate verties at all, and so annot reate target-like embeddings withmore verties than any seed. Therefore, fS1;1; C0;1g is minimal. �If we allow verties of degree two, then the number of embeddings and thereforegraphs we must onsider inreases without signi�ant improvements in the useswe an make of the results. Any time we would want to embed a graph withdegree two verties on the torus, we ould instead eliminate them with reverse S1;1moves, embed the resulting graph, and then add the verties of degree two bak inafterwards. Degree two verties have no e�et on embeddability.So the question arose of how many degree two verties we had to permit inorder to be able to generate all target embeddings, and the answer seemed to bethree, beause we needed to be able to draw a hord aross a fae, possibly reatingone or two new degree three verties at the ends of the hord, and we needed tobe able to reate diamonds, either replaing or inserted in the middle of existingedges. Creating diamonds with S1;1 and C0;1, as desribed below, ould require theuse of up to three degree two verties at one time.If we would be reating degree two verties only under limited irumstanesand only to immediately inrease their degree with new edges, then we might aswell reate and destroy the degree two verties in one step. That lead naturally toa set of six moves: fC0;1; C1;2; C2;3;D2;4;D3;5;D4;6g. Eah of these moves orrespondsto a sequene of S1;1 and C0;1 moves, as shown in Figures 3.10 and 3.11.The six-move set appeared to be suÆient to generate all target embeddings,but was diÆult to implement in pratie. The D3;5 and D4;6 moves, in partiular,presented diÆulties beause of the sizes of the subembeddings that had to beonstruted and inserted. Our data strutures involved two reords ontainingthree pointers eah for every edge, requiring at least 42 pointers to be updatedone by one in order to remove one old edge and add six new ones in a D4;6 move.Although there is nothing in priniple diÆult about updating a data struture thisway, in pratie suh moves proved umbersome to implement and debug.

44

Figure 3.10: Chord moves as sequenes of C0;1 and S1;1 moves.

Figure 3.11: Diamond moves as sequenes of C0;1 and S1;1 moves.

45
Figure 3.12: Simulating C2;3 with C1;2 and T1;1.The six-move set, beause of its omplexity, was also umbersome to deal withon the theoretial level. It appeared that the suÆieny of the six-move set wouldbe easy enough to prove. We do not prove it here beause with the introdution ofthe three-move set and proof of the two-move set's suÆieny independent of thesix-move set, a ompliated proof for the six-move set no longer seems useful. Itwas not lear whether the six-move set was minimal, nor how to prove that.The T1;1 move was introdued to simplify the set of moves. As shown in Fig-ures 3.12 and 3.13, the use of the T1;1 move along with C1;2 and D2;4 allows us toahieve the e�et of the more ompliated C2;3, D3;5, and D4;6 moves. That leadsnaturally to a set of four moves, fC0;1; C1;2;D2;4; T1;1g. It is not generally possible tosimulate a C1;2 move with a C0;1 move followed by a T1;1 move, beause if we wishedto perform the C1;2 move inside a triangular fae, the initial C0;1 move would haveto reate a multiple edge.The C1;2 move appears neessary beause, if we imagine ourselves generatingplanar embeddings in the same way we generate torus embeddings, a wheel withmany verties learly annot be generated by any of the other moves in the four-move set. A wheel other than K4 ontains no diamonds, so D2;4 is unusable; itontains only one vertex of degree greater than three, so C0;1 is unusable; and aT1;1 move would require the parent to ontain multiple edges. It seems reasonable,then, that there should be nonplanar graphs whih also require C1;2. The neessityof C1;2 appeared so obvious that its proof ould safely be left almost to the end ofthe projet. So our intent during most of the projet was to prove suÆieny ofthe six-move set, then suÆieny of the four-move set by the equivalenes above.

46

Figure 3.13: Simulating D3;5 and D4;6 with D2;4 and T1;1.

47Then we would prove minimality of the four-move set, possibly with a note on thepossibilities of using the original two moves, for a more wasteful but muh simplerapproah.The disovery that C1;2 was not neessary, or at least not neessary when dealingwith embeddings on the torus, was triggered by the diÆulty of proving minimalityof the four-move set. Despite the note above that C1;2 annot be diretly simulatedby C0;1 and T1;1, we ould not atually �nd any target embeddings for whih itwas neessary; not even in our omputer experiments with hundreds of millions ofembeddings. Obtaining a suÆieny proof, showing that in fat the four-move setis not minimal, was diÆult but eventually possible.Unfortunately, we have no simple explanation for why C1;2 an be eliminated;unlike C2;3, there is no easy sequene of other moves that an replae C1;2 in all ases.At best we an point to Theorem 3.1.8, whih shows (after a ompliated argumentwith several ases) that any target embedding whih might appear to require C1;2,an be generated in some other way with the other three moves. Although thethree-move set requires an elaborate proof and appears to be in some sense justbarely suÆient, it is suÆient, and having only three moves simpli�es the softwarea great deal.

48
Chapter 4
Diamonds
In this hapter we disuss a further re�nement of the algorithm, intended to makethe output more useful by eliminating embeddings of less interesting graphs. Graphsontaining diamonds present fewer hallenges in embedding beause we an sim-ply eliminate the diamonds, embed the remaining graphs, and then reinsert thediamonds. We begin with a desription in Setion 4.1 of diamonds and their onse-quenes. Then in Setion 4.2 we prove that the algorithm an be limited to examin-ing target graphs with at most one diamond, and still generate all the diamond-freetarget graphs. Finally, in Setion 4.3 we disuss how diamonds an be embeddedin several ways on the torus, and the onsequenes of that fat for our work.4.1 Some notes on diamondsWe have already mentioned that the presene of diamonds in a graph does nothange its genus, sine we an always perform a reverse D2;4 move to �nd a smallergraph embeddable on exatly the same surfaes. Just like degree two verties andmultiple edges, diamonds an be viewed as uninteresting embellishments to existingedges. For any graph G that we onsider really interesting, there will be a largenumber of less interesting graphs onsisting of G with one or more diamonds sub-

49stituted into its edges. It would be preferable to eliminate them from onsideration.But as desribed in Chapter 3, forbidding diamonds entirely, by eliminating theD2;4 move, would require us to have some other way to reate the more ompliatedstrutures whih urrently require diamonds. Perhaps we ould make diamondsunneessary by requiring target graphs to be 3-onneted, but then the proofs thatwe an maintain that onstraint, already diÆult for bionnetedness, ould beomeeven more diÆult. Also, some intended appliations of the output, for instaneto the searh for torus obstrutions (see Setion 7.2) would su�er if the outputwere limited to 3-onneted embeddings. It seems useful to permit at least a fewdiamonds.We ould make attempt to plae a similar limit on how many degree two vertiesare neessary at any one time to generate all target embeddings with moves infS1;1; C0;1g, as disussed in Setion 3.3, but it appears that we would still need atleast three degree two verties to be able to generate diamonds with those moves.Similarly, if we permitted multiple edges we might also need to permit enough ofthose to be inonvenient.Permitting diamonds presents less of a problem than permitting multiple edgesor degree two verties, beause every diamond inludes two verties whih are notavailable to be inluded in any other diamond. When we generate graphs up to a�xed number of verties n, the n-vertex graphs ontaining diamonds must orre-spond to graphs with n � 2 or fewer verties, and the fast growth in the numberof embeddings with inreasing n guarantees that there will be far fewer targetembeddings with n � 2 verties than with n verties. So the atual number ofdiamond-ontaining embeddings should not be overwhelming.Nonetheless, we hoose to avoid diamond-ontaining embeddings as far as pos-sible. Lemma 3.2.2 shows that some diamonds are neessary with our move set, sowe annot simply require all parents and hildren to be diamond-free and expetto generate all other target embeddings that way. In the next setion we show thatwe need tolerate only one diamond in an embedding at a time; the set of target

50
Figure 4.1: The two situations where a reverse D2;4 move would reate a diamondembeddings with at most one diamond an be generated without requiring the useof embeddings with more than one diamond.4.2 Only one diamond is neessaryIn order to reate graphs that do not ontain diamonds but do ontain things likesuper-diamonds, we need to make use of parents ontaining diamonds. How manydiamonds must we tolerate in parents in order to be able to generate all diamond-free hildren? The following theorem shows that the answer is just one.Theorem 4.2.1 If C is a target embedding ontaining at most one diamond, theneither C is a seed or C an be obtained from a target embedding P with fewer edgesand ontaining at most one diamond, by a move in fC0;1;D2;4; T1;1g.Proof. By Theorem 3.1.8, we an �nd a reverse move from any non-seed C to sometarget embedding. We onsider the ways that suh a reverse move ould reate adiamond, and show that we an always �nd a reverse move that will not inreasethe number of diamonds past one.A reverse D2;4 move simultaneously redues the degree of two verties and makesthem adjaent to eah other. However, it also destroys a diamond. There are twoases: the new edge ould form the rossbar of the diamond (beoming the diamondedge as suh) or it ould go into the side of the diamond. These two ases are shownin Figure 4.1. In eah ase, it is lear from the �gure that the e�et of the reverse

51
y

w u

x vFigure 4.2: How a reverse T1;1 move an reate a diamond.move is limited to the verties shown. With the new edge forming the rossbar ofthe diamond, both its endpoints an only be part of that one diamond, so only onediamond is reated. With the new edge forming a side of the diamond, only onevertex has its degree redued to three, and so, again, only one diamond is reated.Sine one diamond is always destroyed by the reverse D2;4 move, this reverse movean never inrease the total number of diamonds in the embedding. Theorem 3.1.8has already established that P is a target embedding when it is obtained by areverse D2;4 move. Note that in the exeptional ase of making a D2;4 move on K4,the resulting graph C has two diamond edges in it and a reverse D2;4 move gives usthe original K4, with six diamond edges. We onsider only target graphs with atmost one diamond, so that situation is exluded.A reverse T1;1 move always inreases the degree of a vertex past three, so it annever reate a diamond by reating a degree three vertex. Any diamond reatedby a reverse T1;1 move must result from the ontration of a 4-yle in the targetembedding, as shown in Figure 4.2. The edge (u; v) is the one being ontrated.Suh a ontration ould in fat reate two diamonds at one, if we imagine thestruture repeated again on the other side of the edge (u; v), as shown in Figure 4.3.We an instead ontrat the edge (u; w) in C to obtain P unless u and y are adjaent,or the edge (v; x) unless v and y are adjaent. The verties u and v annot both beadjaent to y, beause then the original reverse T1;1 move would have been forbiddenfor reating a multiple edge.We an assume without loss of generality that u is not adjaent to y, and so wean ontrat (u; w). The reverse T1;1 move always preserves onnetivity and the

52
u

vFigure 4.3: How a reverse T1;1 move an reate two diamonds.minimum degree of verties; no multiple edges are reated beause we are using itto ontrat an edge that is not on any triangle. It remains only to show that wean preserve nonplanarity.
u v

w x

y

! w x

y

z !
y

z !
y

z

x !
!

y

z

x !
y

x

v

u !
y

x

v

u

Figure 4.4: Why ontrating (u; w) does not hange the genus.Suppose we ontrat (u; v), notwithstanding that it would reate a diamond,and label the resulting vertex z. Sine that was the reverse move hosen by The-orem 3.1.8, the resulting graph is still nonplanar, although it might ontain toomany diamonds. Then we eliminate verties w and x with a reverse D2;4 move,whih by Theorem 3.1.1 annot make the graph planar. We subdivide the edge(y; z), labelling the new vertex x; that also annot make the graph planar. Thenwe add a new edge from y to z; adding an edge annot make the graph planar. Wesplit z bak into u and v, as they were before; splitting a vertex annot make the

53
xuv

z w

yFigure 4.5: How a reverse C0;1 move an reate a diamond.graph planar. Finally we add an edge from x to u. This proess and its result areshown in Figure 4.4. We have obtained, by a series of operations that maintain thenonplanarity of the graph, exatly the same embedding we would have obtained byontrating (u; w) in the original embedding C. Therefore this embedding, whihwe all P , is of a nonplanar graph and so P is a target embedding ontaining nomore diamonds than C ontained.A reverse C0;1 move an reate a diamond only by reduing the degree of adegree four vertex whih (exept for the edge being removed) forms a diamondwith a degree three vertex, as shown in Figure 4.5. The edge (u; v) is the onebeing removed. We know that (u; v) ould not have been red in the olouring usedin Theorem 3.1.8, beause then the edge removal would not have been permitted.Note that v ould also be degree four and reate a diamond, so that this reversemove ould reate two diamonds at one.If one of w and y, say without loss of generality w, has degree greater thanthree, then we will remove the edge (u; w) instead of (u; v). Suppose we did removethe edge (u; v), even though it would make the graph ontain too many diamonds;sine that is the reverse move found by Theorem 3.1.8, the resulting graph mustbe nonplanar. We then apply a reverse D2;4 move to replae the diamond by anedge (w; y); this must leave a nonplanar graph G by Theorem 3.1.1. If we olourthe resulting graph with a red subgraph homeomorphi to K5 or K3;3, we an then

54replae the diamond and then (u; v); in so doing we olour the replaed edges (w; x)and (x; y) red if the edge (w; y) was red, and olour no other new edges. The resultis a red-oloured subgraph homeomorphi to K5 or K3;3 in the original C, with theedge (u; w) not red. Therefore we an remove the edge (u; w) to obtain a nonplanargraph P .Sine C�(u; v) is known to be bionneted and w has degree greater than three,we an hoose a neighbour z of w, where z is not u, x, or y, and �nd a path inC � (u; v) from z to y without passing through w. Then that path, plus the edges(w; z) and (y; u) provide one path from w to u in P ; and the path hw; x; ui is aseond path from w to u in P , internally vertex disjoint from the �rst. Thereforeremoval of (u; w) leaves P bionneted. Sine both u and w have degree greaterthan three, every vertex of P has degree at least three. All the onditions are nowsatis�ed and P is an embedding of a target graph.If w and y both have degree three in C, then we annot remove the edge (u; w)with a reverse C0;1 move to obtain a target embedding. But then we an ontratthe edge between w and its neighbour z with a reverse T1;1 move to obtain P . Suh areverse move neessarily preserves bionnetedness and minimum degree. It annotreate multiple edges unless z and v are the same vertex, a ase whih we handlelater. If w is degree three and we are ontrating (w; z), then it only remains toshow that this leaves the graph nonplanar. The verties w and y annot both bedegree three and adjaent to v, or v would be degree two or a ut vertex.It only remains to show that the graph in P is nonplanar. As above, we imag-ine removing (u; v) from C even though it would reate a diamond, replaing thediamond with an edge (w; y), and olouring the result with a red subgraph home-omorphi to K5 or K3;3. Reversing these steps and maintaining the olouring, weobtain a olouring for C where the edges (w; u) and (w; x) are not both red. Thenby Lemma 3.1.3, we an ontrat the edge (w; z) and leave the graph nonplanar.Therefore P is a target embedding.

55One possibility remains with the reverse C0;1 move: that w ould be degreethree and v and z ould be the same vertex, so that there is a triangle with vertiesfu; v; wg and we annot ontrat the edge (w; v) without reating a multiple edge.In that ase, the graph C must ontain a super-diamond, as shown in Figure 3.1.Obviously, an embedding (either the target embedding C or some anestor neessaryto reate it) ould ontain an arbitrarily large number of super-diamonds. However,the super-diamond does not ontain a diamond itself, and it an be reated froman edge by making a D2;4 move followed by a T1;1 move and a C0;1 move, reatingand destroying one diamond along the way. So if we need to build an embeddingontaining one or more of these and possibly a diamond as well, we an �rst buildthe orresponding embedding with the diamond and super-diamonds replaed byedges and any degree two verties and multiple edges eliminated. Then we aninsert the diamond and super-diamonds, one at a time, never having more than onediamond in the embedding at one time, and then we an do any �nal splitting andadding of edges as in Theorem 3.1.4 to reate the desired embedding. �If we are primarily interested in embeddings of diamond-free graphs, then The-orem 4.2.1 allows us to prune our omputation tree onsiderably. Noting that ourseed embeddings, of K5 and K3;3, are all diamond-free, we an implement the prun-ing in the generator software simply by disarding any parents or hildren that havemore than one diamond. We also restrit atual output to embeddings of diamond-free graphs, although it is neessary to examine embeddings with one diamond inorder to generate all diamond-free embeddings.4.3 Twisted diamondsWe normally imagine diamonds as being embedded niely on the plane, as in thedrawing in Figure 2.1. But on the torus, there are more possibilities. Two otherways to embed a diamond on the torus are shown in Figure 4.6. We all any

56
v

u

w x

u

v

w x

Figure 4.6: Some twisted diamonds.diamond that is not embedded in the obvious planar way depited in Figure 2.1, atwisted diamond.Twisted diamonds are neessary beause some target embeddings, even somewithout diamonds like the one shown in Figure 4.7, an only be generated fromanestors that ontain twisted diamonds. If we imagine making reverse moveson Figure 4.7, the only target embeddings we an �nd as possible parents, areembeddings that ontain twisted diamonds. Theorem 4.2.1 shows that we needtolerate only one diamond, but it might happen that that diamond must be twisted.So we annot simply forbid twisted diamonds; our D2;4 move must be able toreate them. The de�nition of the D2;4 move given in Setion 2.4 is designed to beable to reate any possible twisted diamond, and the move label for it desribed inSetion 5.2 is designed to desribe any possible D2;4 move. Here, we desribe theD2;4 move in detail, to larify its operation.Let (u; v) be a diamond edge in a target embedding C, and let w be the nextvertex after v in the lokwise adjaeny list of u and x be the remaining neighbourof u. This is the same naming of diamond verties shown in Figure 3.3 earlier, buthere we emphasize that the diamond ould be embedded in any of several ways;some other embeddings of the same subgraph are shown in Figure 4.6. In all thosediagrams, the lokwise adjaeny list of u is hv; w; xi.

57

Figure 4.7: A diamond-free target embedding that annot be generated without atwisted diamond.

Figure 4.8: Illustration of the general D2;4 move.

58If we imagine removing the vertex v and all its inident edges, then we wouldhave an embedding P 0, whih is the same as the embedding P obtained by replaingthe diamond with a path hw; u; xi. To obtain C from P 0, we must insert v into afae ontaining the vertex u; v goes inside that fae and its inident edges onnetit to some appearane of eah of u, w, and x around the fae. Beause v mustome after x and before w in the lokwise adjaeny list of u, there is only oneway to add the edge (u; v) even if u appears twie on the fae. The other two edgesinident to v, however, may attah to any appearanes of w and x on the fae. Wean break down the addition of v and its edges further into the steps of addingan edge between the two appearanes of w and x that will be adjaent to v, thensubdividing that edge to reate v, and �nally adding the edge (u; v).To remove a diamond, we an label it as above, remove v and its edges, thenremove y and replae the edges (w; u) and (u; x) with an edge (w; x). We an removeany diamond this way, twisted or not. By reversing the steps and making sure thatwe an hoose any appearanes of w and x on the fae, we obtain the de�nition ofthe D2;4 move, whih an reate any diamond, twisted or not. In detail, the stepsare as follows:1. Choose a fae F of an embedding P .2. Choose an edge e in F .3. Let w and x be the endpoints of e so that w omes immediately before x ina lokwise traversal of F . There may be two ways to do that if e appearstwie on the same fae.4. Choose one appearane of eah of w and x on F (eah may appear more thanone).5. Subdivide (w; x), reating u.

596. Add an edge through F between the hosen appearanes of w and x. Thisdivides F into two distint faes.7. Subdivide the new edge, reating v. Beause the edge appears on two distintfaes, v an only appear one on any given fae.8. Add an edge from v to u, so that v appears before w and after x in thelokwise adjaeny list of u. There is only one way to do this beause vappears only one on any given fae.These steps an insert any embedding of a diamond, no matter how many timesa vertex may appear on a fae in P . When looking for all possible moves to applyto P in the algorithm Generate (see Setion 2.5), we loop through all possiblehoies of F , u, v, and the additional appearanes of u and v. Then we are sureof examining every possible twisted diamond and thus generating all diamond-freetarget embeddings. In the next hapter we disuss how to reognize and preventdupliation, so that even if we an desribe the same diamond move in more thanone way (for instane, by making a di�erent hoie about whih vertex is u), wewill still only generate eah hild one.

60
Chapter 5
Other aspets of the algorithm
There still remain some details whih have not been desribed but whih are ne-essary for the implementation of the algorithm. Those details are disussed in thishapter. First, in Setion 5.1, we desribe a anonial form for embeddings, whihleads to an isomorphism test. In Setion 5.2 we disuss move labels, used to ensurethat eah equivalent move is made exatly one from eah parent. Our algorithmrequires the use of a planarity testing algorithm, and in Setion 5.3 we desribe anenhanement used to redue the number of planarity tests we must perform.5.1 A anonial form for embeddingsThe generation algorithm as desribed requires us, eah time we derive a possiblehild embedding C from a possible parent P , to �nd the atual parent for C.Then we reurse to C and its desendants if and only if P is the parent of C. Thislimitation prevents us from proessing C at more than one plae in the omputationtree. Saying that P must be the parent of C begs the question of how to ompareP with Parent(C). Cheking all possible labellings would onsume O(n!) time foran n-vertex embedding. Sine embeddings inlude graphs, and graph isomorphismis a diÆult problem, not known to be solvable in polynomial time, the need for an

61embedding isomorphism test may appear to be a signi�ant obstale.Fortunately, embeddings are muh easier to ompare than graphs. Given a la-belled ombinatorial embedding of a onneted graph, we an generate in O(n2)time, using the algorithm below, a sequene of symbols representing the isomor-phism lass of the embedding. That sequene of symbols is alled the anonialform; two embeddings have the same anonial form if and only if they are isomor-phi.Suppose we have a ombinatorial embedding, and we have already hosen adiretion (lokwise or ounterlokwise) and assigned the labels zero and one totwo adjaent verties. We perform a breadth-�rst searh, starting with the vertexlabelled zero as the root and using the vertex labelled one as its �rst hild. At eahvertex, we visit the neighbours in the hosen diretion, lokwise or ounterlok-wise, starting from the parent. The order of edges visited by this searh is thenfully determined. When the verties of the embedding are labelled with nonneg-ative integers, we an reord the breadth-�rst searh with a sequene of integers.It remains only to hoose whih traversal diretion and pair of adjaent vertiesto use. One obvious way to make that hoie would be to try all possible startingpoints and use the lexially least representation of the embedding.However, doing four breadth-�rst searhes for every edge in the embedding seemsineÆient. It would be preferable to redue the number of possible starting pointsas far as possible. As desribed below, we begin our anonial form with the in-tegers hn;m; fi, the ounts of verties, edges, and faes respetively. Those arethe same for all representations of the embedding. We then insert two more inte-gers before reording the sequene generated by the breadth-�rst searh, namelyhn� degree(u); n� degree(v)i where u is the starting vertex (labelled zero) and v isits �rst neighbour (labelled one). Sine the three terms hn;m; fi are the same in allsequenes representing the embedding, then the lexially least sequene must ne-essarily have minimum possible n� degree(u), and minimum n� degree(v) subjetto the previous ondition. In other words, u must have maximum degree among

62the verties in E, and v must have maximum degree subjet to that.These onditions limit the number of possible starting points for the searh; ifthere is a degree �ve vertex in E, for instane, then we need not run the searh forany u with degree three or four; we know that the result ould not be lexially least.We hose to maximize the degrees of u and v instead of minimizing them, beause weexpet our embeddings to usually have relatively many verties of small degree andrelatively few of large degree. Choosing maximum-degree verties for the startingpoint should tend to give a smaller number of starting points to examine. Of oursethere are embeddings where many or all verties have the maximum degree, andthen this ondition gives little or no speed bene�t; but it is heap to implement, andin pratie it saves time often enough to provide a signi�ant speed improvementoverall.We use the integer �1 to represent the end of an adjaeny list. The sequenereording the breadth-�rst searh then onsists of three integers denoting the num-ber of verties, edges, and faes in the embedding, two more integers to fore adesirable ordering as desribed above, and then the adjaeny lists of vertex zero,vertex one, and so on, up to the last vertex in the embedding. Eah adjaeny listis in the order determined by the breadth-�rst searh, and terminated by �1; thebreadth-�rst searh also assigns the vertex labels exept for zero and one. The pseu-doode below desribes the breadth-�rst searh to label an embedding E, startingfrom adjaent verties u and v and traversing in diretion d, whih is lokwise orounterlokwise.BFS(E; d; u; v) :initialize seq with hn;m; fi, the numbers of verties, edges, and faes in Eappend hn� degree(u); n� degree(v)i to seq (explained above)all verties begin unlabelledlabel u with 0label v with 1

63nextlabel 2for i 0 to n� 1w vertex labelled ifor eah neighbour x of w, starting with the one with minimum labelamong those that have a label, and proeeding in the diretion dif x has no label yetlabel x with nextlabelnextlabel nextlabel + 1end ifappend label of x to seqend forappend �1 to seqend forreturn seqIf we run this traversal on E with all possible values of d, u, and v (note thatwhen (w; x) is an edge in E, we must try both u = w; v = x and u = x; v =w), then the lexially least result is the anonial form for the embedding. Sinewe know that u must have maximum degree and v must have maximum degreesubjet to that, we need only run the traversal for values of u and v satisfyingthose onditions. Sine this sequene inludes an ordered adjaeny list for everyvertex, it is easy to onstrut a ombinatorial embedding isomorphi to E fromthe anonial form. Thus, two embeddings with the same anonial form must beisomorphi. Conversely, two isomorphi embeddings must have the same anonialform. Changing the labelling of verties or the starting point of a list has no e�eton the anonial form beause the breadth-�rst searh determines its own labellingand starting points. Reversing all adjaeny lists (mirror-reversing the embedding)has no e�et on the anonial form beause we make the searh both lokwise andounterlokwise.

64As a side e�et of the anonial form alulation, we obtain the automorphismgroup of the embedding in the form of a list of all permutations from the originallabelling to a labelling that yields the anonial representation. If the embeddinghas some symmetry, then there will be more than one starting point that produesthe anonial representation, so there will be more than one suh permutation. Sineeah permutation is generated by one of our breadth-�rst searhes, and there anbe at most 4m of those in a graph with m edges (two starting points for eah edgemultiplied by two for lokwise or ounterlokwise), that provides an upper limiton the number of permutations. After applying to the embedding the anoniallabelling, whih is a permutation �0 from the list of permutations we generated, wealso replae eah entry �k with �k Æ ��10 , so that we have the automorphism groupas the set of permutations of the anonial vertex labels that leave the breadth-�rst searh representation unhanged. The automorphism group is used with movelabels in eliminating dupliate moves.5.2 Move labelsAs we observed when attempting to implement an embedding generator, we aneliminate almost all dupliation of isomorphi embeddings in the output by �ndinga parent for eah possible hild, and keeping the hild if and only if it was generatedfrom the parent aording to the anonial form above. This restrition prunes theomputation tree a great deal. However, it is still possible that a hild ould bekept more than one, resulting in dupliate embeddings in the output. That ouldhappen if there is more than one way to make a move on the parent to produe thesame hild.If the parent is highly symmetri, there ould be many dupliate moves. Forexample, in Figure 5.1, any of four edges an be replaed by a diamond to give thepitured hild. The software must have a way to reognize that these four edgesare equivalent, and only apply the move to one of them.

65

Figure 5.1: A D2;4 move an be applied to any of four edges in this parent to givethe same hild.We address this need by assigning a name alled a move label to eah way wean make a move on the parent. The move label is a sequene of vertex labels. Wealready know the automorphism group of the parent beause we omputed that asa side e�et of omputing the anonial form. So by applying eah element of theautomorphism group to the move label of the move under onsideration, and takingthe lexially least result, we obtain a anonial form for the move label. Then weatually make the move if and only if its move label mathes the anonial form.Lemma 5.2.1 If the vertex sequene hu; v; wi ours onseutively lokwise orounterlokwise around some fae of an embedding of a graph G with no vertiesof degree less than three, then it does so only one in the entire embedding.Proof. The ourrene of this sequene one means that u and w are both neigh-bours of v, and moreover that they appear onseutively in the yli adjaeny listof v. Sine we do not allow multiple edges, u and w an eah only appear one inthe yli adjaeny list of v. If the sequene of labels hu; v; wi on a fae oursmore one in the embedding, then u and w must be onseutive on both sides: thenext neighbour of v after u must be w in both the lokwise and ounterlokwisediretions. Therefore u and w must be the only neighbours of v, whih ontradits

66the de�nition of G as having no verties of degree less than three. �Lemma 5.2.1 means that by giving the labels of three onseutive vertieshu; v; wi on a fae, we an uniquely identify the fae, the partiular appearanes ofthose three verties on the fae, and a diretion for traversing the fae. Coneptu-ally, we are identifying an appearane of v; to disambiguate the many plaes it mayappear in the embedding, we give its suessor around the fae, w. To speify whihfae we mean, if there are two ontaining that edge, we also give the immediatepredeessor of v, whih is u; that also identi�es the diretion of traversal.
y’

y w’

z

w

x

(a) C0;1 islabelled byhy0; x; y; w0; z; wi.
x

y

y’

x

u’

u

v’

y

v(b) D2;4 is labelled byhy0; x; y; u0; u; v0; vi.
x

y

z

x

y

z() T1;1 islabelled byhx; y; zi.Figure 5.2: How to label moves.As a result, we an label a C0;1 move with a sequene of six vertex labels: threeto identify one endpoint of the new edge, and three to identify the other endpoint.A T1;1 move is labelled with the vertex to split, and the two neighbours that willbeome neighbours of the degree three vertex reated by the move. Labelling aD2;4 move is more ompliated. Coneptually, this move onsists of adding a newedge between two verties that are already adjaent, then subdividing the old andnew edges and adding another edge between their midpoints. We use three vertexlabels hy0; x; yi to identify the old edge and the fae in whih we operate. We must

67
vu

w

x

z

yFigure 5.3: A potential C0;1 move, whih ould be labelled in four di�erent ways.then speify where to draw the new edge, by naming its two endpoints. The labelhu0; x; ui names one endpoint and hv0; y; vi names the other, as for the C0;1 move,but sine x and y were already spei�ed in naming the old edge, we need only sevennumbers to name the entire move: hy0; x; y; u0; u; v0; vi.One problem with this approah is that there may be several inequivalent waysto label the same move. For instane, with the C0;1 move, we ould label it lokwiseor ounterlokwise starting from either endpoint of the edge being reated. If theautomorphism group of the parent is trivial, all four of these would result in di�erentanonial labellings. When assigning the anonial move label to a move, then, wemust �nd the lexial minimum of all images of all possible labels for the move.When we evaluate possible moves in a software loop, we arefully deide whihlabellings will be assoiated with whih iterations of the loop, and take the leastof the labellings assigned to the urrent iteration as the thing to ompare with theanonial image.For instane, our move-seletion proess for the C0;1 move goes around eah faein only one diretion, lokwise or ounterlokwise, but attempts to draw a hordaross the fae from every vertex to every other vertex on the fae. In Figure 5.3,we traverse a fae lokwise and attempt to draw the hord between verties u andv twie: one oneptually from u to v and one from v to u. When drawing thehord from u to v we label it with the least of hx; u; w; z; v; yi and hw; u; x; y; v; zi

68
0 1

2

4 3

5

4

1

3

2

0

5 0 1

2

4 5

3

Figure 5.4: Two di�erent moves may reate the same hild from the same parent.and when drawing the hord from v to u we label it with the least of hz; v; y; x; u; wiand hy; v; z; w; u; xi. The anonial label for the move is the least image of any ofthese. Assuming that the automorphism group is trivial, we will deide to makethe move exatly one on this fae. If the automorphism group were not trivial wemight make the move on some other fae instead; but in any ase, we would makeit exatly one in the embedding.A more serious problem ours when two inequivalent moves lead from thesame parent to the same hild. Figure 5.4 shows an example of suh a situation.First, note that the parent's automorphism group onsists of the identity and apermutation that swaps vertex zero with vertex one and vertex three with vertexfour. Two di�erent C0;1 moves are shown by dashed lines. The anonial movelabel for one is h0; 2; 5; 5; 4; 1i and for the other h0; 3; 5; 1; 4; 0i. These moves are notequivalent; for instane, one endpoint of the �rst move is on a triangular fae and

69that is not the ase for the seond move.The lower half of the �gure shows the result of eah move, using the same vertexlabelling as in the parent to make lear what happens to the verties. Althoughthe drawings of the hildren have been adjusted to show their relationship to eahother rather than to the parent, it is lear by areful examination of eah vertexthat these are the hildren produed by the two moves. As is also lear from thediagram, these two hildren are the same up to a mirror reversal and relabelling ofthe verties. They have the same anonial form.Fortunately, move labels provide an easy solution to this kind of problem aswell. When we examine a move we ould make on an embedding P , we �rst hekthat the move's label mathes its own least image under the automorphism groupof P . If it does, we onstrut the resulting embedding C, onstrut the parent ofC, and hek that the parent is isomorphi to P . So far we have done nothing toprevent the situation of Figure 5.4. But when we all Parent(C), it also returns amove label desribing a way to get from the parent to C. We then hek not onlythat P mathes the parent of C, but also that the move label we used to �nd Cmathes the move label returned by Parent(C).Just as with seletion of parents, it does not matter at all how we hoose themove label to return from Parent, provided we hoose some move label that atu-ally will be visited and does lead from the parent to the hild. However, Parent(C)must always hoose the same move label for all isomorphi values of C, and theeasiest way to be sure of that is to fore Parent to examine only the anonialform of C. Any additional information available to the software, as for instane theedge marks desribed in the next setion, is arefully exluded from inuening theseletion of the parent and move label.

705.3 Edge markingWhen we selet a parent for a given C, it is important that the parent be anembedding whose hildren we atually will examine. Otherwise, the hild will neverbe proessed. Sine we examine only target embeddings, the parent must be a targetembedding; therefore, it must be bionneted, have no verties of degree less thanthree, and have orientable genus one. If we are limiting the number of diamondsto at most one, then we look for a parent ontaining at most one diamond. Togenerate embeddings eÆiently, we must be able to quikly test, or avoid testing,eah of these onditions.Most of the target embedding onditions are easy to deal with. Genus no greaterthan one, for instane, is guaranteed beause the hild has genus one and none ofour reverse moves an inrease the genus. Minimum degree of verties is easy toassure. We simply forbid making any reverse move that would redue the degree ofa vertex to less than three. Cheking for bionnetedness requires a simple, linear-time traversal of the graph. But it may be muh more expensive to hek that apossible parent is not planar.Some planarity testing algorithms are simple to implement but do not ahievelinear time omplexity, like the one known as Demouron's Algorithm [15℄; oth-ers are linear-time but require ompliated strutures like PQ-trees [10, 14℄. Thelinear-time planarity algorithm of Boyer and Myrvold [11℄ is designed for easy im-plementation, but is still ompliated enough to present some problems. So if wemake an embeddability test, or possibly several of them, for every potential hildwe visit, then we ould spend most of our programming labour or omputation timedoing that alone.First of all, we an arrange the tests we apply to potential parents in orderof inreasing ost, so that if we an rejet a potential parent for a reason we andetermine heaply, we will do so and avoid doing the more expensive tests. But itstill seems undesirable to do planarity testing if we an possibly avoid it, espeially

71as the graphs beome larger. On a very large toroidal graph, for instane, it seemsunlikely that removing any one edge would ever render it planar.We redue the number of planarity tests by using edge marks. If an edge e inan embedding E is ontained in every subembedding of E homeomorphi to K5 orK3;3, then e is marked. The onverse is usually, but not always, true: edges thatare not ontained in every Kuratowski subgraph may or may not be marked. Notethat this onept di�ers from the red olouring used in proving the existene ofparents, beause there we hose a spei� subgraph homeomorphi to K5 or K3;3and oloured all of it. Edge marks, however, only need to be applied to edges thatare in all subgraphs homeomorphi to K5 or K3;3. All target embeddings ontainedges that would be oloured red, but some target embeddings have no edges thatneed to be marked.Removing an edge with a reverse C0;1 move an only make the graph planar ifin so doing we destroy every nonplanar subgraph in the embedding. So any timewe would remove an edge to obtain the parent and that edge is not marked, we getthe planarity test result (\not planar") for free. In that ase the edge an remainunmarked.If we attempt to remove a marked edge, we must still do the planarity test.But if we do the test and it returns \not planar", then we know that the edge didnot really need to be marked; obviously there exists some nonplanar subgraph notdestroyed by the removal of the edge. So in that ase, we an unmark the edge.Sine we are examining all possible hildren for eah embedding, marked edges tendto be tested, and unmarked if appropriate, sooner rather than later. So in pratie,the set of marked edges is usually lose to minimal. The following theorem showsthat we an easily maintain a set of marked edges.Theorem 5.3.1 If the edges of a parent P are marked suh that an edge is markedif it is in every subgraph of P homeomorphi to K5 or K3;3, then we an obtain amarking for the hild C also satisfying that ondition by following these rules:

72� Edges marked in P are marked in C.� New edges introdued by C0;1 moves are not marked.� New edges introdued by D2;4 moves are not marked.� New edges introdued by T1;1 moves are marked.Furthermore, if we ever do a planarity test on a graph G � e onsisting of agraph G minus an edge e, and G� e is found to be nonplanar, then we an unmarke in G.Proof. When we obtain C from P by a C0;1 move, obviously every subgraph of Pis a subgraph of C also. So any edge that is in every subgraph of C homeomorphito K5 or K3;3 must also be in every subgraph of P homeomorphi to K5 or K3;3.The set of edges that must be marked in C is a subset of the set of edges that mustbe marked in P , so if we make the marked edges of C equal to the marked edge ofP , we obtain a legal marking.When we obtain C from P by a D2;4 move, we do not mark any of the newedges. Call the endpoints of the edge being removed u and v. If the edge (u; v)was unmarked in P then obviously there is some subgraph homeomorphi to K5or K3;3 in P that did not inlude that edge, and that subgraph is retained in C.Even if the edge being removed was marked, removal of any one of the new edgesmaintains a path between u and v, and so does not make C planar by destroyingall subgraphs homeomorphi to K5 or K3;3.We mark all edges added by T1;1 moves in order to err on the side of aution,beause it is possible that an edge added by suh a move ould be in every subgraphhomeomorphi to K5 or K3;3, even when no other edges need to be marked. Forinstane, supposed we take an embedding of K3;3, subdivide all nine edges as withS1;1 moves, and then perform a D2;4 move on every edge of the result; so we havean embedding of K3;3 with every edge replaed by two diamonds in a row.

73Any one edge from the resulting embedding ould be removed without renderingthe graph planar. Suppose we split the degree four vertex joining two diamonds inthis onstrution. We ould either preserve both diamonds or destroy them both,depending on how we make the split. If we preserve the diamonds, the new edge ison every subgraph homeomorphi to K5 or K3;3 and so needs to be marked. Ratherthan attempting to make some elaborate test for whih new edges from T1;1 movesneed to be marked, we simply mark them all. Any edges marked unneessarily bythat rule will soon be unmarked as a result of a planarity test anyway.Finally, we an remove the mark from an edge e if removal of e leaves the graphnonplanar, beause that is the de�nition of marking. Edges must be marked if theirremoval makes the graph planar, and may or may not be marked if their removaldoes not make the graph planar. �

74
Chapter 6
Experimental results
Our algorithm is designed for pratial implementation. This hapter begins withSetion 6.1, whih desribes our implementation of an embedding generator basedon this work. In Setion 6.2 we desribe some results obtained by running ourgenerator, and give tables of the embeddings and graphs found. We also ommentbriey on the number of embeddings per graph.6.1 Implementation of the algorithmWe implemented several versions of an embedding generator during the projet,as the theoretial work developed. The �nal version, used to alulate the resultsgiven here, ontains approximately 5,100 lines of C language soure ode, plussome additional utilities written in C and Perl, the GNU getopt library funtion[21℄, and a make�le to manage the ompilation proess. This version is basedon Theorem 4.2.1 and the algorithm of Setion 2.5, to generate lists of diamond-free target embeddings by examining all target embeddings ontaining at most onediamond.Development was onduted on the author's dual 433MHz Intel Celeron-basedpersonal omputer, under the GNU/Linux operating system. The omputational

75experiments were onduted there and on various omputers running Solaris atthe University of Vitoria and Rohester Institute of Tehnology. All the CPUtimes listed here are for the Celeron unless otherwise spei�ed, and are measuredin user-spae CPU time to redue the e�et of other proesses running on the sameomputers.The embedding generator inludes some additional features, like the edge-mark-ing tehnique of Setion 5.3 to redue the number of planarity tests performed, andthe tehnique desribed by MKay [28, Setion 8℄ for splitting the omputation intoparallel slies. We inlude an implementation of the planarity algorithm of Demou-ron, Malgrange, and Pertuiset [15℄. Although this algorithm does not o�er thelinear asymptoti time omplexity of some other planarity algorithms, it performswell with the relatively small graphs our ode proesses.The data struture we use for embeddings is a simpli�ed version of that desribedby Boyer and Myrvold for their planarity algorithm [11, Setion 4℄. Eah vertexhas a irular doubly-linked list of reords representing the neighbours around thatvertex in lokwise order; the two reords representing the endpoints of eah edgeare joined by pointers alled twin links. We do not use the speial feature of treatingthe two linked-list pointers equivalently, beause we do not need to be able to reversethe order of a list in onstant time.As well as the linked-list representation of the embedding, we also maintain anadjaeny matrix as a paked bit array. Adjaeny matries inherently require O(n)or O(n2) time for some operations that ould be done faster on other strutures.But our implementation, although it an handle almost any number of verties intheory with the appropriate ompiled-in options, is limited to embeddings of up toabout eleven or twelve verties in pratie simply by output size and omputationtime. Paked bit arrays of this size an be implemented so eÆiently on urrent bit-parallel omputers that the adjaeny matries are extremely fast and onvenient,despite their asymptoti disadvantages.One speial feature of the present software allows running the generation pro-

76ess in reverse: with an embedding provided as input, it prints out the parent ofthe input embedding, the parent of that embedding, and so on, until a seed em-bedding is reahed or a onsisteny hek fails. That proedure proved invaluablewhen debugging the parent-seletion ode, sine a ommon failure mode was forthe software to selet as a parent an embedding (or an inonsistent data stru-ture vaguely resembling an embedding) that would not ever be generated by thegeneration algorithm.6.2 Diamond-free targets up to n = 10We ran the embedding generator to make a list of all diamond-free target embed-dings on up to nine verties, and stored the results as ompressed text �les with oneline, ontaining the anonial form, for eah embedding. The resulting �les storeapproximately 17 million embeddings of 75 thousand graphs in approximately 120megabytes of disk spae. This run was split into three equal slies and onsumedapproximately 9.4 hours of CPU time.Sine a similar set of �les for the ten-vertex ase would be too large to store on-veniently, we split the omputation into 100 slies and had the program output onlythe graph for eah diamond-free target embedding. We then ounted the numberof embeddings for eah isomorphism lass of graphs. Generating these embeddingsrequired approximately 13 days of CPU time. The resulting �les, ontaining graphsin nauty anonial form [27℄ and a ount of embeddings for eah graph, onsumeapproximately 19 megabytes ompressed. There were approximately 3.9 milliongraphs with 462 million embeddings in this run. Storing the embeddings would beprohibitive: extrapolating the spae onsumption of the nine-vertex graphs givesan estimate of at least 3,200 megabytes to store all the ten-vertex embeddings ofdiamond-free target graphs, even in ompressed form.To provide a referene for debugging purposes, we also obtained an independentlist of diamond-free target graphs with up to nine verties, by using the geng

77software by MKay [28℄ to generate all graphs on up to nine verties with all vertieshaving minimum degree three and few enough edges to be toroidal. We passed thosegraphs through a simple �lter to remove the ones ontaining diamonds, and usedthe torus embedding software of Neufeld and Myrvold [34℄ to �nd the graphs withgenus one.Generating the independent list of diamond-free target graphs required approx-imately four months of CPU time (ompare to 9.4 hours to generate the same listwith our generator program), but the result proved to be invaluable for debuggingour generator. Most programming mistakes in our own software manifested eitheras dupliate embeddings in the output, or as target graphs that failed to appearin the output, so we tested our pakage by heking for dupliates, then usingnauty [27℄ to �nd a list of graphs in our output up to isomorphism, and hekingthat list against the referene list.The list from our urrent generator agrees with the referene list, and that addsto our on�dene not only that our software is orret but that the pakages usedto make the referene list are also orret. Sine our generator uses a ompletelydi�erent algorithm from the algorithms used by geng and the torus embedder,it seems highly unlikely that both lists would aidentally omit exatly the samegraphs.Our ounts of diamond-free target embeddings and graphs with up to ten vertiesare shown in Tables 6.1 and 6.2 respetively. We also found the maximum numberof torus embeddings for any one diamond-free target graph with a �xed number ofverties n and edges m; these numbers are shown in Table 6.3.In Table 6.4 we show the mean ount of torus embeddings per graph for eahvalue of n, obtained by dividing the number of embeddings by the number of graphs.Note that the number of embeddings per graph inreases with more verties up toeight, but then dereases a little for nine-vertex graphs and dereases onsiderablymore for ten-vertex graphs. However, the maximum number of embeddings fora single target graph at eah value of n, shown in the bottom line of Table 6.3,

78
n = 5 6 7 8 9 10m = 9 210 6 711 45 1412 110 218 913 113 1,287 36414 24 3,702 4,822 24115 4 4,990 28,851 8,106 7416 3,184 88,564 96,129 7,01217 911 150,724 556,190 170,44318 168 144,888 1,814,463 1,771,17119 21 79,845 3,574,097 9,951,88120 2 26,194 4,408,741 33,834,40021 1 5,613 3,475,526 74,055,93922 790 1,784,251 108,160,01923 69 611,193 107,805,32124 7 142,144 74,469,98225 21,760 36,069,91026 2,000 12,326,12627 112 2,938,90528 467,43429 44,73930 2,109total 6 305 14,498 530,740 16,494,953 462,075,465Table 6.1: Counts of diamond-free target embeddings on the torus.

79
n = 5 6 7 8 9 10m = 9 110 1 111 2 112 2 6 213 2 14 1314 1 23 59 1115 1 23 180 132 916 17 339 784 17117 9 441 2,757 2,00318 5 415 6,473 12,72619 2 307 10,757 51,06020 1 187 13,548 142,35821 1 103 13,565 295,86322 51 11,271 482,27723 22 7,920 640,51824 7 4,639 706,70725 2,113 643,66426 628 466,21327 101 250,36928 90,64929 19,19030 1,866total 1 10 102 2,126 74,699 3,805,643Table 6.2: Counts of diamond-free target graphs on the torus.

80
n = 5 6 7 8 9 10m = 9 210 6 711 25 1412 88 68 513 66 239 4514 24 372 199 4415 4 866 570 158 2016 491 1,084 498 10017 281 2,232 1,056 30818 64 1,818 2,216 1,01019 11 2,112 3,384 2,11020 2 828 4,196 3,86021 1 375 5,164 5,80822 66 2,918 9,14423 8 1,380 9,74824 1 499 7,47625 162 3,82826 24 1,52127 2 71828 16629 4830 6all m 6 88 866 2,232 5,164 9,748Table 6.3: Maximum numbers of torus embeddings for diamond-free target graphs.

81n = 5 6 7 8 9 106.00 30.50 142.14 249.64 220.82 121.42Table 6.4: Mean number of torus embeddings per diamond-free target graph.ontinues to inrease with additional verties, at least for the numbers of vertieswe examined. An embedding of the single diamond-free target graph we examinedwith most torus embeddings, 9,748 of them, is shown in Figure 6.1.

82

19

76

0

4

5

8

2 3

Figure 6.1: One of the 9,748 torus embeddings of the unique ten-vertex diamond-free target graph with maximum number of torus embeddings.

83
Chapter 7
Appliations and future work
Although the lists of diamond-free target embeddings generated by our software anddesribed in the previous hapter may have some interest in themselves, the algo-rithm is intended to be useful in some spei� appliations. This hapter desribessome of those appliations. We begin by desribing a fast lookup-based toroidalitytest in Setion 7.1. In Setion 7.2 we apply that test to the searh for topologialobstrutions to embeddability on the torus. Future work with this algorithm ouldfous on searhes for additional obstrutions. Another possible diretion for futurework would be the appliation of these tehniques to other surfaes, desribed inSetion 7.3. We end the hapter with a summary of our onlusions, in Setion 7.4.7.1 A lookup-based toroidality testerWe an use the output of the embedding generator to build a database of diamond-free target graphs, and then use that database as the basis for a fast toroidalitytest. Given a graph G with n verties and the database of diamond-free targetgraphs with up to n verties, we an eliminate any verties of degree less than threefrom G, �nd its bionneted omponents, and hek them for planarity. If morethan one bionneted omponent is nonplanar then G must have genus greater than

84one; if all are planar then G is planar; otherwise, we look up the one nonplanarbionneted omponent in the database. The following pseudoode desribes thealgorithm:FastGenus(G) :genus 0while G is not emptyH some bionneted omponent of Gif H is nonplanarreplae diamonds with edges by reverse D2;4 moves, and eliminateverties of degree less than three with reverse S1;1 movesif H is in the list of diamond-free target graphsgenus genus + 1else return \greater than one"end ifif genus > 1return \greater than one"end ifend ifG G�Hend whilereturn genusOur implementation of FastGenus onsists of a �lter that writes out, for eahinput graph G, either K4 if G is planar; a onstant genus two graph if G has genusat least two; or a graph isomorphi to the nonplanar bionneted omponent of Gexept for diamonds and verties of degree less than three, if G has exatly onenonplanar bionneted omponent. So the output of the �lter is a graph that fallsinto the same ategory (genus zero, genus one, or genus at least two) as the input;

85if the genus is zero then the output is K4, and if the genus is one then the outputis some labelling, possibly not anonial, of a diamond-free target graph.We pass the output of our �lter through the nauty [27℄ anonial labellingutility; then we look up the result in a table to �nd the ategory for the graph.To handle input graphs up to ten verties, the table has about 3.9 million entriesand onsumes about 39 megabytes of disk spae (ten bytes per entry). The tableontains K4, and the diamond-free target graphs from the generator program; ifthe output of the �lter is not in the table, then we know the input graph G musthave had genus at least two. Running the test on large bathes of graphs, using our�lter, nauty, and the sorting and lookup utilities provided by the operating system,we an ategorize about ten thousand graphs per CPU seond.7.2 Searhing for torus obstrutionsThe generalized Kuratowski theorem states that for any surfae S, there is a �nitelist of graphs alled topologial obstrutions suh that a graph G is embeddable onthe surfae if and only if it does not ontain a subgraph homeomorphi to a graphon the list. The theorem an also be stated in terms of minors: G is embeddableif and only if it does not ontain as a minor one of the graphs on a �nite listof minor-order obstrutions. The result was proved for non-orientable surfaes byArhdeaon and Huneke [4℄ and for orientable surfaes by Bodendiek and Wagner[9℄. Robertson and Seymour proved a stronger onjeture that inludes the generalKuratowski theorem [37℄. These itations are from a survey by Arhdeaon [3℄.For the plane, the sets of topologial and minor order obstrutions are bothequal to fK5; K3;3g. For the projetive plane, there are 103 topologial obstrutionsorresponding to 35 forbidden minors [1, 2, 20℄. The torus embedding ode ofNeufeld and Myrvold [34, 33℄ led to a omplete list of torus obstrutions with upto ten verties, and a partial list of larger obstrutions.A few obstrutions for various surfaes an also be generated by simple rules;

86for instane, suppose we take k + 1 opies of K5, hoose one vertex from eah, andidentify all the hosen verties. The result, ontaining 4k + 5 verties, must be atopologial and minor-order obstrution for the k-handled torus beause it ontainsk + 1 bionneted omponents eah with genus one, and removing or ontratingany edge redues the genus of that 3-onneted omponent to zero, reduing thegenus of the entire graph by a theorem of Battle, Harary, Kodama, and Youngs[8℄. We know of no known embeddability obstrutions apart from these kinds ofonstrutions and the results mentioned above for the plane, projetive plane, andtorus.A topologial obstrution G for the torus has the property that G is not toroidalbut removing any one edge from G gives a toroidal graph. This property leadsnaturally to a tehnique for �nding obstrutions: if we take a list of all toroidalgraphs, add one edge to eah of them in all possible ways, and remove any toroidalgraphs from the resulting list, all topologial obstrutions for the torus will beinluded in the resulting list. All topologial obstrutions are diamond-free asa onsequene of Theorem 3.1.1, and if we on�ne our attention to bionnetedobstrutions, we an �nd them all on the list derived from our software's list ofdiamond-free target graphs.We took the list of about 3.9 million diamond-free target graphs generated by oursoftware for up to ten verties, subdivided between zero and two edges in all possibleways to get graphs with no more than ten verties, and eliminated dupliate graphs.Then we added an edge to eah graph in all possible ways, eliminated dupliates,and removed all graphs that were on the list of diamond-free target graphs. Thatprodued a list of 1,028,118 graphs, inluding all topologial obstrutions for thetorus with up to ten verties. The step of subdividing edges was neessary in orderto be able to reate obstrutions where every edge is inident to a degree threevertex; suh a graph learly annot be reated by adding just an edge to a graphwith no verties of degree less than three. The only bionneted obstrution wefound with every edge inident to a degree three vertex is the graph K7;3, shown in

87
Figure 7.1: The graph K7;3, a topologial obstrution to torus embeddability.Figure 7.1.For every graph G on this list of andidate obstrutions, we removed one edgein all possible ways and made another list of all those graphs G � e. We appliedthe fast lookup-based torus test desribed in the previous setion to the list ofG� e graphs, and generated a list of all graphs G that were not toroidal but whereremoving an edge e would always make G � e toroidal; in other words, a list oftopologial obstrutions. A summary of that list is shown in Table 7.1. The CPUtime onsumption for this obstrution searh was diÆult to measure beause theproessing was divided between several di�erent piees of sorting, merging, andlookup software. We estimate the onsumption at six hours, about a third spentrunning the system sort utility, and exluding the 13 days required to ompile thedatabase as disussed in Setion 6.2.We heked the 707 obstrutions on our list with nauty to make sure they weredistint, and with the simpli�ation utility from our lookup-based torus test to makesure they were bionneted. We also veri�ed that eah of our believed topologialobstrutions really was a topologial obstrution, using the torus tester of Neufeldand Myrvold [34, 33℄. Our ounts of obstrutions agree with theirs exept in thease of ten verties and 26 edges, where we ount one more obstrution. Afterobtaining their list of 656 ten-vertex topologial obstrutions [31℄, we found thatthe one missing obstrution was the one shown in Figure 7.2. We were unable todetermine why their searh missed this obstrution.

88n = 8 9 10m = 19 0 2 1420 0 4 821 0 2 3422 1 9 4023 0 17 19024 1 6 17025 1 2 10226 0 5 7627 0 0 2128 0 0 129 0 0 030 0 0 1total 3 47 657Table 7.1: Bionneted topologial obstrutions for the torus with up to ten verties.
9

8

7

61

3

5

4

2

0

Figure 7.2: The obstrution not found by Neufeld and Myrvold [34, 33℄.

897.3 Other surfaesMuh of this work ould also be applied to other surfaes besides the torus. Indeed,muh of the programming in our projet was originally done with an extensionto arbitrary surfaes in mind. Generating embeddings of projetive planar graphsembedded on the projetive plane would require us to extend the onept of a om-binatorial embedding to express embeddings on nonorientable surfaes, but that isnot diÆult. A tehnique involving positive and negative signs plaed on the edgesof the embedding is used in the projetive planarity algorithms of Mohar [29℄ andMyrvold and Roth [32℄. While developing the toroidal graph generator, we imple-mented but did not test or use some subroutines to handle embeddings extendedthis way.For the projetive plane, the edge signs are the only enhanement obviouslyneessary. The proofs of Chapters 3 and 4 should be easy to extend to the projetiveplane. For surfaes of higher genus, both orientable and non-orientable, the problemmay be somewhat more ompliated.First, there is the question of what embeddings to use as seeds. The same set ofeight seeds we used for the torus would seem to be a good hoie for the projetiveplane also, but it is not lear what seeds to use, for example, for the two-handledtorus. Should we use the set of topologial obstrutions for the torus? If we did,it would raise a problem, beause some torus obstrutions are not onneted, letalone bionneted; we would have to either revise our de�nition of target graphs toallow the use of those as seeds, or somehow prove them unneessary.The seond problem involves verifying the genus of target graphs. Our algorithmfor the torus requires that we test, when examining possible parents, that eah graphreally is genus one; the onstrution provides that the genus is no more than one,and we use a planarity test to verify that the genus is no less than one. We oulduse the planarity test when generating graphs on the projetive plane also. Butwhen generating graphs on a surfae of higher genus we would need a higher-genus

90testing algorithm; for instane, a torus tester to generate graphs on the two-handledtorus.The torus tester of Neufeld and Myrvold [34℄ seems too slow to be useful in thisontext, where millions of graphs must be proessed; but perhaps it ould be spedup by some kind of memoization tehnique, beause the same graphs will be testedmany times. The lookup-based toroidality tester we onstruted in Setion 7.1 ouldalso be useful. Note that the implemented projetive planarity tester of Myrvoldand Roth [32℄, and the known list of obstrutions for the projetive plane [1, 2, 20℄,suggest a relatively easy appliation to the Klein bottle.We ould onsider generating embeddings on the plane. Indeed, some earlyversions of our software (before we ompleted the theoretial work) were designedto also generate planar embeddings. On the plane, of ourse, there is no onernabout testing genus; we an start with planar embeddings as seeds and then theonstrution moves an keep them planar. However, something would have to bedone about the wheels, whih are an in�nite set of bionneted planar graphs withno degree three verties, eah of whih is not amenable to any reverse C0;1, D2;4, orT1;1 move to leave a bionneted planar graph with no degree three verties.Also, some speial aommodation might possibly have to be made forK4, whihis a graph with the unique feature that every one of its edges is a diamond edge.The proof of Theorem 3.1.8, for instane, depends on the fat that a target graphannot be a wheel. The only move that an be made on an embedding of K4 is aD2;4 move that destroys �ve diamonds and reates one, whih ould ause problemsfor the line of reasoning developed in Setion 4.2.7.4 ConlusionsWe have desribed an algorithm to generate one representative from every isomor-phism lass of diamond-free target embeddings up to a hosen number of vertiesor edges, and proved that algorithm orret. We have desribed some additional

91issues relating to implementation, and our own C language implementation of thealgorithm. Some experimental results from our implementation have been pre-sented, inluding the determination of all bionneted topologial obstrutions totorus embeddability ontaining ten or fewer verties. Finally, we have proposedsome additional appliations for the algorithm.

92
Bibliography[1℄ D. Arhdeaon. A Kuratowski theorem for the projetive plane. Thesis, OhioState University, 1980.[2℄ D. Arhdeaon. A Kuratowski theorem for the projetive plane. Journal ofGraph Theory, 5:243{246, 1981.[3℄ D. Arhdeaon. Topologial graph theory: A survey. Congressus Numeratum,115:5{54, 1996.[4℄ D. Arhdeaon and J. P. Huneke. A Kuratowski theorem for nonorientablesurfaes. Journal of Combinatorial Theory, Series B, 46:173{231, 1989.[5℄ A. Argyle. Toroidal embeddings of K3;3 and K5. CSC 499 Tehnial Projet,University of Vitoria, 1999.[6℄ D. Barnette. Generating the triangulations of the projetive plane. Journal ofCombinatorial Theory, Series B, 33:222{230, 1982.[7℄ D. Barnette. Generating the 4-onneted and strongly onneted triangulationson the torus and projetive plane. Disrete Mathematis, 85:1{16, 1990.[8℄ J. Battle, F. Harary, Y. Kodama, and J. Youngs. Additivity of the genus of agraph. Bulletins of the Amerian Mathematial Soiety, 68:565{568, 1962.[9℄ R. Bodendiek and K. Wagner. Solution to K�onig's graph embedding problem.Math. Nahr., 140:251{272, 1989.[10℄ K. S. Booth and G. S. Lueker. Testing for the onseutive ones property,interval graphs, and graph planarity using PQ-tree algorithms. Journal ofComputer and System Sienes, 13:335{379, 1976.[11℄ J. Boyer and W. Myrvold. Stop minding your P's and Q's: A simpli�edO(n) planar embedding algorithm. In Proeedings of the Tenth Annual ACM-SIAM Symposium on Disrete Algorithms (Baltimore, Maryland, January 17{19, 1999), pages 140{146, 1999.

93[12℄ G. Brinkmann and B. MKay. Fast generation of some lasses of planar graphs.preprint.[13℄ J. Cai. Counting embeddings of planar graphs using DFS trees. SIAM Journalon Disrete Mathematis, 6(3):335{352, 1993.[14℄ N. Chiba, T. Nishizeki, A. Abe, and T. Ozawa. A linear algorithm for embed-ding planar graphs using PQ-trees. Journal of Computer and System Sienes,30:54{76, 1985.[15℄ G. Demouron, Y. Malgrange, and R. Pertuiset. Graphes planaires. RevueFran�aise Reherhe Op�erationnelle, 8:33{47, 1964.[16℄ J. R. Fiedler, J. P. Huneke, R. B. Rihter, and N. Robertson. Computing theorientable genus of projetive graphs. Journal of Graph Theory, 20(3):297{308,1995.[17℄ I. S. Filotti. An algorithm for embedding ubi graphs in the torus. Journalof Computer and System Sienes, 2:255{276, 1980.[18℄ M. Fontet. A linear algorithm for testing isomorphism of planar graphs. InS. Mihaelson and R. Milner, editors, Third International Colloquium on Au-tomata, Languages and Programming, pages 411{424, University of Edinburgh,July 20{23 1976. Edinburgh University Press.[19℄ O. Frink and P. Smith. Abstrat 179. Bulletins of the Amerian MathematialSoiety, 36:214, 1930.[20℄ H. Glover, J. Huneke, and C. Wang. 103 graphs that are irreduible for theprojetive plane. Journal of Combinatorial Theory, Series B, 27:332{370, 1979.[21℄ GNU Projet. GNU getopt. Free Software Foundation, In., 675 Mass Ave,Cambridge, MA 02139, USA, 1995. Computer software, from the Fethmail4.1.1 distribution by Eri S. Raymond.[22℄ M. Henle. A ombinatorial introdution to topology. Dover Publiations, In.,New York, 1994.[23℄ J. Hopraft and J. Wong. Linear time algorithm for isomorphism of planargraphs. In 6th ACM SIGACT. Assoiation for Computing Mahinery, NewYork, 1974.[24℄ M. Juvan, J. Marin�ek, and B. Mohar. Embedding graphs in the torus in lineartime. In Integer Programming and Combinatorial Optimization, volume 920 ofLeture Notes in Computer Siene, pages 360{363. Springer, Berlin, 1995.

94[25℄ L. C. Kinsey. Topology of Surfaes. Undergraduate Texts in Mathematis.Springer-Verlag, New York, 1993.[26℄ K. Kuratowski. Sur le probl�eme des ourbes gauhes en topologie. FundamentaMathematiae, 15:271{283, 1930.[27℄ B. D. MKay. nauty user's guide (version 1.5). Tehnial Report TR-CS-90-02,Department of Computer Siene, Australian National University, 1990.[28℄ B. D. MKay. Isomorph-free exhaustive generation. Journal of Algorithms,26(2):306{324, Feb. 1998.[29℄ B. Mohar. Projetive planarity in linear time. Journal of Algorithms, 15:482{502, 1993.[30℄ B. Mohar. A linear time algorithm for embedding graphs in an arbitrarysurfae. SIAM Journal of Disrete Mathematis, 12(1):6{26, 1999.[31℄ W. Myrvold. Personal ommuniation.[32℄ W. Myrvold and J. Roth. Simpler projetive plane embedding. Submitted toDisrete Mathematis, June 2000.[33℄ E. Neufeld. Pratial toroidality testing. Master's thesis, Department of Com-puter Siene, University of Vitoria, 1993.[34℄ E. Neufeld and W. Myrvold. Pratial toroidality testing. In Proeedings of theEighth Annual ACM-SIAM Symposium on Disrete Algorithms (New Orleans,Louisiana, January 5{7, 1997), pages 574{580, 1997.[35℄ B. Peruni�i� and Z. Duri�. An eÆient algorithm for embedding graphs inthe projetive plane. In Proeedings of the Fifth Quadrennial InternationalConferene on the Theory and Appliations of Graphs with speial emphasis onAlgorithms and Computer Siene Appliations (Kalamazoo, Mihigan, June4{8, 1984), pages 637{650, 1985.[36℄ R. Read and D. Corneil. The graph isomorphism disease. Journal of GraphTheory, 1:339{363, 1977.[37℄ N. Robertson and P. Seymour. Graph minors VIII: A Kuratowski theoremfor general surfaes. Journal of Combinatorial Theory, Series B, 48:255{288,1990.

VITASurname: Skala Given Names: Matthew AdamPlae of Birth: Vitoria, British Columbia, CanadaEduational Institutions Attended:University of Vitoria 1995 to 2001Camosun College 1994 to 1995Degrees Awarded:B.S. University of Vitoria 1999Honours and Awards:NSERC Postgraduate Sholarship (PGS A) 2000 to 2001University of Vitoria Fellowship 1999 to 2000President's Researh Sholarship 2000BC ASI Graduate Sholarship 1999Publiations and Presentations:Skala, M., and Myrvold, W. (2001) Fast Generation of Graphs Embedded on theTorus. Presented at 32nd Southeastern International Conferene on Combinatoris,Graph Theory, and Computing, Baton Rouge, Louisiana, February 26{Marh 2,2001.Goodenough, D.G., Charlebois, D., Bhogal, A.S., Dyk, A., and Skala, M. (1999)SEIDAM: A Flexible and Interoperable Metadata-Driven System for Intelligent For-est Monitoring. Proeedings of the International Geosiene and Remote SensingSymposium 1999 (IGARSS'99), Hamburg, Germany, pp. 1338{1341.Skala, M. (1998) A Limited-Di�usion Algorithm for Blind Substring Searh. Pro-eedings of the 10th Annual Canadian Information Tehnology Seurity Sympo-sium, 1{8 June 1998, Ottawa, Ontario, pp. 397{410.

UNIVERSITY OF VICTORIA PARTIAL COPYRIGHT LICENSE
I hereby grant the right to lend my thesis to users of the University of VitoriaLibrary, and to make single opies only for suh users or in response to a requestfrom the Library of any other university, or similar institution, on its behalf orfor one of its users. I further agree that permission for extensive opying of thisthesis for sholarly purposes may be granted by me or a member of the Universitydesignated by me. It is understood that opying or publiation of this thesis for�nanial gain by the University of Vitoria shall not be allowed without my writtenpermission.Title of Thesis:Generation of Graphs Embedded on the TorusAuthor Matthew Adam SkalaAugust 27, 2001

