Aspects of Metric Spaces
in Computation

by
Matthew Adam Skala

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2008

(©Matthew Adam Skala 2008

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Matthew Adam Skala

iii

Abstract

Metric spaces, which generalise the properties of commonly-encountered physical
and abstract spaces into a mathematical framework, frequently occur in computer
science applications. Three major kinds of questions about metric spaces are
considered here: the intrinsic dimensionality of a distribution, the maximum
number of distance permutations, and the difficulty of reverse similarity search.
Intrinsic dimensionality measures the tendency for points to be equidistant, which
is diagnostic of high-dimensional spaces. Distance permutations describe the
order in which a set of fixed sites appears while moving away from a chosen
point; the number of distinct permutations determines the amount of storage
space required by some kinds of indexing data structure. Reverse similarity
search problems are constraint satisfaction problems derived from distance-based
index structures. Their difficulty reveals details of the structure of the space.
Theoretical and experimental results are given for these three questions in a
wide range of metric spaces, with commentary on the consequences for computer
science applications and additional related results where appropriate.

Acknowledgements

This work for supported by an NSERC Postgraduate Scholarship during the first
two and a half years. My thanks to all the usual suspects: my supervisor Ian
Munro for his support and patience; my family members for offering shoulders to
cry on; and the library and other staff at the University of Waterloo for providing
an environment where I could get my work done. Thanks also to the good people
of CTRL-A, Infinite Circle, HealthDoc/Inkpot, #00k, and #nerdsholm for helping
me stay sane through what turned out to be a much longer and more stressful
program than I ever expected.

vii

Nou paha e ka inoa
E ka‘ika‘ika ana
A kau i ka nuku
E hapahapai a‘e.

ix

Table of Contents

Author’s Declaration

Abstract

Acknowledgements

Dedication

Table of Contents

List of Tables

List of Figures

1 Introduction

1.1

1.2

1.3

Metric spaces and similarity search.
1.1.1 MetriCSPaceS . . v v v v v v e e e e e e e e e e e e e
1.1.2 Other abstractspaces., ..
1.1.3 Similarity search and geometry
1.1.4 VP-rees. . ..o vt i ittt
1.1.5 GH-AIEES . . o v v ittt et e e e e e e
1.1.6 Other data structures for similarity search
Notation and organisation
1.2.1 General mathematics.
1.2.2 Probability and statistics.,
1.2.3 VeCtors. v it
1.2.4 Strings o o vt e
1.2.5 Computational complexity
Dimensionality measurementc........
1.3.1 Dgdimension
1.3.2 Intrinsic dimensionality

xi

iii

ix

xi

g

1.4 Distance permutations. oottt e 33

1.5 Reverse similaritysearch 35
Real vectors, L, metrics, and dimensionality 41
2.1 Asymptotic intrinsic dimensionality with all components indepen-
dent and identically distributed L. 44
2.1.1 Generally distributed components 45
2.1.2 Uniform components 51
2.1.3 Normal componentscouuuneeo.. 54
2.2 Normal components, Euclidean distance, and finiten 57
2.2.1 All components with the same variance 58
2.2.2 Exact result for n = 2 and distinct variances 59
2.2.3 Approximation forlargern 63
2.3 Experimental results with discussion. 67

2.3.1 All components independent and identically distributed. . 68
2.3.2 Components independent and normal but not identically

distributed 72
Real vectors: distance permutations 75
3.1 Achieving all permutations 76
3.2 Voronoi diagrams and distance permutations 78
3.3 Euclideanspacet 85
34 TheLiand Loy metricso v ittt ittt i, 90
3.5 Experimental results on L, distance permutations 93
Tree metrics 99
4.1 Intrinsic dimensionality 102
4.2 Distance permutations.« v vttt i e e 104
4.3 Reverse similaritysearch 106
4.4 Badly-behaved tree metrics 111
Hamming distance 117
5.1 Intrinsic dimensionality 118
5.2 Distance permutations. v v v v it e e e e e 122
5.3 Reverse similaritysearch 126
Levenshtein edit distance 131
6.1 Intrinsic dimensionality 132
6.2 Number of neighbours 140
6.3 Reverse similaritysearch 142

xii

7 Superghost distance

7.1 Intrinsic dimensionality and neighbour count
7.2 Distance permutationS. . . . v v v v v v vt e e e e e e
7.3 Reverse similaritysearch

8 Real vectors: reverse similarity search
8.1 VPREVERSE with the L, metric for finitep
8.2 VPREVERSE with the L, metric
8.3 GHREVERSE in Euclidean space
8.4 GHREVERSE with the L, metric for finitep#2

8.5 GHREVERSE with the L., metric

8.6 VPREVERSE with equal radii

9 Additional results

9.1 Independence of dimensionality measures
9.2 Other problems that reduce to GHREVERSE
9.3 Distance permutations in practical databases
9.4 Distance permutations in hyperbolicspace

10 Conclusion
Bibliography

Index

xiii

153
155
157
159

165
168
173
174
176
188
194

197
197
201
204
207

211
213

233

List of Tables

1.1
1.2
1.3
1.4

2.1

2.2

3.1
3.2
3.3
3.4

6.1
8.1

9.1
9.2

Intrinsic dimensionality results from Chapter 2.. 30
Intrinsic dimensionality results from Chapters 1, 4-7,and 9. ... 31
Results for maximum number of distance permutations with k sites. 36
Reverse similarity search results. 39
Comparison of Theorem 2.10 and the approximation from (2.28)

with experimental results. 73
Comparison of the approximation from (2.28) with experimental

resultsS. . .. 74
Number of Euclidean distance permutations N, 5(k). 90
Mean distance permutations in L, experiment. 95
Mean distance permutations in L, experiment (continued). 96
Maximum distance permutations in L, experiment. 97
Experimental results on random strings with Levenshtein distance. 137
Some variable names used in vector reverse-similarity proofs.. . . 167
Distance permutations for sample databases. 205
Distance permutations for sample databases (continued). 205

XV

List of Figures

1.1
1.2
1.3
1.4

1.5
1.6

2.1
2.2

2.3

2.4

2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

How the VP-tree dividesspace. 9
How the GH-tree divides space.. 11
Distance distribution changes with dimensionality. 22
Intrinsic dimensionality describes the average case, while D, di-

mension describes the limit for small distances. 23
AVPREVERSE instance.., 37
A GHREVERSE Instance.t eun.... 38
Some L, unitcircles. L 43
Intrinsic dimensionality for the bivariate normal distribution as a

functionof 7. L e 63
Intrinsic dimensionality for the bivariate normal distribution as a

function of 02/02. . .. 64
Comparison of exact p for bivariate normal with its approximation

from (2.28). e 67
Error in the (2.28) approximation. 68
Experimental results: short vectors, uniform components. 69
Experimental results: long vectors, uniform components. 70
Experimental results: short vectors, normal components. 70
Experimental results: long vectors, normal components. 71
A first-order Euclidean Voronoi diagram. 79
A second-order Euclidean Voronoi diagram. 79
Bisectors of four points in Euclidean space. 80
Bisectors of four pointsin Ly space. 82
Visualisation of the four-point L, system. 84
How the least-squares plane cuts the bounding cubes. 85
Cutting a cheese into eight pieces with three cuts. 86
Cuttingapancake. ittt 87

xvii

4.1 Route map forasmallairline. 100
4.2 Astargraph. 103
4.3 Thecentralsubtree. 109
4.4 Infinite tree spaces with only k distance permutations. 113
4.5 A space with easy distances and hard paths. 114
6.1 Edits between two long strings. 135
6.2 Levenshtein distance from the experiment.. 138
6.3 Intrinsic dimensionality from the experiment. 139
6.4 Automata accepting strings of the form {0",0"1}?" and strings not
ofthatform. 147
8.1 Limiting the solution to the corners for VPREVERSE in L, space. . 169
8.2 Limiting vector components to [0,1]. 177
8.3 Limiting a pair of componentsto {0,1}. 180
8.4 The function f,(p) for some representative valuesof p. 182
8.5 The function g,(p) for some representative valuesof p.. 183
8.6 Curve showing the non-monotonicity of g,.(p). 184
8.7 The gadget for limiting one component in L, fails if some other
componentistoolarge. e 190
8.8 Multiple limiting gadgets support each other. 192
8.9 The gadget for clause satisfiabilityin Ly,. 193
8.10 Gadgets used in proof of Theorem 8.11. 196
9.1 Constructing a distribution of arbitrary dimension: d =2, A = 0.4,
SR 1.513. 199
9.2 Four-point bisector systems with between 7 and 18 regions on the
Poincaré disc. i it 209

Xviii

Chapter 1

Introduction

The idea of objects existing in some sort of space is fundamental to human beings’
understanding of the universe. Not only are real-life phenomena intimately
connected to the space-time described by physics, but abstract concepts are
routinely imagined as existing in a conceptual space. This imagination is implicit
in language that uses geometric and spatial terms to describe things other than
physical space: we may speak of a discussion going off on a tangent, friends
being close, a joke that goes too far, or ideas being on one or the other hand.
Psychological theories posit that an association between locations and directions
in physical space, and abstract ideas in our minds, may be fundamental to
cognition [131, 163].

The spatial metaphor is also fundamental to many computer applications,
especially in the realm (which is another spatial term) of databases. Objects in
a database may be imagined as points in a space, which also imposes a spatial
meaning on queries. Typically the answers to a query will all be clustered in
a definite region of the space; and the query may even be defined in terms of
a region of the space. This dissertation presents results on several computer
science problems related to searching in abstract spaces.

We primarily consider three basic questions: intrinsic dimensionality, number
of distance permutations, and the difficulty of reverse similarity search. In this
introductory chapter we present general metric spaces, and each of the problems,
with comments on the history of relevant previous work. There follow chapters
for different kinds of metric spaces, and the answers to our questions for each
of them. The discussion of real vectors is split into three chapters to keep their
lengths manageable and resolve interdependencies between the real vector and
Hamming string results.! Relevant previous work for the individual spaces is

!Chapter 8 depends on Chapter 5 which depends on Chapters 2 and 3.

triangle
inequality
distance function
point

metric
metric space

pseudometric
quasimetric
semimetric
prametric

2 CHAPTER 1. INTRODUCTION

covered in the respective spaces’ chapters, along with some results on other
problems specific to particular spaces. We close with some notes on other results
of interest.

1.1 Metric spaces and similarity search

First of all, what is an abstract space of the kind we are studying? Many kinds of
space exist that generalise in different ways the familiar physical space of human
reality. The present work is primarily concerned with metric spaces, which can
be glossed as spaces where there are points with distances between them, and
the distances are reasonably well-behaved.

Definition 1.1
Let S and d : S x S — R be a function that may or may not satisfy these
properties, for all x,y,z € S:

d(x,y)=0 (1.1)
d(x,x)=0 1.2)
dix,y)#0ifx #y (1.3)
d(x,y)=d(y,x) (1.4)
d(x,2z) <d(x,y)+d(y,z). (1.5)

The property (1.5), which is of particular importance to our work, is
called the triangle inequality.

Any function d : S x S — R used to express some concept of distance
will be called a distance function. Elements of the set S will be called
points. If the distance function satisfies all the above properties, then it
is a metric and the pair (S, d) is a metric space. Other kinds of distance
functions are defined by relaxing one or more of the properties: without
(1.3), it is a pseudometric; without (1.4), a quasimetric; without (1.5), a
semimetric; and without any of those (leaving only (1.1) and (1.2)), a
prametric® [10, 121, 200].

1.1.1 Metric spaces

Most properties of metric spaces are ones we would intuitively associate with
travel among points: a journey cannot take less than no distance, two points with

2The definition of notation such as R is deferred to Section 1.2 to avoid interrupting the general
introduction and motivation; nothing very unusual will be used before then.

1.1. METRIC SPACES AND SIMILARITY SEARCH 3

zero distance between them must be identical, and a journey (along the same
route) in either direction must be of the same length. The triangle inequality is
the real key to the definition of metric spaces: it says that stopping at a third
point on the trip from one to another cannot ever result in a shorter trip than
just going directly between the two points. That property is common to all the
familiar kinds of spaces we might consider. It is strong enough that we can use
it to infer useful things about points based on their distances from each other,
while still being weak enough to permit the existence of a rich variety of metric
spaces. A few examples follow.

Example 1.2

Ordinary physical space, with distances measured as by a ruler, is a metric
space: there are points, there is a distance between any two points, all the
distances are nonnegative, distance is the same in either direction, two
points have distance zero if and only if they are the same point, and the
triangle inequality applies.

Example 1.3

Any set S is a metric space, using the equality metric defined by d(x,y) =0
if and only if x = y, d(x,y) = 1 otherwise. It is easy to verify that this
satisfies Definition 1.1. Such a space is called a discrete space.

Example 1.4

The set of all 43252003274489856000 legal configurations [28, page
761] of a Rubik’s Cube is a metric space, with the distance between two
configurations being the minimum number of moves required to trans-
form one to the other. The maximum distance between any two points
in this space is known to be at most 26 [130]. Berlekamp, Conway, and
Guy give a lower bound of 18 [28, page 767] and, in a result apparently
published only on an electronic mailing list, Reid gives a lower bound of
20 [174]. Hofstadter also gives some commentary of interest on the Cube
and variations [103, pages 301-363]. Note that legal configurations are
configurations reachable by twisting the starting “solved” configuration.
Configurations only reachable by taking apart and reassembling the Cube
do not count unless one also counts the disassembly-and-reassembly op-
eration as a move, in which case this becomes just another (large, finite)
discrete space.

Fréchet introduced spaces like these in his 1906 thesis on functional analysis,
defining spaces in which a voisinage (“vicinity”) function, which he notated as
(A, B), had the properties that (A,B) = (B,A) > 0, (A,B) =0 if and only if A= B,
(A, B) tended to zero if A and B tended to each other, and a relaxed form of the

equality metric

discrete space

4 CHAPTER 1. INTRODUCTION

triangle inequality held: if (A,B) < € and (B,C) < ¢, then (A, C) < f(e) where
lim,_,y+ f(€) = 0 [78, page 18]. We note that right from the start, the study of
metric spaces has been combined with the study of relaxed versions like this one,
which is clearly designed for proving limits but does not quite restrict spaces as
far as the metric spaces of Definition 1.1.

Fréchet went on to define the écart des deux éléments (“variation of two el-
ements”) to satisfy the full triangle inequality (A,B) < (A, C) + (C,B), making
it a metric under the modern definition [78, page 30]. Hausdorff later gave
such spaces their current name of metrische Rdume, that is, “metric spaces” [99,
page 211] [100]. Hausdorff used both overbar notation (as in Xz < Xy + yz)
and the function notation we prefer (d(A,C) < d(A,B)+d(B,C) [99, page 291]).
Around the time of Fréchet’s work, Minkowski was developing a geometry for the
unified space-time entity postulated by Lorentz and Einstein, based on an innova-
tive distance function that allowed negative values and used them to describe
the distinction between space-like and time-like directions [154]. Minkowski’s
name is now applied to a class of metrics on real vectors which we discuss in
detail in Chapters 2, 3, and 8.

Metric spaces generalise an important and useful concept, and so they have
applications in a wide variety of mathematical fields. In topology, every metric
defines a unique topology for its space, and such spaces often have interesting
or useful topological properties [10, 200]. Differential geometry considers anal-
ysis in metric spaces [209]. In coding theory, the Hamming metric (subject of
Chapter 5) is central to the study of channel errors [169]. Linear algebra studies
vector norms, which are related to inner products and also generate metrics on
the vectors [102].

Practical metric space applications arise when computation is applied to prob-
lems that involve a concept of distance among things. Geographic information
systems are entirely concerned with spatial questions, expressed not only in the
three-dimensional Euclidean space of ordinary experience, but also more ab-
stract conceptual spaces describing things like travel time between locations [77].
Database applications use metric spaces not only for geographic questions but
also anywhere that similarities and differences between data objects are relevant.
As a result, there is a massive literature on representing objects as points in
metric spaces [142, 178], transforming the spaces for ease of processing [56],
and especially on searching in metric spaces. Multiple surveys, software packages,
and conferences cover the question of metric space searching [42, 71, 101, 220].

Note 1.5

The space for a given application, including both the points and the
metric, is typically imposed by the application. We do not get to choose
a nice metric. At best we might try to substitute a convenient metric

1.1. METRIC SPACES AND SIMILARITY SEARCH 5

for the application’s metric and then argue that the consequences of the
substitution are not too bad. Also, the metric for a space may be expensive
to compute. As a result, it is often an important goal for data structures to
minimise the number of times the metric must be computed, even if that
means doing more work elsewhere.

The issue of not being able to choose the metric is significant because it
creates a need for data structures and theoretical work applicable to general
metric spaces. In general, we must assume that the metric will be expensive
and badly-behaved, with the properties guaranteed by Definition 1.1 but not
necessarily any others.

Example 1.6

Local descriptor techniques are successful at detecting similar images, or
objects in common between images, despite changes in lighting, move-
ment, image compression, and other transformations [7, 142]. Comparing
two images with local descriptors involves scanning each image for certain
features to make a list of descriptors—an expensive operation which can
at least be done as a precomputation, roughly analogous to a dimension
reduction—and then searching for similar descriptors in common between
the two images. In the case of the SIFT technique described by Lowe, there
are typically a few hundred descriptors per image, each a 128-component
vector [142]. The search for matching descriptors is itself much like a
similarity search problem, but it must be done just to compare a single
pair of images. Any practical data structure for searching images based
on local descriptors must somehow avoid doing a linear number of full
image-to-image distance measurements.

1.1.2 Other abstract spaces

Metric spaces are not the only way to formalise these kinds of studies. The
most natural distance measure for a given space may not be a metric. All the
relaxed versions mentioned in Definition 1.1 see some amount of use. The
compression distance is one example of a non-metric distance function of interest
in bioinformatics applications. It describes the amount of information in one
string conditional on the other, as measured by a data compression program.
Assuming optimal compression (taking each string to a compressed length equal
to its Kolmogorov complexity [141]) the compression distance would be a metric,
but since Kolmogorov complexity is uncomputable, real-life data compression
programs are used to approximate it instead. The compression programs may give
far from ideal performance [91] and their estimates do not necessarily obey the

almost metric

6 CHAPTER 1. INTRODUCTION

properties of a metric (in particular, symmetry and the triangle inequality) [25,
140]. Sahinalp and others have studied almost metrics, in which the triangle
inequality holds to within a constant factor; they show that compression distance
obeys that relaxed definition, and that some data structures designed for metric
spaces are still useful with almost metrics [177].

Another way to describe the relationship between two points is with a measure
of similarity rather than distance, typically on a scale where the measure takes a
finite maximum value for identical points and a minimum value for points that
are unrelated to each other. With two Euclidean vectors x and y, the quantity
u-v/|u||v|, which is equal to the cosine of the angle between the vectors, expresses
similarity on a scale of —1 to 1. It takes the value %1 if one vector is a scalar
multiple of the other (according to the sign of the scalar) and 0 if they are
orthogonal. Correlation coefficients used in statistics express relations between
variables on a similar scale of —1 to 1 [62, pages 215-217].

Similarity measures used in text processing applications include what has
become known as the Dice coefficient, originally proposed for comparing biologi-
cal species. It counts how many features (such as occurrence in a given sample
location) the species have in common, normalising the result to be between 0
and 1; two species are considered similar if they tend to occur in the same loca-
tions [63]. Sokal and Sneath review that and other similarity coefficients used in
biological taxonomy [198]; and Adamson and Boreham apply the Dice coefficient
to similarity of strings, letting the features be presence or absence of two-letter
substrings [2]. Other similarity measurements for strings and documents come
from using different similarity coefficients, longer substrings, or words as features
instead of pure substrings.

In applications like search engines, where a measurement of the relation-
ship between documents is exposed to users, it may be easier for the users to
understand a similarity measure on a finite scale than a distance measure with
unknown or complicated units. Kondrak defines a function called n-gram similar-
ity as a further development from the Dice coefficient, with n-gram distance as a
modification of the similarity. He takes the position that the similarity view of
this measure is “conceptually simpler than n-gram distance” [128]. We are not
convinced there is a meaningful difference.

In a context like plagiarism detection where the interesting thing that can
be said about two documents is where they are the same, not where they differ,
a measure of similarity may be more natural. The MOSS plagiarism detection
system, for instance, starts with a robust hash, formed by robustly selecting
ordinary hashes of n-grams from the documents, and then expresses similarity
between documents as the raw number of matching n-gram hashes. Schleimer,
Wilkerson, and Aiken describe the system and report that MOSS users find a

1.1. METRIC SPACES AND SIMILARITY SEARCH 7

sharp correlation between plagiarism and number of matches over a constant
threshold, with the threshold dependent on the type of documents [183].

However, in this work we consider primarily a distance point of view, and
primarily metric spaces in particular, because of the usefulness of strict properties
like the triangle inequality that may be harder to define or use in a similarity
context. Depending on the properties of the similarity, it may be possible to
define a metric as some function of similarity, or similarity as some function of
a metric, to create an equivalence between the two. Li and others nod to the
similarity view by defining their “similarity metric” [140] to take values between
0 and 1 so that it can be easily converted to a similarity by subtracting it from
1. Any metric d can be converted to a similarity score on a scale of 0 to 1 by
computing 1/(1 + d); the result will be 1 for identical points and approach 0 for
distant points.

1.1.3 Similarity search and geometry

Even when considered from a metric point of view, the two most common metric-
space search problems are generally called similarity search problems. They are
defined as follows.

Definition 1.7 (Range search)
Given a database of points in some metric space, a query point g, and a
real r > 0, find all the points z in the database such that d(q,z) <r.

Definition 1.8 (k-Nearest Neighbour (kNN) search)
Given a database of points in some metric space, a query point q, and an
integer k > 0, find the k points in the database nearest to g.

The simplest way to solve a similarity search problem would be to just compute
all the distances from the query point to points in the database, in linear time.
Algorithmic work on these problems focuses on doing precomputation to build an
index data structure on which the searching operation can run more efficiently.
Hjaltason and Samet review similarity search from a practical perspective [101]
and Chavez and others review the subject from a theoretical perspective [42].

Some techniques for searching in metric spaces depend on the geometric prop-
erties of special spaces. In two and three dimensions, quadtrees [104, 211] and
octrees [111] are popular in applications like graphics [75] and finite element
analysis [172]. The obvious generalisation of this technique is seldom applied to
higher dimensions, however, because each node requires space exponential in
the number of dimensions. The kd-tree described by Bentley provides improves
performance in higher dimensions from a similar technique by considering only
one dimension per node so that the tree remains binary [26]. The R-tree of

similarity search

range search

kNN search

distance-based

vantage point

V P-tree

8 CHAPTER 1. INTRODUCTION

Guttman [95] is similar, and has many variants, including Rx-trees [23], R"-
trees [186], and SR-trees [119]. The hybrid tree of Chakrabarti and Mehrotra
uses overlapping subtrees instead of a strict split, to guarantee balance proper-
ties [38]. The pyramid trees of Berchtold, Bochm, and Kriegel are specifically
designed for high-dimensional vector spaces, making use of the geometry of such
spaces (in particular, the tendency for one vector component to dominate the
others) [27].

However, general metric spaces do not provide the geometry required by those
techniques. For a general metric space with no other assumptions, it is necessary
to use a distance-based approach that indexes points solely on the basis of their
distance from each other. Burkhard and Keller [35] offered one of the first such
index structures, now known as a BK-tree for their initials, in 1973. In a BK-tree,
the metric is assumed to have a few discrete return values, each internal node
contains a vantage point, and the subtrees correspond to the different values of
the metric.

1.1.4 VP-trees

Yianilos describes a VP-tree (for “vantage point”), which resembles a binary
BK-tree with the metric values at each node simplified down to a binary thresh-
old [217]. It also resembles the binary search trees widely used for sorted lookups
in a single dimension [50, pages 244-280]. Each internal node contains a vantage
point and two subtrees of points divided up according to their relationship to the
vantage point. Instead of dividing points according to whether their key is greater
than or less than the node’s, as we would in a single-dimensional binary search
tree, the V P-tree stores a radius in each node and the two subtrees correspond to
points that are or are not within the radius; so the tree divides space according to
spheres about the vantage points. The geometric situation at one node is shown
in Figure 1.1.
Definition 1.9
A VP-tree for a metric space S is a binary tree data structure in which
each leaf stores a set of points and each internal node stores a point v € S
and real radius r > 0, as well as its left and right child subtrees. At each
internal node, all points appearing in the left subtree must be on or inside
the sphere of radius r centred on v, and all points appearing in the right
subtree must be outside that sphere.

For a balanced tree, the radius should be the median of distances from the
vantage point among points in the tree. This approach necessitates calculating
those median distances, making it not directly suitable for the dynamic applica-
tions served by single-dimensional balanced search tree structures, but it has the

1.1. METRIC SPACES AND SIMILARITY SEARCH 9

Figure 1.1: How the V P-tree divides space.

advantage of guaranteeing balance as long as the distribution of queries is close
to the distribution of objects in the database. It also appears at first glance to
be nicely efficient: just like a conventional low-dimensional binary search tree,
there is one comparison to one vantage point made at each node.

Searching the V P-tree proceeds by descending through the nodes, using the
triangle inequality and the inequalities defining the subtrees to prove bounds
on how far the points in a subtree must be from the query. Then subtrees
that provably cannot contain the query results can be pruned from further
examination. Hjaltason and Samet describe this kind of algorithm in detail [101];
it applies to all space-dividing data structures in general, not just V P-trees.

Where v is the vantage point, for each x in the left subtree (within r distance
of v) and each y in the right subtree (at least r distance from v), we can compute
the distance d(q,v) for a query point q and then the triangle inequality gives us
these bounds, which are used to prune the search:

d(q,v)—r <d(q,x)<d(q,v)+r
r— d(qzv) Sd(q: }’) .

1.1.5 GH-rees

The VP-tree has an apparent problem: spheres may be far from ideal shapes
for dividing the search space. Intuitively, the problem is that a sphere’s surface
is curved: if our query point is outside the sphere (which happens half the
time, assuming a balanced tree), then after removing the contents of the sphere
from consideration, the remaining points may be near, far, or at about the same
distance from the query point as were the points in the sphere; eliminating the

GH-tree

generalised
hyperplane

10 CHAPTER 1. INTRODUCTION

sphere tells us little about the distance to the remaining points from the query
point.

The “generalised hyperplane” tree (GH-tree) introduced by Uhlmann attempts
to divide space in a more useful way [205]. If we had to divide Euclidean space
as neatly as possible, the obvious choice would be to use a hyperplane (that is,
the constant-value set of a linear function). In general metric spaces we cannot
define hyperplanes so easily, but Uhlmann describes a generalised hyperplane
capturing one essential property of the Euclidean hyperplane. Given two points
u and v, the generalised hyperplane between them is the set of all points in
the space that are equidistant from u and v. The GH-tree, then, is a binary
space-partitioning tree with a generalised hyperplane at each node.

Definition 1.10

A GH-tree for a metric space S is a binary tree data structure in which
each leaf stores a set of points and each internal node stores two points
u,v €8, as well as its left and right child subtrees. Any point x appearing
in a subtree must be in the left subtree if d(u,x) < d(v,x) and in the right
subtree otherwise.

Figure 1.2 illustrates how a node of the GH-tree partitions space. The point e
represents any arbitrary point on the generalised hyperplane, that is, equidistant
from u and v. Suppose the query point q is, as shown, closer to u than v. Then
because d(u,e) = d(v,e), we have:

d(g,v) —d(q,u) = d(q,v) —d(q,u) +d(u,e) —d(v,e)
= (d((b V) - d(V, C)) + (d(ua e) - d(Q; Ll))
< 2d(q,e) (by the triangle inequality).

If we have found an x that is close to the query point, such that d(gq,x) <
(d(q,v) — d(q,u))/2, then we know that no point y on the other side of the
generalised hyperplane can possibly be closer to g, and so in a simple nearest-
neighbour search, we can prune that subtree. Similar pruning occurs in other
kinds of similarity search on GH-trees.

Note 1.11

The VP- and GH-tree data structures are not covered further in this work.
We give definitions and descriptions for them only to motivate similarity
search and in particular our definitions of VPREVERSE and GHREVERSE
(Definitions 1.27 and 1.29), which are constraint satisfaction problems
formed by the constraints implicit in the data structures. But our results
on VPREVERSE and GHREVERSE relate to those constraint satisfaction

1.1. METRIC SPACES AND SIMILARITY SEARCH 11

Figure 1.2: How the GH-tree divides space.

problems, not directly to the data structures. In particular, the tree metric
spaces of Chapter 4 are not VP- or GH-trees.

1.1.6 Other data structures for similarity search

Instead of organising the database primarily into a tree structure and pruning
the tree to narrow down the search, a data structure could exclude objects one
at a time on the basis of some index information stored with each object. The
amount of processing required to satisfy a query in such a structure might be
linear, but if it means saving some computations of the metric, it can still provide
an advantage. Since the metric may be expensive (Note 1.5), the usual cost
model for these kinds of data structures counts only the number of invocations
of the metric. Even a large amount of other data and computing on the side can
be excused in the name of avoiding metric computations.

The AESA technique (Approximating and Eliminating Search Algorithm) of
Vidal Ruiz carries that approach to an extreme: it precomputes and stores all
the pairwise distances among database objects [176]. Then the distance from a
query point to any object in the database can be used with the triangle inequality
to exclude other objects as possible answers to the query. This approach works
well in the sense of answering queries with very few distance computations;

log
lg
R

factorial
gamma function

12 CHAPTER 1. INTRODUCTION

however, it requires index space quadratic in the number of database objects and
so becomes impractical for databases of any significant size. Shasha and Wang
describe a technique that similarly keeps a quadratic-sized matrix of distances,
but instead of precomputing them all, they start with lower bounds, initially very
loose, and update the bounds with the triangle inequality as queries are applied
and better estimates (or exact measurements) become available [187]. Further
improvements on AESA are discussed in Section 1.4.

Paredes and Chavez describe a different approach to storing limited data:
instead of storing the exact distances to a limited set of pivot elements, their
k-nearest neighbour graph technique stores the identities, not the distances, of
the k other database objects closest to each database object [164]. Search in
such a database proceeds by heuristically applying rules to infer which objects
could be in the result set based on as few distance computations as possible.
Compare this approach to the pyramid-trees of Berchtold, Bohm, and Kriegel,
which use the identity of the greatest-magnitude vector component to choose
a one-dimensional tree to contain the object [27]. Both techniques depend on
storing a clue as to which measurement or measurements of the object will be
most useful in further evaluation.

The approach of storing some data about each point to eliminate points one
at a time can also be combined with tree-based approaches. A typical example is
the Geometric Near-neighbour Access Tree (GNAT) described by Brin [31]. In a
GNAT, each internal node stores some number of vantage points, and subtrees
descend from the node based on the nearest vantage point (as in a GH-tree
generalised to k vantage points per node), but the internal nodes also store, for
each subtree, its range of distances to each vantage point. Each internal node
then resembles a miniature AESA data structure. The size of the node is ©(k?),
but there are many more opportunities to prune subtrees than with a simple
generalised GH-tree.

1.2 Notation and organisation

Important notational conventions will be described again when they are used,
but we collect them here as well for ease of reference.

1.2.1 General mathematics

We use log for the natural logarithm, base e ~ 2.71828, and lg for the base-2
logarithm. If y =logx then x =e¢” and lgx = y/log2. The set of real numbers
is denoted by R. The factorial of an integer n is denoted by n!, and the gamma
function (generalised factorial) of a real z by I'(z). For integers, I'(z) = (z — 1)!.

1.2. NOTATION AND ORGANISATION 13

Note 1.12

The gamma function exists for complex z but we only use it on positive
real z. It is well-behaved for such inputs. In particular, the value between
positive integer inputs increases smoothly from one factorial to the next,
and going half-way to the next positive integer multiplies the result by
approximately the square root of the next integer. A stronger version of
this property will be stated and used in the proof of Corollary 2.11.

The following definition gives three other extensions of the factorial concept
which we use occasionally.

Definition 1.13

The multinomial coefficient for four terms is given by [85, 88, page 168] multinomial
coefficient

n _ n! . (16)
iLjkn—i—j—k) iljlki(n—i—j—k!’ :
and the double factorial of an integer n is given by [9, pages 544-545] "

1-3:5:---n oddn >0,
n''=14{2:46-----n evenn >0, 1.7)
1 ne{-1,0}.

Note that n!! is quite different from (n!)!. Finally, (x), denotes the rising rising factorial
factorial, or Pochhammer symbol, x(x +1)---(x +n+1).

Note 1.14

As Weisstein describes, the standard notation for rising factorial is different
in different fields; in combinatorics it is often denoted by x™ whereas in
the theory of special functions it is often denoted by (x),, [213]. We follow
Abramowitz and Stegun in using (x), [1, page 256], and we use it at all
only in the following definition of hypergeometric functions.

Definition 1.15
As described by Oberhettinger [160], the Gaussian hypergeometric function hypergeometric
oF1(a, b;c; x) is given by function

(@)n(b)

©un! 1.8

o0
oFi(a,bic;x) =
n=0

That describes a power series in which the ratio between successive coeffi-
cients is a rational function (quadratic over quadratic) of the index.

0,0,0,0,w

)
{}
Q]

element
component

letter

probability

expectation

variance

14 CHAPTER 1. INTRODUCTION

We use the standard asymptotic notation (O, o, ©, €, w) throughout. The
case of w is less common than the others and may be unfamiliar; note that
f(n) = w(g(n)), read “f(n) is little-omega of g(n),” if f(n) is greater than any
constant multiple of g(n) for sufficiently large n. Just as o is a strict version
of O, w is a strict version of Q. It is also convenient to have right-arrow for
convergence to within lower-order terms.

Definition 1.16
If
S _
n—-+oo g(n)
then we write f(n) — g(n). Note that f(n) — g(n) is a stronger statement
than f(n) = ©(g(n)) because it implies that the constant is 1.

1 (1.9

Although the need to remain consistent with other authors sometimes forces
exceptions to this policy, we attempt to follow a consistent practice for paren-
theses and brackets. Angle brackets are for sequences with a specific order; so
(1,2,3) is a vector with three components, not equal to (3,2,1). Curly braces are
for sets; so {1,2,3} = {3,2,1} is a set. Round parentheses and square brackets
are for grouping operations, as in [(1+2)-3] =9, and occasionally to denote the
open and closed bounds of intervals, as in '/, € [0,1). Special brackets may be
used for the arguments of some functions and function-like operators, as a clue to
the special types of the arguments; for instance, max{S} operates on a set S, and
E[X] operates on a random variable X. We follow the general rule of big letters
for big ideas: a real x might be a component in a vector x which is in a set X
which is part of a class X, although we seldom use that many levels of abstraction
simultaneously. To reduce confusion among things made of smaller things, we
note that sets contain elements, vectors contain components, and strings contain
letters.

1.2.2 Probability and statistics

We write Pr[£] for the probability of an event £, and E[X] and V[X] for the
expectation and variance of a random variable X, respectively. Where X is the set
of values X can assume, we have

E[X]=) xPr[X =x] (1.10)

XEX

for a discrete random variable, or where f(x) is the probability density function
of a continuous random variable, then

E[X]:J xf(x)dx. (1.11)
X

1.2. NOTATION AND ORGANISATION 15

Then variance can be defined as
V[X]=E[(X —E[X]?]. (1.12)

The following computational formula [62, page 110] is invaluable when dealing
with variance:

V[X] =E[X?] - E?[X]. (1.13)

Following the notation used by Arnold, Balakrishnan, and Nagaraja [13], we
write X2y if X and Y are identically distributed, X (n)gY if the distribution
of X(n) converges to the distribution of Y as n goes to positive infinity, and
X (n)<i>Y(n) if the distributions of both X and Y depend on n and converge to
each other.

Especially when discussing the L., metric, which is defined in terms of the
maximum function, it is convenient to define for any real random variate Z
random variates max(¥’{Z} (read “max over k from Z”) and min®{Z} (“min over
k from Z”) realized as random variables maxgk){Z }. and mingk) {Z} respectively.
Each maxgk){Z } is the maximum, and each mingk){Z } the minimum, of k random
variables from Z.

1.2.3 \Vectors

Points in general spaces are denoted by italic letters like other variables, such
as x,y,z. For points as real vectors in particular, we use bold like x,y, z, with
subscripted italics like x, x5, x5 for individual components of a vector. As men-
tioned earlier, we use angle brackets to enclose the components of a vector when
writing the vector out explicitly, as in (1,2, 3). In a few cases subscripted bold is
used for individual vectors within a family of vectors; for instance, the u;,u,, us
defined in Chapter 8 are unit vectors along the first three axes, not components
of a vector u. Indices start from 1. The zero vector is represented by 0.

The Minkowski L, metrics are the subject of Chapters 2, 3, and 8 and dis-
cussed in detail there. The basic definition is that where x = (x, x5,...,X,),y =
(¥1,¥25--->Yn), the L, metric d,(x,y) is defined by

n 1/p
dp(x,y) = (Z |x; — yilp) (1.14)

i=1

forreal p > 1 or
doo(,y) = max |x; — y (1.15)

for p = 0.

1= lalis

max®{z}
min®{z}

zero vector (0)

L, metric

string
alphabet

%
a

binary
empty string
letter

concatenation

repetition

substring

subsequence

les(x,)

NP

NPC
upP

16 CHAPTER 1. INTRODUCTION

1.2.4 Strings

Many of our spaces have strings over some alphabet as their points. We generally
use X to represent the alphabet and a as an arbitrary element of X. Binary strings
are strings for which 3 = {0, 1}. The empty string is denoted by A. The elements
of a string or an alphabet are called letters even if we happen to denote them
with numerals.®
Definition 1.17
In the context of strings, juxtaposition denotes concatenation and expo-
nentiation denotes repetition. For instance, if x = 100 and y = 011 then
xy = 100011; and the notation 12 refers to the string 111, not the number
1 (one cubed). Similarly, a® = A. The metaphor is that concatenation is
like multiplication.

By choosing any interval of the indices in a string we can extract a substring,
and by choosing any subset of the indices we can extract a subsequence. These
two concepts are similar, but the distinction is important.

Note 1.18

A substring is contiguous; a subsequence is not necessarily contiguous. All
substrings are subsequences but not all subsequences are substrings. Thus
BANANA has AAA as a subsequence but not as a substring, whereas it has
NAN as both.

The notation lcs(x, y) denotes the longest common contiguous substring
between x and y, a concept used frequently in Chapter 7. The longest common
possibly-discontiguous subsequence is also an important concept, but we do not
define a specific notation for it.

1.2.5 Computational complexity

We use P to denote the class of polynomial-time decision problems: problems
for which a yes- or no-instance can be recognized in polynomial time by a deter-
ministic universal Turing machine. Similarly, NP is the class of nondeterministic
polynomial-time problems; problems in NP have polynomial-sized certificates
verifiable in polynomial time. An NP-hard problem is one to which any problem
in NP can be reduced in polynomial time, and a problem that is both A'P-hard
and in NP is in N'PC, the class of N’P-complete problems. Finally, we use
UP to denote the class of unique-certificate polynomial-time problems. These
abbreviations are standard, but mentioned here for reference.

SLetters like 0 and 1 are printed in a different typeface from numbers like 0 and 1, but it should
also be clear from context which one is meant.

1.3. DIMENSIONALITY MEASUREMENT 17

1.3 Dimensionality measurement

The familiar space of human experience is basically Euclidean space with three
dimensions. Any point can be uniquely identified with three real numbers.
Present-day models of physics allow for physical space-time to be non-Euclidean,
and to have more dimensions, as many as 26 in the case of bosonic string the-
ory [221]. More abstract spaces used in linear algebra also associate points with
tuples called vectors, of real or perhaps complex numbers, with defined rules for
measuring distances among points. In a linear-algebra vector space, the number
of components in each vector is an intrinsic property of the space, invariant
over multiple representations of the space. For instance, points in Euclidean
three-space have three coordinates each no matter whether they are represented
with Cartesian, cylindrical, or spherical coordinates. The number three is the
number of dimensions, or dimensionality of the space, and differentiates it from
(for instance) the two-dimensional Euclidean plane.

At first glance it appears that the number of dimensions of a space is simply the
number of components in the vectors that describe points. That is an inadequate
definition because it is too closely tied to the vector representation. Not all spaces
are naturally represented as vectors in the first place. For instance, in the Rubik’s
Cube space of Example 1.4, it would seem more natural to represent a point as
the permutation between its cubelet positions and the cubelet positions of the
“solved” state, with some information about rotation of cubelets. We could write
that as a list of numbers, but how long the list would be would depend on how
we chose to represent a concept like “the red and green side cubelet has been
moved down and to the right by one quarter-turn.”

It would be preferable that the metric defined on the original space correspond
to some metric appropriate to vectors; but with any naive translation from Cube
positions to vectors, the fewest-moves metric between two vector-represented
Cube positions would end up being something along the lines of “first, transform
the vectors back to a more natural representation of Cube positions; then count
the minimal number of moves...” Also, there might be multiple representations
for a given point, corresponding for instance to rotating the entire Cube without
twisting it (which would not normally count as a move); then the metric space
property that d(x, y) = 0 if and only if x = y would be violated. We would be
faced with requiring the vectors to be some kind of canonical representation
instead of just any vectors following the encoding scheme.

Even in a space with a well-agreed vector representation, there are issues of
whether a data set uses all the dimensions that may exist. For instance, consider
a meteorological data set consisting of triples of temperature, humidity, and dew
point. That seems to have three dimensions. But dew point happens to be a

dimensionality

native
distribution

effective
dimension

18 CHAPTER 1. INTRODUCTION

calculated function of temperature and humidity, uniquely determined by them
at least up to effects smaller than measurement error. If the three numbers were
plotted in a three-dimensional graph, they would all fall on a smooth surface
immersed in the three-dimensional space. It seems that in some meaningful
sense that is a two-dimensional data set notwithstanding that it happens to be
represented as three-dimensional vectors. The portion of the set of all three-
dimensional vectors actually occupied by data values can be described by a
probability distribution governing how likely a given combination of temperature,
humidity, and dew point would be to occur in the data. That leads naturally to
the idea that in a metric space application, we also have a probability distribution.
From the application’s point of view the distribution is part of the space.

Definition 1.19

The probability distribution associated with a space in a given application
is called the native distribution of the space. Unless otherwise specified,
any time we talk about drawing points from the space, that means drawing
points independently and identically distributed from the native distribu-
tion of the space.

The effective or intrinsic number of dimensions in a data set is determined not
only by the representation of points, but by how those points are distributed. For
instance, four-dimensional vectors that happen to be uniformly distributed along
a one-dimensional line segment might be expected to behave very much like
one-dimensional real numbers distributed on an interval, and not much like four-
dimensional vectors chosen uniformly from a four-dimensional hypercube. Given
that we can freely translate data among multiple equivalent representations,
we can ask what kind of dimensionality is invariant among the representations.
Mandelbrot claims that “effective dimension [is] a notion that should not be
defined precisely.” [146, page 17, italics his]; but we propose to find a definition
for it anyway.

This question came to our attention as a result of work on robust hashing. A
secure robust hash [51, 79] is designed to recognise points that are close to a
secret point without revealing the secret point until a “close” point has been found.
If the points exist in for instance n-dimensional Euclidean space, then someone
searching for the secret point can start with an initial guess and then explore
increasing neighbourhoods around the initial guess, hitting the secret point after
O(I™) attempts where [is the distance from the initial guess to the secret point.
The number of dimensions determines the difficulty of finding the secret point.
But this is an adversarial application, where it must be assumed that attackers
will transform points into whatever representation they find most advantageous—
that is, the one with fewest dimensions. So the important question is not how

1.3. DIMENSIONALITY MEASUREMENT 19

many dimensions did we use in our own representation, but rather what is the
smallest number of dimensions the attacker will be able to use while still correctly
representing the data? That question depends not only on the points in the space,
but also the metric, and the probability distribution of points the attacker expects
for our choice of secret point.

A similar issue is also important in database indexing, where it has become
known as “the curse of dimensionality” [24, 41, 110]. As dimensionality in-
creases, parameters of interest to similarity search increase exponentially. For
instance, as discussed above, quadtrees in two dimensions become octrees in
three dimensions, and an analogous data structure quickly becomes unworkable
in higher dimensions because the branching factor doubles for each added di-
mension. Even distance-based data structures, with no direct dependence on the
geometry of the space, show rapidly declining performance as dimensionality
increases, and performance in high-dimensional spaces is an important design
goal for distance-based data structures.

To compare performance of data structures among spaces of varying dimen-
sionality, we need some way of describing the dimensionality of a space. The
measure of dimensionality should be applicable even to spaces that are not
vector spaces; it should capture the idea of how many actual or effective di-
mensions are contained in a native distribution that might be represented in a
higher-dimensional space; and it should correlate with the observed difficulty
of indexing in the space. We can start looking for ways to measure the dimen-
sionality of metric spaces by listing known properties of high-dimensional spaces
and finding ways to measure those. These properties, when suitably formalised,
can be proved to apply to high-dimensional Euclidean and other well-behaved
spaces; but more importantly, they are empirically observed to be typical of the
spaces that we tend to think of as high-dimensional.

1. High-dimensional objects require many bits to write down.

2. Itis difficult to cover a high-dimensional space with small spherical subsets;
in particular, such a covering must cover some points many times over.

3. The volume of a sphere in high-dimensional space increases rapidly with
its radius.

4. Points chosen from a high-dimensional distribution tend to be equidistant
from each other.

The first property comes from the simple definition of vector dimension as
the number of components; if we generalise that to arbitrary objects that can be
represented as binary bits, it seems natural to ask how many bits we need per

open set

e-neighbourhood

neighbourhood

20 CHAPTER 1. INTRODUCTION

object. However, that approach is tied to the particular representation chosen
unless we make it the length of the minimal representation—which would make
the question equivalent to Kolmogorov complexity, and uncomputable [141]. It
also ignores differences among spaces with the same points and different metrics;
whereas difficulty of indexing or robust hashing in a space depends very much
on the metric.

Because topology studies invariant properties of spaces, it is one place to
look for a satisfactory definition of dimensionality. Indeed, topologists have
defined and studied in detail a number of different concepts of dimensionality,
and our second property, about covering with spherical subsets, is a simplified
description of one of them. Introductory works like that of Kinsey give more
precise detail; she discusses building a cell complex to model a space, at which
point the dimension can be observed from the kinds of cells needed to build the
complex [123, page 61]. Fedorchuk devotes an entire book part to topological
dimension theory [67]. Topological dimension considers the metric on a space,
and it can be applied to the set of data values that actually occur (treating that set
as a space in its own right) rather than only to the entire representation space, so
it seems both more relevant to indexing and more invariant to representation than
Kolmogorov complexity. However, topological dimension still does not consider
the native distribution of the space. There can also be difficulties applying it to
spaces in which the distance is discretised, such as the Hamming-distance space.

We do not consider topological issues in much detail in the present work
because of those limitations. However, two definitions from topology will become
important in our work on D, dimensions, so we reproduce them here. Kinsey
gives more detail on the implications of these definitions [123].

Definition 1.20
A subset O of a metric space S is called an open set if every x € O has a
neighbourhood entirely contained in O.

Definition 1.20 may seem unhelpful because it simply shifts the definitional
problem to another target: we know what an open set is given a neighbourhood,
but what is a neighbourhood? In topological work, the definition of neighbour-
hood is considered to be part of the space; one of the equivalent definitions of a
topological space is as a set of points and a collection of their neighbourhoods.
For our work on metric spaces, neighbourhoods can be defined in terms of the
metric: a neighbourhood of a point x is the interior of a sphere centred on x,
that is, for some ¢ > 0 an e-neighbourhood of x is the set of points y such that
d(x,y) < e, and a neighbourhood as such is any e-neighbourhood. These defini-
tions formalise for general metric spaces the familiar notions of neighbourhoods
and open sets used in real analysis.

1.3. DIMENSIONALITY MEASUREMENT 21

Definition 1.21

A space S is compact if every open cover of S has a finite subcover. That is,
if C is a set of open sets in S such that the union of all sets in C is equal to
S, then there must be a finite subset F of C such that the union of all the
sets in F is equal to S.

Compactness describes, in abstract topological terms without direct reference
to coordinates or a metric, something like boundedness. Indeed, basic theorems
in topology relate compactness of spaces to boundedness and certain other prop-
erties, like the convergence of Cauchy sequences [10, page 60]. The subtleties of
these definitions are relevant to some of the more badly-behaved spaces studied
in topology, and generally not important for computational spaces where points
are represented by explicit data structures on which we can compute distances
with actual computer software.

The two remaining properties we mentioned for high-dimensional metric
spaces can both be defined, and quantified, in terms of the probability distribution
of distance between two random points from the space. As such, they consider
not only the points and the space but also the native distribution. Changes of
representation that do not affect the metric, or do not affect it much, also have
no or little effect on the probability distribution of distance between two random
points, so a dimensionality measurement based on this probability distribution
should be immune to representation changes.

The volume of a sphere in d-dimensional Euclidean space increases as the
d-th power of the radius; that is, exponentially with dimension. There is an
intuitive link between rapidly increasing sphere volume and points tending to be
equidistant: because the volume of a sphere in high-dimensional space is much
larger than the volume of a sphere with even slightly smaller radius, that means
most of the volume is contained at or just below the surface. The deep interior
of the sphere is much smaller than the surface. So considering how the native
distribution appears from the point of view of one point, if we draw increasing
spheres until one contains most of the native distribution, we will find that most
of the distribution ends up near the surface of the sphere just because there is
vastly more space there.

On the fourth point, about points tending to be equidistant, we emphasise
that this contemplates a form of dimensionality deeper than the specific rep-
resentation chosen. It is possible to imagine that data may be represented in
a high- or infinite-dimensional space (in some sense) while still behaving like
low-dimensional data (in some other sense). Indeed, that seems to be the usual
case for high-dimensional representations actually encountered in practice, such
as the word space model of documents as described by Sahlgren [178]. Doc-
uments correspond to vectors with thousands of components, but they have

compact

22 CHAPTER 1. INTRODUCTION

high—dimensional

Low—dimensional

Ausuep Aniqeqoid

Distance between two random points

Figure 1.3: Distance distribution changes with dimensionality.

indexing properties similar to those of randomly chosen vectors with far fewer
compoents. It may be said, then, that documents in the word-space model are
not really high-dimensional. They can be called low-dimensional because they
behave like other low-dimensional things—and it is that kind of dimensionality
we seek to measure. Situations where the representation may have a much higher
dimensionality than the data can include vectors where components are highly
correlated to each other, and native distributions that produce strong clumping
behaviour.

In Figure 1.3 we see illustrative probability density functions for the distance
between two points chosen from several spaces of varying dimensionality. Two
phenomena can be observed corresponding to our high-dimensional metric space
properties. First, the density on the lower tail of the curve, corresponding to the
amount of probability density inside a randomly chosen sphere, increases more
sharply (like a higher-degree polynomial) for the higher-dimensional curves.
Second, the peaks of the curves are sharper for higher dimensions, with less
variance in relation to the mean: points have more tendency to be equidistant.

Others have introduced dimensionality measures based on each of these
properties. The D, dimensions, which generalise several dimensionality measures
used in fractal geometry and chaos theory, express the tendency of higher-

1.3. DIMENSIONALITY MEASUREMENT 23

Intrinsic
\‘ dimensionality

|

Aususp Aujgeqoud

Dq dimension

Distance between two random points

Figure 1.4: Intrinsic dimensionality describes the average case, while D, dimen-
sion describes the limit for small distances.

dimensional probability distributions to look like higher-degree polymonials; it
essentially answers the question “What power law does the distribution look
like at short distances?” The intrinsic dimensionality measures the tendency
for random points to be equidistant; noting that discrete spaces can only be
searched by linear search and thus can be seen as having very high dimensionality,
intrinsic dimensionality answers the question “How much does this space look
like a discrete space?” As shown in Figure 1.4, the two measurements are
complementary, measuring different parts of the probability distribution.

1.3.1 Dq dimension

Suppose we start with a small sphere in a space and evaluate the probability
that a point chosen from the native distribution will be within that sphere. If
we increase the radius of the sphere, the probability increases, until it becomes
a certainty if the sphere encompasses the entire support of the distribution.
For many common well-behaved distributions, the probability for small-radius
spheres increases with some power of the radius; and for distributions in spaces
where dimensionality is easy to define, the power seems to correspond to the
dimensionality. For instance, in k-dimensional Euclidean space with the native

D, dimension

box-counting
dimension
Hausdorff
dimension

24 CHAPTER 1. INTRODUCTION

distribution uniform on the unit hypercube, the probability increases with the
k-th power of the radius. If for some space we can find a value of k such that
probability exhibits this behaviour, we can say that in some sense the space has k
dimensions.

That approach to defining dimensionality is the basis for several measures of
dimensionality used in the studies of chaos and dynamical systems. Many things
can go wrong while looking for a value of k. In particular, it could be that the
probability does not show polynomial behaviour in the limit of small distances.
It could be that it shows polynomial behaviour but with a different exponent k
depending on the centre we chose. If we average over a random selection of the
centre, then it may depend on the distribution we use to choose the centre. The
metric might be discrete-valued (like edit distance, for instance), so that the idea
of limiting behaviour for small spheres is not meaningful.

The exponent might turn out not to be an integer—but although counterintu-
itive, that situation is not necessarily a problem. Some distributions and spaces
really do display behaviour in some sense intermediate between two integer
dimensions, and the insight that non-integer dimensions can be meaningful is the
basis for the study of fractals, pioneered by Benoit B. Mandelbrot in the 1970s
and 1980s.

The D, dimension examines the power-law behaviour of the distance proba-
bility distribution, addressing many of the mentioned issues [162, Section 3.3].
The definition is often described in terms of coordinate-aligned boxes of size ¢,
but we have used general open balls in order to address general metric spaces
without coordinate axes.

Definition 1.22

For a compact metric space S and a real radius ¢ > 0, let {B;,B,,...,B,}
be a minimum-size (necessarily finite by compactness; see Definition 1.21)
cover of S by open balls of radius at most ¢, let x represent a random
point drawn from the native distribution of S, and for q > 0 define the D,
dimension in general as the following limit, if it exists:

-1 log>" . Pr[x € B;]4
Dy = — L gy 282 Prlx € B (1.16)
1—qe—0* loge

By convention, when g = 0 we use 0° = 0 and for ¢ = 1, we use the
limit of D, as q goes to 1.

For specific values of g, the D, dimension reduces to other cases that have
been independently described. In particular, D, (for subsets of Euclidean space)
is the box-counting dimension, describing dimensionality of a set without ref-
erence to the probability distribution over it. The Hausdorff dimension has a

1.3. DIMENSIONALITY MEASUREMENT 25

complicated measure-theoretic definition, but turns out to be equal to D, in the
cases ordinarily encountered [162, pages 100-103]. The term fractal dimension
is often applied interchangeably to the D, and Hausdorff dimensions even though
they can be theoretically distinct; Mandelbrot, who coined the term, writes
that Hausdorff dimension is “a fractal dimension,” leaving open the possibility
that other measures of dimensionality could also be fractal dimensions [146,
page 15].

Evaluating D, from a specific point results in the pointwise dimension, which
can depend on the point we chose; and then the D; dimension is the expected
pointwise dimension for a point chosen from the native distribution, also called
the information dimension. Most relevant for our study of distance-based indexing,
the D, dimension, called the correlation dimension, describes the growth of
probability density for the distance between two points chosen from the native
distribution. As Grassberger and Procaccia describe, correlation dimension is also
especially convenient for empirical measurements of chaotic systems [89].

Much work has been done on the relationships between D, for different val-
ues of q. One important result is that D, must be nonincreasing with increasing
g- On the other hand, it is an empirical observation that in practical systems,
D, is generally constant or nearly constant regardless of q [162, pages 79-80].
The relatively rare exceptions, where D, decreases in a significant way with
increasing q, are called multifractals and they are of significant interest in the
theory of dynamical systems. Mandelbrot’s well-known book on fractals is cred-
ited with popularising the idea of fractional dimensions in chaotic dynamical
systems [146]. Ott describes much of the subsequent development of the field at
an introductory level [162]. Pesin gives a more detailed presentation, including
the subtler topological and measure-theoretic issues [168]. Young proves con-
nections between Hausdorff dimension, entropy, and the Lyapunov exponents,
which measure the tendency for dynamical systems to amplify small changes in
initial conditions [219].

The D, dimension is attractive for studies of distance-based indexing struc-
tures, especially trees, because it describes the behaviour of distances in the
limit for small distance. To prove asymptotic behaviour of data structures, we
are generally interested in the limit for large numbers of points in the database,
which translates to small distances between them. The distances encountered
while searching the bottom leaves of the tree will be the ones described by
D, (especially D,) dimension, so this dimension should be useful for proving
bounds on index behaviour. Faloutsos and Kamel use that approach to analyse
Rx-trees, giving an estimate of search performance based on the D; dimension
and experimental results supporting the accuracy of the estimate [66].

However, the limitation to spaces where arbitrarily small distances are mean-

fractal dimension

pointwise
dimension

information
dimension
correlation
dimension

multifractals

intrinsic
dimensionality

26 CHAPTER 1. INTRODUCTION

ingful (roughly equivalent to the complete spaces defined in topology) is a
significant limitation. It rules out use of D, dimension without severe modifi-
cation on important spaces like strings with Hamming or edit distance. Since
real-life data sets are necessarily limited to a finite number of objects, it is also
difficult to compute D, dimension on practical data as opposed to theoretically-
defined probability distributions; at best we can approximate it by looking at the
smallest distances available in our data set, essentially plotting the probability
density for smaller and smaller distances until the data runs out and then drawing
a line on the graph and hoping it represents the limiting behaviour. That is the
approach others have generally used for applying D, dimension to real-world
data sets [66, 89, 162].

1.3.2 Intrinsic dimensionality

The other natural way to examine the distance distribution is to look at the
main body and measure the tendency for points to be equidistant. In higher-
dimensional spaces, the distance between two random points is more likely to be
close to its mean, so a statistic measuring that likelihood can be used to compare
and describe spaces. Chdavez and Navarro define such a measure, which they call
intrinsic dimensionality [40].

Definition 1.23

Where S is a space and u and o2 are the mean and variance of the distance
between two random points from native distribution in that space, the
intrinsic dimensionality of S, denoted by p, is given by [40]

o =u?/202. (1.17)

The formula (1.17) may appear arbitrary, but it follows naturally from the
concept it is designed to measure. The measure of dimensionality should grow
as the distribution becomes less variable, so o2 is in the denominator. Scaling
all distances by a constant should have no effect, so u? is in the numerator to
make such scaling cancel out. Dimensional analysis of the formula also supports
squaring u: the units of u will be the units of the metric (for instance, metres), but
the units of o will be the metric’s units squared (for instance, metres squared)
and they should cancel out to make p a unitless number. The factor of 2 in the
denominator scales the result to be equal to number of vector components in
some common cases, as we shall prove in Chapter 2. By this definition discrete
spaces have high intrinsic dimensionality (increasing linearly with the number of
points), even though in topological terms, discrete spaces are zero-dimensional.

1.3. DIMENSIONALITY MEASUREMENT 27

Note 1.24

In the case where the native distribution consists of always selecting the
same point, then the mean and variance of the distance are zero, and
the intrinsic dimensionality is formally undefined (division by zero). It
is convenient to define p = 0 for this case. That value is intuitively
reasonable—a single point seems like it should be zero-dimensional—and
it is consistent with evaluating the formula from Theorem 1.1 in the limit
as Pr[x = y] approaches 1.

Intrinsic dimensionality is an attractive way of describing spaces because it is
easy to compute, both in theory and in practice. In the present work we give both
kinds of results: theoretical proofs of the value of p for specified distributions,
and experimental measurements for actual databases. Unlike D, dimensions,
which are based on the behaviour at arbitrarily small distances and so can only
be approximated in real-life experiments, p is defined by basic summary statistics
and can be computed easily from a sample.

However, for intrinsic dimensionality to be useful we must not only know
its numerical value, but be able to draw conclusions about other things based
on that value. To draw conclusions from intrinsic dimensionality requires a
link between the number and questions like performance of similarity search.
Chavez and Navarro introduce some theoretical results of that kind in their
original paper introducing intrinsic dimensionality. In particular, they prove
bounds on the performance of several kinds of distance-based index structures
for metric spaces in terms of p [40]. However, most work that uses intrinsic
dimensionality relies instead on the practical observation that it does correlate
with increased difficulty of indexing and with other measures of dimensionality,
for which links to indexing difficulty are known. For instance, Mao and others
describe its practical use in a biological context without going into the theoretical
link between large values of p and hard bounds on the algorithms [147].

The question of how much a distribution varies about its mean is of course
interesting in the general statistical context, not only for indexing databases. The
precise form of Definition 1.23 seems to be original with Chdvez and Navarro,
but similarly-intended statistics have been thoroughly studied. In particular,
the coefficient of variation o /u equal to 1/ \/2_ , and the squared coefficient of
variation, are well-known [126, page 107]. Handbooks of statistical distributions
give formulas for coefficient of variation for many well-known distributions,
from which intrinsic dimensionality would be easy to calculate [114, 115, 116].
However, the distributions that actually occur in our database problems often
are not of the well-studied forms for which those results apply. For example,
the Euclidean distance between vectors with independent and identical normal
components ends up having a chi distribution, representing the square root of a

coefficient of
variation

28 CHAPTER 1. INTRODUCTION

chi-squared variable. The chi distribution has relatively few published results;
and for L, metrics with finite p other than the Euclidean metric, it becomes the
general p-th root of a sum of p-th powers, with even fewer published results. We
consider those cases, and a number of others, in Chapter 2. It may seem intuitive
that these kinds of results should be well-known already, but the actual results,
let alone detailed presentations like ours, are absent from the usual sources.

It is an observation that easy spaces to index have small p, and the statistic
increases as the spaces become harder to index. Chavez and Navarro use a
result of Yianilos to argue that intrinsic dimensionality should be proportional
to the number of vector components for vectors chosen uniformly at random
from hypercubes [40, 218]. They also give calibration data consisting of ex-
perimental results on the p values for vector spaces. We give a more detailed
theoretical and experimental examination of these questions in a paper presented
at SPIRE’05 [190]; those results are included in Chapter 2 and similar results
for other spaces are given throughout the present work, forming the first of the
three main studies in this dissertation. The overall situation is that intrinsic
dimensionality does indeed correlate, both in theory and in practice, with other
attributes of spaces we think of as high-dimensional; but some individual spaces
display counterintuitive behaviour, and in some cases the relationship between p
and other features we might think of as dimensionality, may not be linear.

The intrinsic dimensionality statistic may have other useful applications be-
yond indexing. In particular, scale-free graphs [17] are a current topic in the
study of systems like semantic networks [201] and the Internet [139]. These are
graphs in which the degree sequence of vertices follows a power-law distribution,
and as described by Li and others, the coefficient of variation of that distribution
has important consequences for interesting properties of the graph [139]. The dis-
tribution of distance between nodes in a network is not precisely the same thing
as the distribution of degrees of individual nodes; but distance between nodes is
certainly an important topic for scale-free graphs. The fact that essentially the
same statistic (coefficient of variation as opposed to intrinsic dimensionality) is
already used for a similar purpose (describing the kinds of connections that exist)
suggests that scale-free graphs may also yield applications for this kind of study.

Tables 1.1 and 1.2 summarise the new intrinsic dimensionality results in the
present work. Chapter 2 describes results for vector spaces, where in most typical
cases the intrinsic dimensionality turns out to be asymptotically linear in the
number of vector components. We give an asymptotic analysis for random vectors
in which all components are independent and identically distributed, with L,
metrics. In the case of L, the asymptotic approximations become exact. In the
case of L, the asymptotic behaviour is not necessarily linear, and in particular,
it turns out to be ©(log?) when the components are normally distributed. We

1.3. DIMENSIONALITY MEASUREMENT 29

also give more detail on several cases of multivariate normal distributions in
Euclidean space, as summarised in the table.

For non-vector spaces the results are more diverse. Discrete spaces are easy,
and analysed in this introductory section. We consider tree metrics, Hamming
distance, Levenshtein distance (the usual form of edit distance), and Superghost
distance (which we introduce, in Chapter 7); each of those is described in detail in
its own chapter. For tree metrics, p is between a constant and linear in the number
of points, depending on the distribution. For the string metrics it shows a variety
of behaviours. We give exact results for Hamming distance. The theoretical issues
for Levenshtein edit distance are complicated, and connect with much previous
work on statistical behaviour of that distance; we discuss the previous work and
give experimental results suggesting that intrinsic dimensionality for this space is
approximately ©(n>*) in string length for uniformly chosen equal-length strings.
The Superghost metric implicates many of the same issues, but we can at least
prove a lower bound: p = Q(n?/log®n). Finally, we examine the relationship
between intrinsic and D, dimensionality, showing that no relationship necessarily
exists because we can construct a space with both chosen arbitrarily; and we give
experimental results for some practical databases.

We close this section by proving simple intrinsic dimensionality results for
discrete spaces, which do not have a chapter of their own.

Theorem 1.1

If S is a discrete space, then where x and y are random points from the
native distribution of S and ¢ = Pr[x = y] < 1, the intrinsic dimensionality
of S is given by p = (1 —q)/2q.

Proof The result follows almost trivially from the definition. The distance be-
tween two random points is a Bernoulli random variable, equal to 0 with proba-
bility g and 1 with probability 1 —q. Then its mean is 1 —gq, its variance is q(1 —q),
and substitution into the definition of p gives the result.

Corollary 1.2

If S is a discrete space comprising n points with the native distribution
uniform, then p = (n — 1)/2, and this is the greatest possible intrinsic
dimensionality for any finite space with n points.

30

CHAPTER 1. INTRODUCTION

Vectors of n iid real components

L,, finite p Lo
general | Theorem 2.1: Theorem 2.5: p
p2(,u;)2 approaches ope of
o — m three expressions,
(u 2p ('up depending on limit

where u; is the k-th raw moment | behaviour of
of | X —-Y]. |X —Y|; not
necessarily linear.

uniform | Theorem 2.6: Theorem 2.7:
4p + 2 1
— n —
P15 P2z "

normal | Theorem 2.8: Theorem 2.9:

22 (p+1 12
pl"(z) p — —log’n
p= 1 2 (pt1 n i
2(var (p+'%h) -T2 (%))

By Corollary 2.2, the approximations for large n above are exact for all n in
the case of the L, metric.

Multivariate normal vectors in Euclidean space

Theorem 2.10: When all nonzero variances equal,
1 r((n+1)/2)
2 T(n/2)r(n+2)/2)-T2((n+1)/2)°

P

Theorem 2.12: With two variances 02,02, and © = (02 — 02)/(0? + 02),

-1
P = (% ((1 +7)(1—17),F; (3/4,5/4; 1;72))_2 B 2) .

Subsection 2.2.3: With variances 02,03,...,02,
1 I2(a+ %) (03 +05+ -+ 02)
prR—=- > T~ Where a = 7] 7} .
2 T()(a+1)—T*(a+"%) 20t +od+-+oY

Table 1.1: Intrinsic dimensionality results from Chapter 2.

1.3. DIMENSIONALITY MEASUREMENT 31

Discrete spaces
Theorem 1.1: p = (1 —q)/2q where ¢ =Pr[x = y].

Corollary 1.2: p = (n—1)/2 when there are n points and uniform distribu-
tion, and this is maximum for any distribution.

Tree metrics

Section 4.1: With finite number of points n, p can be as small as a constant
(— 1) with uniform distribution, or arbitrarily small with general distri-
bution, and as large as linear (— n/2) for uniform distribution, which is
maximum for any distribution by Corollary 1.2.

Theorem 4.1: p — (2n+ 1 —|%)?/|2|(|Z| — 1) for uniformly-chosen strings
of length n with alphabet ¥ and prefix distance.

Strings of n bits with Hamming distance

Section 5.1: p = nq(1—q)/(1—2q+2q?) if each bit is chosen from a Bernoulli
distribution with parameter q.

Theorem 5.1: p — [r/(2r + 1)]n for uniform distribution on radius-r ball.
Strings of length n with Levenshtein distance

Section 6.1: very difficult theoretical question; experimental results suggest
p approximately ©(n°/4).

Strings of length n with Superghost distance

Theorem 7.3: p = Q(n?/log?n).

Other results

Theorem 9.2: There is not necessarily any relationship between p and D,,.

Section 9.3: Experimental values of p for SISAP library databases.

Table 1.2: Intrinsic dimensionality results from Chapters 1, 4-7, and 9.

32 CHAPTER 1. INTRODUCTION

Proof The value of p follows from Theorem 1.1 with g = !/,. Now, suppose that
we have a finite space whose metric is not the equality metric. We will modify
the distance function, never decreasing the intrinsic dimensionality, until the
distance function becomes the equality metric. Some of the intermediate steps
may not satisfy the metric space properties, but since the equality metric does, the
conclusion that no other metric can give greater intrinsic dimensionality remains
valid. Note that the native distribution cannot be such as to always choose the
same point; otherwise the distance between two random points would always be
zero and the intrinsic dimensionality would be zero by definition (see Note 1.24).

Let E[d] represent the expected distance between two points chosen from the
native distribution, and E[d?] the expectation of the square of the distance. The
intrinsic dimensionality is given by

B E2[d]
P @I -]

Observe that intrinsic dimensionality is unchanged if we scale all distances by
a constant factor c, because both numerator and denominator increase by c? and
it cancels out. Scale the distances such that the maximum distance is 1. There
must be some distance d(x,y) < E[d] for distinct points x # y (otherwise d
would be the equality metric by definition). We will increase d(x, y), and d(y, x)
to match, to bring d closer to the equality metric while not decreasing p.

Consider the distances between distinct points as a vector d (it will have (g)
components). Quantities like p and E[d] are functions of d. Let prime represent
derivative with respect to d(x, y); for instance, p’ = dp/dd(x,y). Let Pr[z]
represent the native distribution of the space; that is, the probability of drawing
z when we draw a point. Now we will compute the sign of p’.

E[d] = Z 1, Pr[a] Pr[b]d(a, b)

a#bes
E'[d] =Pr[x]Pr[y]
E[d®]= Y Y,Pr[a]Pr[b]d*(a,b)
a#bes
E/[d?] =Pr[x]Pr[y]2d(x,y)
B E2[d]
P~ (B[a?] —B2[d])
, _ E[d](2E/[d]E[d?] - E[d]E'[d?])
- 2(E[d?] — E2[d])?

B Pr[x]Pr[y] 2 9
_ (m) (E[d2] — E[d]d(x, y))

1.4. DISTANCE PERMUTATIONS 33

The squared quotient must be nonnegative, so we are left to evaluate the sign
of E[d?] —E[d]d(x, y). But since d(x, y) < E[d] and we know E[d?] —E2[d] > 0
because it is the (necessarily positive) variance of the distribution, then E[d?] —
E[d]d(x,y) > 0; by subtracting less, we can only increase the expression. Then
p’ > 0. So by increasing a distance up to the mean distance, we can only increase
the intrinsic dimensionality. Repeatedly doing that to all distances less than the
mean, leaves us in the limit with a distance function where all distances among
distinct pairs of points are equal to 1, which is the equality metric. Therefore the
equality metric gives maximum intrinsic dimensionality.

Now, as in Theorem 1.1, the distance between two points is a Bernoulli
random variable with parameter q equal to the sum of squared probabilities of
individual points, and p = (1 — q)/2q. That is maximised when q is minimised,
which occurs when the probabilities of all points are equal. Therefore the discrete
space with n points and native distribution uniform has the maximum possible
intrinsic dimensionality.

1.4 Distance permutations

The second of the three main questions considered in the present work has to
do with the maximum number of distance permutations possible in a space. We
begin by defining distance permutations.

Definition 1.25

Given k points xq, x,, ..., X, called the sites, in some space with distance
function d, the distance permutation of a point y, denoted by I1,, is the
unique permutation on {1,2,...,k} such that if i < j then d(xm i), ¥) <
d(xny(j),y) or d(xny(i),y) = d(xny(j),y) and IT, (i) <1, (j). That is, 1, is
the permutation that sorts the site indices into order of increasing distance
from y, using order of increasing index to break ties.

Chavez, Figueroa, and Navarro introduce distance permutations (also called
proximity preserving orders) in the context of similarity search, as part of a
suggested improvement to the LAESA technique of Micd, Oncina, and Vidal [39,
152]. Our interest in them stems from their possible use as a robust hashing
scheme and for revealing differences in the geometry of otherwise-similar spaces.

Any algorithm that answers similarity search queries must evaluate the dis-
tance from the query point to all points in the database, at least to the point of
knowing for each point in the database whether that point should be included
in the answer. Algorithms improve on linear exhaustive search by using data
from the index to avoid direct computations of the metric. In the case of metric

site

distance
permutation

34 CHAPTER 1. INTRODUCTION

tree data structures like the VP- and GH-trees described in Subsections 1.1.4
and 1.1.5, the search algorithm proceeds down the tree using the triangle in-
equality to prove that subtrees cannot contain any points to be included in the
result; then those subtrees are pruned from further consideration.

Another way to speed up the search would be to examine database points
exhaustively, but store information about each one allowing it to possibly be
excluded without a call to the metric. Since we generally assume that the metric
is expensive (Note 1.5) and measure performance in terms of the number of calls
to the metric, even a linear search of the entire database can be advantageous if
it avoids actually computing the metric too many times.

The classic algorithm of this type is the Approximating and Eliminating Search
Algorithm (AESA) of Vidal Ruiz [176]. In that algorithm, the database contains a
precomputed and quadratic-sized matrix of all the pairwise distances between
database points. Using that precomputed data and the triangle inequality it is
often possible to place a bound on the distance from the query to a database point,
proving that that database point must or cannot be in the result, without actually
computing many distances. However, it is seldom practical to precompute and
store a quadratic amount of index data. Indices normally must be linear or
smaller.

The next step is to limit the size of the precomputed matrix. The LAESA
(Linear AESA) technique of Micd, Oncina, and Vidal is a standard way of doing
that: instead of storing all the pairwise distances, k reference sites or pivots
are chosen from the database and the index stores the k distances from each
database point to those, for a total index size linear for constant k [152]. The
resulting search algorithm is known to perform well; almost as well as AESA, and
for much less cost.

Chévez, Figueroa, and Navarro introduce distance permutations as a further
improvement on LAESA [39]. Instead of storing the actual distances to the k
sites, they store the distance permutation as defined above. They demonstrate
that most of the information useful to the search algorithm is preserved in
the transformation from k real distances to a permutation on the k sites, with a
considerable saving in index size (allowing the use of larger k). The same authors
with Paredes develop the idea further into an algorithm called iAESA (improved
AESA) [70], for which an implementation is available in the SISAP library [71].
In iAESA, distance permutations not only rule objects in and out directly, but also
help select the next distance measurement to make for AESA-like narrowing of
the search set.

In the present work we show that further space savings are possible without
any further compromise of the information content, because in many spaces
of interest, the geometry of the space limits how many distance permutations

1.5. REVERSE SIMILARITY SEARCH 35

actually occur and therefore the number of bits needed to store a distance
permutation. This combinatorial question is also of theoretical interest because
it reveals differences among spaces, like the differences revealed by intrinsic
dimensionality. It connects to work in pure mathematics, specifically the field of
combinatorial geometry.

Table 1.3 summarises our results. For tree metric spaces, k sites can generate
up to (;) + 1 distinct distance permutations, and we display cases where the
bound is and is not achieved. For strings in general, the question is complicated,
especially where the strings may be of unlimited length. We show some bounds
for Hamming distance, and use them to give a loose bound for Levenshtein
distance as well. For Superghost distance the length of the strings becomes
important (the question seems trivial with unlimited-length strings) and we
give a bound relating string length to number of permutations. Finally, we
give experimental results for some practical database and discuss the distance
permutation question in hyperbolic space.

1.5 Reverse similarity search

The third focus of the present work is on constraint satisfaction problems arising
from VP- and GH-trees. In either kind of tree, the internal nodes describe
constraints on the points that can appear in leaves of each subtree. Every leaf
then contains points that satisfy all the constraints of the internal nodes above it.
If we consider the set of constraints for a leaf in isolation from the database or
tree that generated them, we can ask the basic constraint satisfaction question:
is there any point satisfying all the constraints on the list? Could this leaf ever
appear and be nonempty in a tree generated from actual data? We call that
reverse similarity search, because it reverses the process of doing an ordinary
search in the tree. Rather than going from a query to a leaf, we go from a
description of a leaf to a query (if one exists) that would end up in that leaf.

Note 1.26

The reverse similarity search problems studied here are distinct from
the reverse nearest neighbour search of Korn and Muthukrishnan. In
their problem, a query starts with a point x and finds the other points
in a database that have x as their nearest neighbour [129]. That is a
close variation of the ordinary kNN search and approached with similar
techniques. Our reverse similarity searches are decision problems more
closely resembling constraint satisfaction problems like 3SAT.

We begin by defining the problems formally.

reverse similarity
search

36 CHAPTER 1. INTRODUCTION

Vectors of n reals with Lp metrics

Theorem 3.1: k! achievable when n > k — 1 for all L, metrics. Theorem 3.2
and Corollary 3.3: recurrence relation giving maximum for Euclidean (L)

space, < k", k?"/2"n! + o(k?"). Theorem 3.4: O (22”2k2”) for L,, O (an)

for L,, O (22"n2”k2”) for L,,. Section 3.5: experimental results on dis-
tance permutations actually occurring as opposed to maximum, including
examples proving the Euclidean limit is not an upper bound for L; and L.

Tree metric spaces

Theorem 4.2: (g) + 1 maximum for any tree space. Corollary 4.3: space
containing unweighted path of length 2¢~1 is sufficient condition for achiev-
ing the bound. Examples 4.10 and 4.11: spaces in which the bound is not
achieved.

Strings of n bits with Hamming distance

Theorem 5.2: 2" when k > n, > 2" —n when k = n. Example 5.4: 2" —n
bound from Theorem 5.2 is not tight. Theorem 5.3: k! when k(k —1) <n,
achieving the permutations without resort to tiebreaking.

Strings with Levenshtein distance

Corollary 6.7: strings of length 2n(n + 1) with Levenshtein can have at least
as many distance permutations as strings of length 2n with Hamming.

Strings with Superghost distance

Theorem 7.4: k strings of length O(klogk) can achieve all k! permutations
and all the strings achieving the permutations will be of length O(k?logk).

Other spaces

Section 9.3: experimental results for SISAP library databases. Section 9.4:
apparently ranges from (S) + 1 to Euclidean limit in hyperbolic geometry.

Table 1.3: Results for maximum number of distance permutations with k sites.

1.5. REVERSE SIMILARITY SEARCH 37

Figure 1.5: A VPREVERSE instance.

VPREVERSE
Definition 1.27 (The VPREVERSE Problem)

In some metric space (S,d), given a set P of ordered triples (x;, r;, b;) with
x; €S, r; real given to some precision, and b; € {0, 1}, accept if and only
if there exists a point z € S such that for every (x;,r;, b;) € P, d(z,x;) < r;
if and only if b; = 1. Mnemonic for the bit values: 1 looks like “I” and
requires points to be Inside the sphere; 0 looks like “O” and requires points
to be Outside the sphere.

Example 1.28

Where (S, d) is the Euclidean plane, let P be the set of triples {((%/,0),1,0),
((°4,1),2,1), ((0,0),1,1)}. This is a yes-instance satisfied by the point
z = (0.4,0.7). See Figure 1.5. The point z must be outside the circle
centred on (%4,0) and inside the other two. Only points in the small
curved-sided triangle-like region satisfy the instance.

GHREVERSE
Definition 1.29 (The GHREVERSE Problem)

In some metric space (S, d), given a set P of ordered pairs of points from
S, with n = |P|, accept if and only if there exists a point z € S such that
d(z,x;) < d(z,y;) for every (x;,y;) € P.

Example 1.30

For the Euclidean plane, let P be the set of pairs of points {((2,1), (0,0)),
((1,0), (1,1)), ((1,0), (3,0))}. This is a yes-instance satisfied by the point
%z =(1.8,0.3). See Figure 1.6. The satisfying point z must be on the shaded
side of each of the three lines that define the constraints.

38 CHAPTER 1. INTRODUCTION

Figure 1.6: A GHREVERSE instance.

The original motivation for considering these problems came from the desire
for robust hashing in security applications. Security applications sometimes
require the ability to recognise objects without keeping examples for comparison.
For instance, a multi-user computer system might wish to recognise users who
provide an exactly correct password, without storing an explicit copy of the
password that could be vulnerable to intruders [184, 216]. But an object like a
fingerprint, which could be distorted by noise or measurement error, requires a
fuzzy match; and current techniques store information from which the fingerprint
can be reconstructed, thereby opening themselves to attack [175]. Robust
hashes are designed to recognise such objects while keeping some of the security
properties of existing one-way hashes [51].

One way to build a robust hash would be as a list of predicates—yes or no
questions that describe an object. If the predicates are chosen so that for each
question and a randomly selected object, either answer is equally likely, and so
that the answers to different questions are as nearly as possible independent,
then the possibly-complicated native distribution of the space can be transformed
into a uniform distribution on binary strings. Nearby points are likely to give
the same answers to most of the questions, but distant points are likely to give
uncorrelated answers and result in binary strings with no special relationship.

Assuming the robust hash works well, we can store just the bit string as the
hash value for a secret object, and recognise other similar objects by their similar
hash values. On the other hand, generating a new object (short of guessing at
random) to produce or approximate a given hash value, should be difficult. Our
study begins with the question of whether such hashes are secure. They are
already in use, with experimental rather than theoretical backing, in the Nilsimsa

1.5. REVERSE SIMILARITY SEARCH 39

GHREVERSE VPREVERSE VPREVERSE,
equal radii

tree metrics* P, Thm. 4.5 T T
Hamming NPC,Cor. 5.5 NPC, Thm.54 NPC, Thm. 5.4
Levenshtein | ANPC, Thm. 6.8 NPC, Thm. 6.8 open
Superghost NPC, Thm. 7.9 NPC, Thm. 7.9 open

Ly P, Thm. 8.5 NPC, Thm. 8.3 NPC, Thm. 8.11
Ly,p #2 NPC, Thm. 89 NPC, Thm. 8.3 NPC, Thm. 8.11
L NPC, Thm. 8.10 NPC, Thm. 8.4 NPC, Thm. 8.11

* With some exceptions; see Section 4.4.
T Depends on space (Theorem 4.6); may be P (Definition 4.5) or N'PC
(Example 4.9).

Theorem 9.3: DPREVERSE = generalised GHREVERSE < GHREVERSE
< VPRU.

Table 1.4: Reverse similarity search results.

spam filter [53].

The VP- and GH-tree data structures suggest forms for lists of predicates to
use in such a robust hash. Deciding whether a point can be included in a given
leaf consists of answering a series of yes or no questions about it: Is it inside this
sphere? Is it outside that sphere? Is it closer to this point than to that one? Such
a list of questions naturally forms a candidate robust hash scheme, and then
the task of attacking the robust hash’s main security guarantee (“it is difficult
to construct a point having a chosen hash value”) is exactly the VPREVERSE or
GHREVERSE problem. Successful reverse similarity search would reverse the
hash.

There are two ways the attacker’s problem could be hard, and we would
like both. We want hard instances of the problem to exist, and we want hard
instances to be easy to generate (for instance, by choosing them at random).
Our results on reverse similarity search are summarised in Table 1.4. For many
spaces the problems turn out to be A’P-complete. We also show some reductions
connecting variations of the problems in Theorem 9.3.

Having N'P-completeness means that some instances are as hard as any
problem in NP, which provides the first kind of hardness we might want for
security. But that does not mean all instances are hard, and it in fact militates
against the hardness of randomly chosen instances. We would like the problems

40 CHAPTER 1. INTRODUCTION

to exhibit random self-reducibility: the property of any instance being reducible
to a reasonable number of randomly chosen instances. In that case we could
argue that random instances are as hard as the hardest instances in the problem.
But as Feigenbaum and Fortnow show, if there were any N'P-complete random
self-reducible problem, then the polynomial hierarchy would collapse at the third
level [68]. Such a collapse would be a deep, important, and unexpected result
in computational complexity theory, and seems too much to hope for. Achieving
one of the desired security properties makes it difficult to expect the other.
However, the complexity landscape of VPREVERSE and GHREVERSE has
theoretical interest apart from the original security application. As shown in the
table, these problems are generally A"P-complete, but polynomial-time in some
spaces. Among vector metrics, the fact that GHREVERSE is polynomial-time for
Euclidean space but not any other L, metrics highlights the special nature of
that space. Among string edit distances, there is an important boundary between
prefix distance (with edits allowed at one end of the string; it is a tree metric
for which reverse similarity searches are polynomial time) and even very simple
modifications such as Superghost distance (in which edits are allowed at both
ends of the string). Like the different behaviour of intrinsic dimensionality among
different spaces, the differences in reverse similarity search complexity provide a
way to classify and distinguish among spaces that otherwise appear similar.

Chapter 2

Real vectors, Lp metrics, and dimen-
sionality

Vectors of real numbers, especially with the Euclidean metric, are among the
standard examples of metric spaces. Vector spaces are intuitively easy to under-
stand because their properties closely resemble those of physical space; there
is a well-studied and widely-applied theory of linear algebra based on vectors;
and they are typically used as test cases for metric-space data structures. In this
chapter we focus on the well known class of metrics called the L, metrics, which
generalise the Euclidean metric, and study the intrinsic dimensionality of various
distributions of real vectors with these metrics.

Recall that Chavez and Navarro define the intrinsic dimensionality of a space intrinsic
as u?/(202) where u and o2 are the mean and variance of the distance between dimensionality
two random points drawn from the native distribution of the space [40]. Intrinsic
dimensionality is denoted by p. As discussed in Subsection 1.3.2, calculating
intrinsic dimensionality is equivalent to calculating the coefficient of variation,
which is known for many common distributions. However, some of the specific
distributions we study are not common well-known distributions. For instance,
Theorem 2.8 contemplates the p-th root of a sum of p-th powers of the absolute
values of normal variables; that is, a chi distribution as opposed to chi-squared,
generalised to arbitrary powers. Even in cases like Theorem 2.5 where the con-
clusion should follow easily from well-known results, we give original derivations
because those are hard to find in the standard literature. We also express the
result in terms of intrinsic dimensionality p for convenient application to the
problems we study.

This chapter uses much of the notation for probability and statistics defined
in Subsection 1.2.2. In particular, recall that E[Z] is the expectation of a random
variable Z; and V[Z] is the variance of a random variable Z. We use an arrow

41

max® {7}

min®{z}

L, metric

Manhattan
distance
taxicab distance

Euclidean
distance
Chebyshev
distance

chessboard
distance

42 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

f(n) — g(n) to indicate that f approaches g up to lower-order terms (Defini-
tion 1.16). In the discussion of the L., metric we use the notation max(¥{Z},
read “max over k from Z,” for the random variate consisting of the maximum of
k independent and identically distributed random variables drawn from the ran-
dom variate Z; min®{Z} is defined analogously for the minimum of k variables
from Z. Following the notation used by Arnold, Balakrishnan, and Nagaraja [13],
we write XY if X and Y are identically distributed, X 4,y if the distribution of
X (n) converges to the distribution of Y as n goes to positive infinity, and X Ly if
the distributions of both X and Y depend on n and converge to each other.

Definition 2.1
Where x = (x1,X3,...,%,),¥ = (¥1,Y2,---,Yn), the L, metric d,(x,y) is

defined by
n 1/p
dp(x,y) = (Z |x; — }’i|p) 2.1)
i=1

forreal p > 1 or

doo(x,y) = lim d,(x,y)

= Iialxlxi - il (2.2)
for p = co.

The name of Hermann Minkowski is often attached to the L, metrics by way
of the Minkowski Inequality, a basic result in functional analysis, which amounts
to the statement that the L, metrics obey the triangle inequality [153, pages
112-113, 273-274]. Some values of p are especially popular and have specific
names of their own:

e [, is called the Manhattan or taxicab distance, because in the integer-
coordinate case it measures the distance travelled by a taxicab through a
grid-structured city.

e L, is the familiar Euclidean distance calculated by the Pythagorean Theorem.

e [is called the Chebyshev distance or the chessboard distance, the latter
because in the integer-coordinate case it measures the number of moves
required by a Chess King to get from one point to another.

The unit circles of L, distance functions for two-dimensional space and several
different values of p are shown in Figure 2.1. Note that L;/, is not actually
permitted by the L, metric definition, which requires p > 1; the defining formula

43

4O E
olajE

Figure 2.1: Some L, unit circles.

(2.1) can be evaluated with p < 1, but the resulting distance function fails to
obey the triangle inequality and so it is not a metric. The failure to satisfy the
triangle inequality in this case is closely related to the fact that the L, , circle, as
shown, is not convex.

Circles from L,, possibly stretched or generalised in other ways, are known as
Lamé curves or superellipses. They provide a visually pleasing shape somewhere
between a square and a circle, and have seen use in fields such as architecture and
font design. Zapf based the Melior typeface on them [103, page 291]. Piet Hein'
famously designed the traffic roundabout at Sergels Torg, Stockholm, around
a stretched Lg, circle; and Balinski and Holt suggested one as a shape for the
table in the Vietham War peace negotiations [83]. The POV-Ray ray tracer offers
a three-dimensional superellipsoid as a scene primitive [167, section 2.4.1.11].

Knuth’s Computer Modern typeface family, which is the BTgX default, also
includes superellipse-based forms in some of its fonts [127]. Since Computer
Modern is nearly universal in computer science documents,”> most computer
scientists see L, circles every day without consciously knowing it.

!As Gardner writes, “he is always spoken of by both names.” [83, page 241]
2This dissertation is an exception. The main text is set in Bitstream Charter to better survive
limited-resolution processes like microfilming.

convex distance
function

44 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

More general classes of vector distance functions exist. Chew and Drysdale
discuss convex distance functions in the plane, and the resulting Voronoi dia-
grams [44]. Convex distance functions are defined by their unit circles: the unit
circle must be a convex set containing the origin, and then the length of a vector
is the factor by which the unit circle must be scaled to bring the vector onto its
boundary. The distance between two vectors d(x,y) is the length of x —y. Convex
distance functions, generalised to arbitrary-dimensional vectors, are popular in
the study of Voronoi diagrams, as are restricted versions which require the unit
sphere to be a polyhedron, or symmetric about the origin. If it is symmetric
about the origin, the convex distance function is also a metric. All the L, metrics
are convex distance functions with symmetric unit spheres, but only in the L,
and L, cases (and the trivial one-dimensional case) are their unit spheres also
polyhedra.

2.1 Asymptotic intrinsic dimensionality with all components inde-
pendent and identically distributed

When Chavez and Navarro introduced the intrinsic dimensionality statistic p,
they presented some experimental results for L, vectors showing that p on
vectors chosen from the unit cube was well-approximated by a linear function
of the number of components n for n between 2 and 20 and p € {1,2,00}. They
also gave an intuitive argument for why it should be linear [40]. The intuitive
argument for linear behaviour is based on a result of Yianilos [218, Proposition
2] that only applies to L, metrics with finite p, and as we will show, the behaviour
of p is not in fact necessarily linear for L, although it is linear for the uniform-
component case of the experiments.

Exact theoretical analysis of p is difficult for finite n because it requires
computing the distributions of functions of multiple random variables for which
no convenient representations are known. We consider some of the easier cases
of that in Section 2.2. In the present section, we characterise the asymptotic
behaviour of p on vectors with all components independent and identically
distributed, as the number of components n increases. The results of this section
were first presented in an extended abstract at SPIRE’05 [190]. The expositions
given here have been revised and expanded to provide a clearer description of
the results, especially in the proofs.

Consider the space consisting of R" with the L, metric for some p and the
native distribution being vectors with every component drawn independently
and identically from some distribution on R. If we let X =Y be random variates
representing the component distribution, then we can construct random vectors

2.1. ASYMPTOTIC p WITH ALL COMPONENTS IID 45

X = (X1,Xy,...,X,) and y = (V1,Y,,...,Y,), which are points drawn from the
space. We consider the intrinsic dimensionality of such a space, and especially its
asymptotic behaviour as n goes to infinity. Letting D, ,, itself a random variable,
represent the distance between x and y under the L, metric, then the intrinsic
dimensionality is p = E*[D, ,]/2V[D, ,] [40].

2.1.1 Generally distributed components

The following two results offer a method for computing the asymptotic behaviour
of intrinsic dimensionality depending on the distribution of |[X — Y|, the absolute
difference between two components drawn from the component distribution
in question. First we consider the case for L, metrics with finite p, which is
relatively straightforward.

Theorem 2.1

For a space of n-component real vectors with independent and identically
distributed components as described above, using the L, metric for finite p,
then if “/zp is defined and finite, the intrinsic dimensionality p obeys

p*(u,)? 2.3
- | —————- | N, .
P 20w, - D

where uf{ is the k-th raw moment of |X — Y|, that is, E[|X — Y |¥].

Proof The L, distance consists of the p-th root of a sum of p-th powers of
absolute differences of components, so first we must describe the distribution of
the sum. Lets =Y _, |X; — Y;|P. Gut gives a strengthened version of the Central
Limit Theorem for independent and identically distributed random variables [94,
Theorem 7.5.1], by which the finiteness of ,u’zp implies that the sum is uniformly
integrable up to order 2p. Not only does its distribution converge to a normal
distribution, but its moments up to the 2p-th moment also converge to the
moments of that distribution. Then we can calculate the expectation and variance
as follows:

E[s] =nE[|X; - ¥;|’]
VIs] =nVIIX; - Y;|"]

46 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

= n(E[1X; - Y;|**] - E*[|X; — Y;"])
= n(py, — (U,)%).

Now, D, ,, = s1/P. The mean and variance of s both increase linearly with n,
so the standard deviation increases according to the square root of n and its
ratio to the mean decreases according to the square root of n. For large n, s
does not vary much around its mean, and s'/? can be approximated by a linear
function of s; then in an application of the delta method (see Gut [94, page 349]
and Knight [126, page]) we can move the 1/p power outside the expectation to
approximate the distribution of D, ,,. As in the previous step, the condition on
existence of high enough moments gives us moment convergence of the needed
order.

E[s!/P] - E[s]"/P = nl/p(%)l/p

d 2
V[s/P] - V[s] (asl/l’)

AN
_“2p (“p) nZ/p(/)2/p
TGy
s=E[s] p

_ E[sV/P] p(u,)?
PTavEs] T | 2, —)P

This corollary follows naturally:

Corollary 2.2
If the space in Theorem 2.1 uses the L; metric, then the approximation is

exact even for finite n:
p2(u,)? 2.4
= _—_— n. .
P 20, -)

Proof When p = 1, then x'/? is the identity function, the linear approximation is
perfect, and the limits for large n in the proof of Theorem 2.1 become equalities.

As for the L, metric, the distance D, , is the maximum of n variables of the
form |X —Y|. The maximum is a simple example of an “order statistic”’; and
order statistics are well studied and much is known about them [13, 80]. The
cumulative distribution functions of maxima are easy to calculate: if F(x) is the
cumulative distribution function of Z, then it follows from the definitions that
F"(x) is the cumulative distribution function of max™{Z}.

2.1. ASYMPTOTIC p WITH ALL COMPONENTS IID 47

For a large collection of independent and identically distributed random
variables, it is known that the maximum obeys something like the Central Limit
Theorem. Just as the distribution of a sum tends to one known form (the normal
distribution), the distribution of a maximum tends to one of three forms. We
say that the random variable W with non-degenerate cumulative distribution
function G(x) is the limiting distribution of the maximum of Z if there exist
sequences {a,} and {b,, > 0} such that F"(a, + b,x) — G(x). The following
well-known result describes the distribution of W if it exists at all.

Theorem 2.3 (Fisher and Tippett, 1928)

If (max™{Z} —a,)/ bni>w, then the cumulative distribution function G(x)
of W is one of the following, where a is a constant greater than zero [13,
Theorem 8.3.1] [72]:

Gi(x;a) =exp(—x~%) for x > 0 and 0 otherwise; (2.5)
Gy(x; a) = exp(—(—x)*) for x < 0 and 1 otherwise; or (2.6)
Gs(x) =exp(—e™). 2.7)

The distributions described by (2.5)—(2.7) are called Fréchet type, Weibull
type, and Gumbel type respectively [116, Chapter 22]. The criteria for finding
which of the three limiting distributions applies, and its parameters, can be
complicated, and they are often stated in terms of sufficient conditions rather
than a complete characterisation. Also, the sequences of constants a, and b,
are not necessarily unique. Arnold, Balakrishnan, and Nagaraja give a detailed
presentation of these criteria [13], and we will cite specific results as we use
them.

The theory of asymptotic order statistics also gives rise to the following lemma.

It eliminates the absolute value function when we study the maximum of a large
enough collection of random variables. This result in this form is original, but a
reasonably obvious application of the cited well-known principles.

Lemma 2.4
If Z is a real variate with distribution symmetric about zero, and W, a,,, and
b, exist such that (max™{Z} — a,)/b,->W, then max™{|Z|}<% max®V{Z}.

limiting
distribution

48 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

Proof The maximum absolute value among n variables from Z must be either
the maximum, or the negative of the minimum. We could find those separately
and then see which one is larger. But as explained by Arnold, Balakrishnan, and
Nagaraja, the maximum and minimum of a collection of random variables are
asymptotically independent [13, Theorem 8.4.3]. Therefore, instead of finding
the maximum and minimum of one set of n variables, we could find the maximum
of a set of n variables and the minimum of a different set of n variables; or by
symmetry, the maximum of 2n variables. Symbolically,

max("){|Z|}<i> max{max"{Z}, — min™M{Z}}
2 max{max™{z}, maxM{Z}}

4 max®V{Z} .

Now, given the distribution of X — Y or |X — Y|, we can apply the asymptotic
theory described by Galambos [80] to determine the limiting distribution for
Dy = max™{|X — Y|}; and if it exists, it will be in one of the three forms stated
in Theorem 2.3. We can then integrate to find the expectation and variance, and
standard results give acceptable choices for the norming constants a, and b,,,
giving the following theorem.

Theorem 2.5

For random vectors with the L, metric, when Theorem 2.3 applies to
max™{|X — Y|} and the first two moments (or mean and variance) of |X — Y|
are defined and finite, then the intrinsic dimensionality p obeys:

(¢ +b.0 (1="%))°

P (1-%) -2 (1- %)
(an+b,I (1+ %))2

2b% (F (1 +2/a) -T2 (1 + l/a))

3(a, + byy)?
- b2m?

for Gy(x;a); (2.8)

p— for Gy(x; a); and (2.9)
for G5(x); (2.10)

where y =0.5772156649015..., the Euler-Mascheroni constant.

Proof It is required to find the mean and variance of each of the three possible
limiting distributions. These distributions are well-known, but they are often
presented without details of how to derive their means and variances [13, 80,
116]. We give detailed derivations here.

2.1. ASYMPTOTIC p WITH ALL COMPONENTS IID 49

The cases of (2.8) and (2.9). The first two cases, where the cumulative distri-
bution function of W is as shown in (2.5) and (2.6), are almost identical and we
will consider them together. The limiting cumulative distribution function F of
D, is as shown below, taking the upper signs for (2.5) and the lower signs for

(2.6).
Fx)=4"" [_ (ii_)w for (&x) > (&ay),

Oor1l otherwise.

We can differentiate it to find the probability density function, f:

d
flo)= HF(X)

o () e [(+52) "] for (0>)

= X—ap n
0 otherwise.

The existence of the first two moments of |X — Y| implies, by a result of
Pickands, that the the first two moments of the maximum D, ,, converge to the
first two moments of the limiting distribution W [108]. We integrate, using the
substitution y = +(x — a,)/b,, in both integrals. The substitution replaces x with
+(yb,, + ay) and dx with £b,dy, and the lower limit of integration becomes 0.
Then we can apply the formula f;o Yy %exp(—y *)dx =Y, I(1+(n+1)/a),
which follows from the definition of the gamma function:

+00

E[Dy] — :I:J xf(x)dx

+a

n

o
= aJ (yby+a)yT Texp(—yT*)dy
0

=b,r (1F,) +a,

+o0
E[Dgo’n] - :I:f x2f(x)dx
+a,
o
= af (yzbrzl +2a,b,y + arzl)ym_1 exp(—yT")dy
0
=b2T (1F%,) +2a,b,I (1FY,) +d?.

Substituting those expectations into the formula for intrinsic dimensionality
gives (2.11), which covers both (2.8) and (2.9):

V[Doon] =E[DZ, ;] — E*[Dqy]

50 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

— b2T (1F%,) +20,b,T (1FY,) +a2— (b,T (1F %) + an)2
=b2(T(1¥%)-T*(15 %))
E?[Dy]
P 7 2VD,,]
(an+b.T (1F %))
202 (r(1%%,) -r2(1% 1))

(2.11)

The case of (2.10). The third case proceeds similarly. Where the cumulative
distribution function of W is exp(—e™*) as in (2.7), then we find the cumulative
distribution function F and probability density function f of D, , as follows:

x—a,
F(x)=exp [—exp (— 5)}

d
fl)= EF(X)

. 1 X —a, X —a,
= b, exp b, exp | —exp b, .

As in the other case, the existence of the first two moments of |X — Y| implies
moment convergence of order two for the maximum, so we can find the moments
by examining those of W. We express the expectations as integrals and apply
the substitution y = exp(—(x —a,)/b,). Then x = a, — b, logy, dx = —bn/y dy,
and we get integrals of the form f OOO logk xe™ dx. That formula is trivially
equal to 1 for k = 0; for higher k it is more difficult, but standard references
give f;o logxe ™ dx =y and f;o log? xe ™ dx = s> + y?, where y is the Euler-
Mascheroni constant [87, 4.331(1.) and 4.335(1.), page 567]. Then we can
compute the variance, and the intrinsic dimensionality follows.

E[Dy] —>J xf(x)dx

(T X —a, X —a,
=] x b exp b exp | —exp b

= f (an - bn logy)e_y dy
0

=a,+ b,y

E[Dgo,n] — J x2f(x)dx

| X —a, X —a,
= x2—exp| — exp | —exp | —
ol b P\, TP,

2.1. ASYMPTOTIC p WITH ALL COMPONENTS IID 51

o0
= j (a® —2a,b,logy + b*)e ™ dy
0
b2n?
=a®+2a,b,y + ”T + b2y?
2

_ 2 1. @2 _”_bz
V[Doo,n] _E[Doo’n] E [Doo,n] - 6 n

_ E’[Doon] 3(ay +byy)’
P VD] b2r2

Note 2.2
The intrinsic dimensionality p is not necessarily ©(n). For instance, in
Theorem 2.9, p is ©(log? n).

2.1.2 Uniform components

Chéavez and Navarro used random vectors with each component chosen uni-
formly from the interval [0, 1) for their experiment, as a typical example of the
kind of distribution used for testing metric space data structures [40]. For this
distribution, Theorem 2.1 applies easily.

Theorem 2.6
For the space of n-component real vectors with each component uniform in
the range [0, 1) and the L, metric for finite p, the intrinsic dimensionality p

obeys
4p +2
- 2.12
P [ers}n, (2.12)

and this is an equality for p = 1.

Proof This is a simple application of Theorem 2.1. When X and Y are uniform
real random variates with the range [0, 1), then the probability density function
of [X — Y| is given by
2—2x for0<x<1,
flx)= . (2.13)
0 otherwise;

and we can find the raw moments by integration and substitute them into the
formula as follows:

! 2
M;:f X’p(2—2X):
0

(p+1D(p+2)

52 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

1
’ 2 _ _ 1
Yo _L) G D
N GO n=[4p+2}n
2(uy, — (,)?) p+5]

By Corollary 2.2, this is an equality for all n, not just a limit for large n, in the
case of the L, metric.

For L, metrics with large p, the slope of the line in Theorem 2.6 approaches
4. From there it would be natural to assume that the L., metric should produce a
line with a slope of exactly 4. It does produce a line; but with a much shallower
slope. The phenomenon of L, behaving differently from L, for large finite p
is not so strange as it may seem: what is actually happening here is that we
are taking two limits, the limit for large n and the limit for large p. Usually,
we can take two limits in either order and get the same result, but this is one
of the rare cases that introductory calculus texts warn us about: in this case it
matters which order we take the limits and we get different results depending
on that choice. We prove it by integrating the probability density function to
find the cumulative distribution function F(x) = 2x — x2. Then standard results
on extreme order statistics give the limiting distribution of max(™{|X — Y|} and
Theorem 2.5 applies.

Theorem 2.7
For the space of n-component real vectors with each component uniform in
the range [0, 1) and the L., metric, the intrinsic dimensionality p obeys

1
p—>|:2_n/2i|n. (2.14)

This is the same line approached for the L metric where p = (1+ 7)/(7 —
21) =5.77777310519....

Proof Integration of the probability density function of |[X — Y| given by (2.13)
above results in the cumulative distribution function of the per-component abso-
lute differences F(x):

x 2x —x? 0<x<1,
F(x)=f 2-2tdt=40 x <0,

% 1 x> 1.

2.1. ASYMPTOTIC p WITH ALL COMPONENTS IID 53

Now, F~1(1) = 1, and we can compute the following limit, which turns out to
be a positive constant power of x:

1-F(F'1)—ex) . 1-2(1—ex)+(1—ex)?
m = lim
en0t 1—F(F1(1)—€) es0t 1-2(1—€)+(1—¢)?
I e2x?
= lum
e—0t €2
= X2 .

Then as described by Arnold, Balakrishnan, and Nagaraja, the cumulative
distribution function of the limiting distribution of a maximum of these per-
component absolute differences is of the form shown in (2.6); and the norming
constants a, and b,, so that (max("){|X—Y|}—an)/nbi>W are given by a, = F~1(1),
b,=F 11)—F '(1—-n"1) [13, Theorems 8.3.2(ii), 8.3.4(ii)]. In our case, that
gives a, = 1, b, = 1/+/n; and the cumulative distribution function of W is
Gy(x; a) for a = 2. Then we can apply (2.9) from Theorem 2.5 as follows:

(an+ b, (1+ 1/0[))2
T (T (1+%,) -T2 (1+Y,))
_ (1+r () /vR)
=2, (T2) -T2 (%))

P

=k
2-"h]

Substituting that slope value into (2.12) from Theorem 2.6 gives an equivalent
p-value for an L, metric with the same asymptotic behaviour as L,: the L; metric
forp=01+n)/(7—-2mn).

This result may seem especially surprising because the expression (2.12)
seems simple and well-behaved; in particular, it is monotonic in both p and
n. So it is strange that (2.14) should not agree with (2.12) for large p. Note,
however, that (2.12) is already the result of taking one limit for n in the proof
of Theorem 2.6. We are not claiming that (2.14) is the limit of (2.12), but that
they are each limits (in different directions) of p. Also, the limiting process
in the proof of Theorem 2.6 depends on a convergence assumption (existence
of moments) which seems likely to break down for infinite p; it would require
infinite-order moments. So we are not even taking a different limit of the same

54 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

well-behaved formula, but in some sense looking at a different formula for the L,
case. Theorem 2.7 and its disagreement with Theorem 2.6 are solidly supported
by the experimental evidence in Section 2.3. It seems clear that these results are
true, however strange.

It is striking that p’s decimal expansion starts with 5.77777..., suggesting
2/ =5.7777777777 ..., but it does not keep up the pattern past the fifth decimal
place. Substituting the value 2/, and then solving for 7 reveals the reason for
the suggestive pattern: if p were exactly equal to °%},, that would make 7 exactly
equal to the well-known rational approximation 3°°/;,5, which is attributed to the
5th Century mathematician Ztt Chongzhi® [157].

2.1.3 Normal components

The standard normal distribution is another reasonable choice for the distribution
of vector components. For finite-p L, metrics it produces straightforward linear
behaviour; in fact, for the Euclidean metric the limiting slope is conveniently
equal to 1. However, for L, we find more complicated behaviour, illuminating a
fundamental difference between L, and merely L, for large p. For the case p =2
the distance has a well-known distribution (see note below) for which mean
and variance (implying coefficient of variation and so intrinsic dimensionality)
are already known. The use of general p, however, seems to require an original
proof.

Note 2.3

The proofs of Theorems 2.8 and 2.10 make use of properties of the chi
distribution, also known as the generalised Rayleigh distribution. The
chi distribution is distinct from the more commonly-seen chi-squared dis-
tribution, although they are related by the fact that the square root of a
chi-squared random variable will have a chi distribution. Both distribu-
tions are described in detail by Johnson, Kotz, and Balakrishnan [115,
Chapter 18].

Theorem 2.8
For the space of n-component real vectors with each component standard
normal and the L, metric for finite p, the intrinsic dimensionality p obeys

P ()
2(Var (p+15) -T2 (22))

p— n, (2.15)

*pinyin Romanisation. Tsu Chhung-Chih in the modified Wade-Giles system used by the
reference [157].

2.1. ASYMPTOTIC p WITH ALL COMPONENTS IID 55

and this is an equality for p = 1.

Proof When X and Y are standard normal, then the difference X —Y is a normal
random variate with mean equal to zero and variance two. The absolute differ-
ence |X — Y| has a half-normal distribution (the same as a chi distribution with
one degree of freedom) and its probability density function is given by

1 x2 >0
f={va P\"4) *=7
0 x <0.

Note that the variance of X — Y is two, because it is the difference of two
standard normal variates, and so the given density function incorporates the
appropriate scaling.

We can find its raw moments as follows:

. :J xFf(x)dx

—00
= Ooxkiexp (—x—z) dx

o TR\
25 (% nzgv gy substituting y =
= ﬁJo y e Y dy substituting y = 7

r kt1 2.16
(T) (2.16)

2
==
Then we can apply Theorem 2.1 to find the intrinsic dimensionality:
p2(u,)?
P= || n
25, — (1))
|2 (n"h2pT (p — 1) — n120T2 (22))
i 212 (ptl
_ rr* (%) })

2 (VAT (p+1) — T2 (52))

As in the uniform case, Corollary 2.2 makes this an equality for all n, when
p=1.

56 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

Unlike the uniform case, the slope of the asymptotic line does not increase
monotonically with p. It increases from 1/(7—2) ~ 0.87597 for L, to unity for L,
which is the maximum, but then it decreases rapidly with increasing p, reaching
zero in the limit of large p. For the L., metric, p is sublinear: ©(log®n). The
argument for linear behaviour from Yianilos [218, Proposition 2] only applies
to finite p. However, this result does at least seem more intuitive than what
happens with the uniform distribution. With the normal distribution p is linear
for finite p with a slope that decreases towards zero, then it becomes sublinear
for L. Recall that with the uniform distribution it is linear in all cases, but the
L, case appears somewhere in the middle of the finite-p cases, not at the limit
for large p.

Theorem 2.9
For the space of n-component real vectors with each component standard
normal and the L., metric, the intrinsic dimensionality p obeys

3) ,
P [4108n—10g10g2n+10g /n+2}’:| (2.17)

where v is the Euler-Mascheroni constant.

Proof The distance between two random points in this space is max™{|X —
Y|}, with X and Y being standard normal. By Lemma 2.4, that approaches
max(®*V{X — Y}. Then each X — Y variable is normally distributed with mean
zero and variance two. It is well known that with suitable constants a,, and b,,,
then (max®V{X — Y} — a,,)/ bzni>W where W has the cumulative distribution
function described in (2.7) [13, 80, 98]. Arnold, Balakrishnan, and Nagaraja
give these values for a, and b, for a standard normal distribution:

1 log(4mlogn
o, = \/2Togn — L. logt4nlogn)
2 v/2logn

1

\/210gn'

Because our variables are not standard normal but have variance two, we
must include an additional factor of +/2 to scale the variables to standard normal,
and our use of Lemma 2.4 to remove the absolute value function has the effect of

b,=

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 57

doubling n, so the actual a, and b,, such that (max™{|X — Y|} —a,,)/ bni>w are

5 /load log(4mlog2n)
a, = og2n — ————
" 24/log2n
1
b,=——.
24/log2n

Substituting them into (2.10) and applying Theorem 2.5 gives the intrinsic
dimensionality:
3(a2n + bZnY)Z
b2m2

3 log(4mlog2n
=F(2\/log2n)2 24/log2n — it J)+ !

24/log2n 24/log2n

3 4 2
=1 [4logn —loglog2n +log ™/ + 2}/1 .
v

—

Note 2.4

Although the limiting distribution of the maximum is unique, the sequences
of norming constants leading to that distribution are not. We use the
constants given by Arnold, Balakrishnan, and Nagaraja, because they
lead to a relatively simple form for the intrinsic dimensionality [13].
The constants suggested by Hall for faster convergence also work, and
produce the same most-significant term for intrinsic dimensionality, but
they give more complicated lower-order terms [98]. Readers of those two
sources should be warned that they use opposite notational conventions:
Arnold, Balakrishnan, and Nagaraja use a for additive constants and b
for multiplicative constants, as does Galambos, and we follow them; but
Hall uses a and a for multiplicative constants and b and f8 for additive
constants [13, 80, 98].

These results describe behaviour for large n. As discussed in Section 2.3,
the convergence of intrinsic dimensionality to these asymptotic values may be
slow. In the case of the L, metric, it is possible to do better, and find better
approximations or even exact results for finite n. That is the subject of the next
section.

2.2 Normal components, Euclidean distance, and finite n

Random vectors with all components normally distributed are common in statis-
tics. Especially in Euclidean space, such vectors have special properties that make

58 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

their intrinsic dimensionality easy to compute. We consider a few cases here.

2.2.1 Al components with the same variance

If the variance is the same in every component, or zero in some components and
the same among all the others, then the question is easy: the difference between
two random vectors is normal in every nonzero component, with the same
variance in each one, so we can scale it to be standard normal in every nonzero
components. Then each squared difference is a chi-squared random variable
with one degree of freedom, the sum of squared differences is also a chi-squared
random variable with as many degrees of freedom as there are nonconstant
components, the distance is a chi (as opposed to chi-squared) random variable,
and its properties are well-known. The details are in the following proof.

Theorem 2.10

The space of vectors of reals where n components have independent and
identical normal distributions with variance oy and any remaining compo-
nents are constant, with the Fuclidean distance, has intrinsic dimensionality

1 r?((n+1)/2)
p==-

=2 T2 (1 +2)/2) -T2 (n+ 1)/2)° (2.18)

Proof Let X =Y be normal random variates with variance o%. Their difference
X —Y is normal with mean zero and variance 20%; and (X — Y)/(v20y) is
standard normal. So if x and y are random vectors in which n components are
independent and identical normal random variables with variance 0)2(, and the
remaining components constant, then each |X — Y|?/ (20)2() has a chi-squared
distribution with one degree of freedom, and the sum of n of those has a chi-
squared distribution with n degrees of freedom. Where D is the distance between
x and y, D/(v/20) has a chi (as opposed to chi-squared) distribution with n
degrees of freedom. Johnson, Kotz, and Balakrishnan describe the chi distribution
in detail [115, Chapter 18]. From the results given there, the mean u, and
variance o, (not to be confused with o) of the distance are:

up =oxI'(n+1)/2)/T(n/2) (2.19)
o3 =0% [[(n/2) (n+2)/2) - T*((n+1)/2)] /T*(n/2) (2.20)

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 59

Substituting into the definition p = M% / (20%), the variance cancels and we
are left with the result (2.18).

In Subsection 2.1.3 we derive an expression for the asymptotic intrinsic
dimensionality of a similar space of normally-distributed vectors; those results
are more general in that they cover arbitrary L, metrics, but also narrower in
that they cover only the limit as n approaches infinity. The following result shows
that Theorems 2.8 and 2.10 agree in the case where they both apply.

Corollary 2.11

For the space of vectors of reals where n components are independent and
identical normal random variables with variance oy and any remaining
components are constant, with the Euclidean distance, p =n — %, + o(1).

Proof We make use of the following properties of the gamma function; (2.21),
which is not trivial because it applies for non-integer z, is given by Davis [57,
6.1.15, page 256], and (2.22) is given by Graham, Knuth, and Patashnik [88,
page 602]. (That reference uses the notation z'/2 for I'(z+'/,)/T'(z) [88, page x].)

Ir'z+1)/T(z)=¢ (2.21)

T(z+'4)/T(z) = vz(1—1/(82) + o(z71)). (2.22)

With the substitution k = n/2 we can express (2.18) in terms of I'(k) and
cancel to find the limit:

1 r((n+1)/2)

p:

2 T(n/2)T((n+2)/2)—T2((n+1)/2)
1 r2(k)k (1—1/(4k) +o(k™))
T 2 T2(kk — 2>k (1 — 1/(4k) + o(k 1))
1 1-1/(4k)+o(k™)
T2 1/(4k)+o(k D)
=n—-"Y5+0(1).

2.2.2 Exact result for n = 2 and distinct variances

Real-life data often approximates a multivariate normal distribution with almost
all the variance confined to a few dimensions. That is the model, for instance,

60 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

typically contemplated by principal component analysis [21]. Theorem 2.10
describes the situation where the variation in the data is divided equally among
an integer number of dimensions; for instance, approximately 0.87597 when
n=1 and 1.82990 when n = 2. We may ask how p evolves as we move from one
of those to the other; that is the case analysed in this section. The result and its
proof are complicated and it is not clear that they can be pushed beyond two
dimensions; however, we give some useful approximations.

Theorem 2.12
For two-component vectors with the components chosen independently
from normal distributions with variances a%, a%, the intrinsic dimensionality
p is given by

p= (% ((1 +1)(1—-1)F, (3/4> a3 1; 72))_2 - 2) (2.23)

where 7 = (02 — 02)/(0% + 02).

Proof Suppose X; = Y,X, =Y, are normal with variances o%,02. Then (X; —
Y1), (X, — Y,) are normal with mean 0 and variances v20?2, v2032. Then (X; —
Y1)?, (X, — Y3)? have the two-parameter gamma distribution, as described by
Johnson, Kotz, and Balakrishnan [115, Chapter 17], with shape parameter '/,
and scale parameters 03,03, and each has the probability density function

/2
e x/o

flx)=

oJxXTT

These distributions are the same as scaled chi-squared distributions of one degree
of freedom [115, Chapter 18].

Where D is the distance between x and y, the probability density function of
D? is given by the following, where I,(x) is the modified Bessel function of the
first kind of order 0. We use a formula from Gradshteyn and Ryzhik to do the
integration [87, 3.364(1.), page 341].

o= [S
x) = : t
0 O1VTl oo/ 7m(x —t)

1 Jx exp (—t/a% —(x — t)/a%) i
0 W t(x —t)

010,77

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 61

1 0%+0§ I 0%—0%
0,0 P~ 2 252 ol 20202)
1¥2 010, 1“2

We could find E[D?] by integrating x f (x), but it is easier to use the known
mean of the gamma distribution, which gives E[D?] = (01 + 02) /2. For E[D],
however, we must integrate. We begin by expanding the modified Bessel function
into its power series about 0 [161, 9.6.12, page 375].

o0
E[D] :f Vxf(x)dx
0
* Jx 02+ 0? o2 —02
1 2 | 1 2

= exp| —x ol x
o 0102 20% g 20%0%

_ * Jx exp _xal + o2 i x2k a% — o2 2k
0 0109 20'%0'% (k'Zk)z 2 2 '

Then we re-arrange the expression, cancelling where possible. The terms that
do not depend on x are moved outside the integral.

E[D] =Y (010,) W+ (02 — o2)22 4 (k1) 2

o0 2 2
o7+0o

J exp (_ 1 . 22) 2172 4o
0 2(71 3

That puts the integral into the form f exp(—xa)x? dx with a and b constant
in relation to x [87, 3.381(4.), page 342]. On integration it produces the gamma
function:

2 2\ 2k
- 05
E[D] Zo (2 pp) (03 + 0222732 (k) 2T (2k +3h)
0103
Recall that !! denotes the double factorial from Definition 1.13, given by double factorial

1-3:5----n oddn >0,
nll=42:4.6-----n evenn >0, (2.24)
1 ne{-1,0}.
We move the terms that do not depend on k out of the summation to make
the infinite sum as simple as possible, and replace the gamma function with the

formula given by Davis for its value at half-integer arguments, which uses double
factorial [57, 6.1.12, page 255].

2 320 g2 g2 *
[D]—ozog(2 2) '2(034_03) °(k|2k)2r((2k+1)+1/2)
1703 :

o1+ 05 k=0

62 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

3/2 2 2\ 2k
— 5252 2 i oi—o3\" 1 '1.3.5.....(4k+1)ﬁ
2 a%+o-% (k12k)2 92k+1

a%+a% —o
s o 2 3/2,/7ri o2 — o2\ *(ak + 1)1
=o?0 — . .
172 O'%+O'% 2 & O'%+O'§ 2% (E1)2

If we let T = (02 — 02)/(02 + 02) and let ¢; be the coefficient of 7% in the
infinite sum, we can compute the ratio of successive coefficients ¢, ;/c; and find
that it is a rational function of k. That makes the infinite sum a hypergeometric
function of 72. It also proves that the series converges for |t| < 1, because the
limit of the rational function turns out to be 1, so the ratio of successive terms is
less than one for 72 < 1; and with positive o7 and o3 # o2, || < 1 always holds
so the series always converges.

1 @+ +D1 [(4k+ 1)1
ko 24(’<+1)((k+1)1)2/ 24 (k1)?
_ (k%) (k+54)

(k+1)?
o0
chTZk = ,F (3/4,5/4; 1;72) .
k=0

From the definition of 7 it also follows that
(3+03 4
oiol 1+1)(1-7)"

Then we can calculate the intrinsic dimensionality p as follows:

__ ED]
P = S®D2—E2[D])

2E[D? -
)
_ ((of—l—o%)"’ _2) -
2notoy (oF; (% 1;72))°
= (% ((1+T)(1 — 7)o F (3/4,5/4;1;72))_2 —2) l .

Scaling the original random vectors by a constant will not affect the value
of 7 and so the intrinsic dimensionality is unchanged by scaling. A plot of this
function as a function of 7 is shown in Figure 2.2; however, it may be difficult

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 63

Bivariate normal distribution

1.9 T T T
Exact
Quadratic approximation -------

intrinsic dimensionality p

0.9

0.8]]]
-1 -0.5 0 0.5 1

variance difference/sum ratio t

Figure 2.2: Intrinsic dimensionality for the bivariate normal distribution as a
function of 7.

to interpret because the substituted variable 7 has little intuitive significance; it
was chosen to make the algebra easier. In Figure 2.3, the function values are
plotted against 03/c? (we have T = (1 —03/02)/(1+ 02/0?)), so it shows what
happens if a random variable in one dimension has a second component added
whose variance grows to match and surpass that of the first component.

As can be seen in Figure 2.2, the value of p is reasonably approximated by
a quadratic function of 7. The approximation shown, obtained by numerical
curve-fitting, is

p =1.81971 —0.92705872.

This approximation offers some hope that a simple formula could provide ade-
quate results for higher-dimensional distributions, avoiding the need for an exact
analysis.

2.2.3 Approximation for larger n

Consider the more general case, where the components of the vectors are chosen
independently from normal distributions with variances not necessarily equal.
So far we have exact results for the special cases where there are any number

64 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

Bivariate normal distribution
1.9 T T T

Quadrati

Exact
c approximation -------

intrinsic dimensionality p

0.9

0.8]]]
0 0.5 1 1.5 2

variance ratio 692/612

Figure 2.3: Intrinsic dimensionality for the bivariate normal distribution as a
function of 0% / 0%.

of normal components but they all have the same variance (Theorem 2.10) and
where there are exactly two components with variances not necessarily equal
(Theorem 2.12). In all cases we are interested in the distribution of a sum of
gamma-distributed random variables. For a large number of random variables
(that is, a large number of vector components) the sum approaches a normal
distribution, which is also the limit of a gamma distribution for large shape
parameter. In the special case of adding two with the same scale parameter the
distribution of the sum of two gamma variables is also gamma.

So we might approximate the sum as always having a gamma distribution.
Given the variances of the components in the vectors, we can calculate exactly
what the mean and variance of the sum should be. If we choose the unique
gamma distribution with that mean and variance, we have a distribution that
approximates the true distribution of the sum. That is the approach used in this
section. The approximation is exact if all variances happen to be the same, and
even if they do not, it improves as the number of components increases, because
by the Central Limit Theorem, the sum approaches a normal distribution, as does
the gamma approximation.

Suppose each component of x and y is chosen from a normal distribution,
independent but not necessarily identically distributed, with per-component vari-

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 65

ances 02,03,...,02. The random variables (X; — ¥;)? for integer i € {1,2,...,n}

are gamma distributed, all with shape parameter !/, and with scale parameters
02,02,...,02%. The mean and variance of their sum D? are just the sums of the

means and variances of the individual variables:

E[D*]="y(o3+ 05+ +02)
V[D?] =Yyt +oh+ -+ 0.

If we approximate the distribution of D? with a gamma distribution with some
parameters a (shape) and 3 (scale), then we have E[D?] = a8 and V[D?] = af32.
Then a is given by

_(o3+o5+-+0)

a= .
4, 4
2007 +o,+-+0)

(2.25)

Note the resemblance between (2.25) and the definition of p. We do not need to
find B explicitly (although it would be easy to do so) because it will cancel out
later.

The probability density function of the gamma distribution for D? is

Xa—le—x/[a’
BeT(a)

So the assumption that D? has a gamma distribution allows us to approximate
E[D] by integrating /xf (x), as in Theorem 2.12:

fl)=

E[D] NJ Vxf(x)dx. (2.26)
0

Gradshteyn and Ryzhik give a formula for the integral [87, 3.381(4.), page 342]:

_ 1 T(a+'%)

BeT(@) (Yp)atth

— [(a+)

N \/_ T(a) (2.27)

Substituting E[D?] = af8 and (2.27) into the intrinsic dimensionality formula,
B cancels and we can multiply through by I'*(a) to simplify the expression.
__ ED]
£~ 2@ - D))

66 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

T(a+ %) 2 T'(a+'%) 2
(s)/2[‘”""5() ”

1 r(a+ 1)
T2 ar(a)-T2(a+)

N

=)

Finally, we apply al'(a) =T'(a + 1) to get

T (a+1%)
F(a)(a+1)—T2(a+%)"

1
prs (2.28)
Note 2.5
The approximation sign ~ is used here in an informal sense, distinct from
the formal approximation up to lower-order terms denoted by — and de-
fined in Definition 1.16. The approximations (2.26)—(2.28) represent the
values E[D] and p would have if D? had a gamma distribution. In general,
it does not have a gamma distribution; but it does, and the approximations
are exact, for the special case of all variances equal (by Theorem 2.10),
and in the limit for high dimensions (by the Central Limit Theorem, noting
that the normal distibution is the limit of a gamma distribution). We
discuss below the question of how good the approximation may be for
other cases.

The formula for p in (2.28) is the same as (2.18) with the substitution a = n/2.
That is the value of a when all the n variances are equal, so the approximation is
exact in the case of equal variances.

The value a from (2.25) seems to serve as a proxy for the number of di-
mensions: in the unequal-variances case, it is the number of equal-variance
dimensions that would produce an equivalent distribution for D?, defined by
mean and variance. That might make a a contender as a dimensionality measure
itself. For any distribution of vectors we could compute a based on the com-
ponentwise distributions and attempt to claim that the vector distribution has
similar properties to the distribution of vectors with a number of independent
and identical standard normal components. An advantage of « is that it takes
on the intuitive value of n in the case of n normal components, whereas p only
does so asymptotically. A disadvantage is that a seems to be specific not only to
vectors, but to normally distributed vectors with independent components and
the L, metric. Whether this number would be useful when applied to other cases
is not clear.

How good an approximation is (2.28)? When the variance is distributed
equally among the n vector components, it is exact. If the variance is distributed
unequally between two components, we have an exact value from Theorem 2.12

2.3. EXPERIMENTAL RESULTS WITH DISCUSSION 67

Bivariate normal distribution
1.9 T T T

Exact
Approximation -------

intrinsic dimensionality p

0.9 §b

0.8]]]
-1 -0.5 0 0.5 1

variance difference/sum ratio t

Figure 2.4: Comparison of exact p for bivariate normal with its approximation
from (2.28).

to compare against, and Figure 2.4 shows both values plotted against the variable
7 used earlier. (a = 1/(72 +1).) In this comparison, (2.28) does not look
particularly impressive; the difference between the two is plotted in Figure 2.5,
and is as large as 0.16 in the worst case. However, this the worst case for the
approximation: with only two components contributing to the sum, the result
will be as far from gamma-distributed as it can be. When the correct intrinsic
dimensionality is larger, we should expect the gamma approximation to be better.
In Subsection 2.3.2 we present some experimental results for cases that may be
more realistic.

2.3 Experimental results with discussion

Most of the results of this chapter are in the form of asymptotic approximations,
suggesting the question of how well the approximations hold in practical cases.
We present some experimental results on that question here.

68 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

Bivariate normal distribution
0.02 T T T

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

error in intrinsic dimensionality p

0.14

-0.16

-0.18 L 1 1
-1 -0.5 0 0.5 1

variance difference/sum ratio t

Figure 2.5: Error in the (2.28) approximation.

2.3.1 All components independent and identically distributed

Chéavez and Navarro describe an experiment in which, for L, L,, and L., and
numbers of components between two and twenty, they chose one million pairs
of points in each space and measured the distances to compute the intrinsic
dimensionality. They report that the intrinsic dimensionality values fell on
lines, as expected [40, Fig. 3]. However, the slopes they reported were much
shallower than predicted by our theory in Theorems 2.6 and 2.7. We repeated
the experiment and extended it to other distributions, metrics, and vector lengths.
These results appeared in SPIRE’05 [190].

Results for vectors of up to 20 components with uniformly-distributed compo-
nents are shown in Figure 2.6. Note that except for L; (for which p is exactly
a linear function of n by Corollary 2.2), the experimental values do not fall
on their asymptotic lines. The L, points are close, but the L,5¢ and L, points,
which appear to coincide, are far from their lines. In Figure 2.7 we see the same
experiment extended to vectors of up to 22° (a little over a million) components.
Note that that plot has logarithmic axes to accommodate the large dynamic range
of both n and p. The points for all the metrics are seen to converge on their
respective theoretical lines, but the ones for Lys do so very slowly. As predicted,
Ly, and Ls ;g approach the same line and each other, a line quite different from

2.3. EXPERIMENTAL RESULTS WITH DISCUSSION 69

Uniformly distributed small vectors
35 T T T K T T T T T

s0f Lpasymp. - |

o5 L 0 . /’/; 1

intrinsic dimensionality

2 4 6 8 10 12 14 16 18 20
vector components

Figure 2.6: Experimental results: short vectors, uniform components.

the one for Lysg.

A similar set of results for vectors with standard normal components is shown
in Figures 2.8 and 2.9. For vectors with up to 20 components, the L; and L,
points seem close enough to their predicted lines, but the L, and Lg points go off
in other directions. The L4 points seem very close to the L., points. Note that
we did not even plot the asymptotic line for L, in Figure 2.8 because with its
slope of 1*3/,176 ~ 0.0027407 it would be lost in the lower border of the plot. In
Figure 2.9 we see that for larger vectors the points do approach their respective
limiting functions, but L4 takes a long time to converge. It is still quite far above
the line even with over a million components. In that range L., remains visually
slightly off its curve too, possibly because of the negative log-loglog term in
(2.17), which is next after log? in the expansion and still large enough at n = 220
to have a noticeable effect. The maximum of a collection of normal random
variables, which essentially describes the L., metric here, is notorious for slow
convergence [98].

From these results one can see that normal distributions have smaller values
of intrinsic dimensionality than uniform distributions for vectors of the same
length; in the case of L, asymptotically so, but even for finite p, the constants are
smaller for normal distributions. So the question arises, are normal distributions
really easier to index, or is this just a sign that p is an unreliable measure? Our

70 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

Uniformly distributed large vectors

1e+06 T T T
Lyexp. +
L, asymp. A
100000 ¢
)
T
=
k]
[%]
3
£ 10000
5
2
%]
£
£
1000
100 1 1 |
100 1000 10000 100000

vector components

Figure 2.7: Experimental results: long vectors, uniform components.

Normally distributed small vectors

intrinsic dimensionality

0 -"----""“;-“.-" 1 | I I |
2 4 6 8 10 12 " - - |

vector components

Figure 2.8: Experimental results: short vectors, normal components.

2.3. EXPERIMENTAL RESULTS WITH DISCUSSION 71

Normally distributed large vectors

100000

10000

1000

intrinsic dimensionality

100 &~

100000

vector components

Figure 2.9: Experimental results: long vectors, normal components.

suggestion is that “normal distributions really are easier to index.” [190]

In a high-dimensional normal distribution, it will tend to be the case that
most components will have small magnitudes, and there will be a few outliers
of much larger magnitude. That is what we expect to see whenever we sample
from a normal distribution. In that case, when we measure the distance between
two vectors (and especially if we use L, for large p, let alone L) the distance
will be dominated by the largest-magnitude components. In fact we could make
a reasonable guess at the distance between two vectors by only looking at their
largest-magnitude components. That is the insight behind the pyramid-tree
technique of Berchtold, Bohm, and Kriegel [27]. They organise vectors by
greatest-magnitude components, using brute-force search after that, and the
resulting data structure works especially well with high-dimensional normal
distributions, because with those, most of the story about a point is told by its
greatest-magnitude component.

On the other hand, in a high-dimensional uniform distribution, the distribu-
tion of componentwise differences is triangular, with much heavier tails than a
normal distribution. There will be many components of magnitude comparable
to the largest one. The tendency for one component to dominate in the distance
calculation is much less strong. Then approximating a vector by one or a few of
its components does not work so well; and therefore searching for vectors is a

72 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

more difficult task. A measure of dimensionality should rate such a distribution
more difficult, as p does.

2.3.2 Components independent and normal but not identically distributed

Evaluation of the quality of approximation described in Subsection 2.2.3 is
hampered by the fact that we have no general exact result to compare against.
However, it is easy to generate random vectors and measure their intrinsic
dimensionality experimentally. In Table 2.1 we show the results of such an
experiment, designed to simulate the kinds of distributions modelled by principal
component analysis. These distributions are generally multivariate normal with
one or a small number of components containing most of the variance and much
smaller variance in the remaining components.

For each set of variances 0 > 03 > 03 > 0 with 03+ 05+ 0% =1, 07 a
multiple of 0.1, and o% a multiple of 0.05, we generated 107 pairs of points and
measured the resulting intrinsic dimensionality. We repeated each experiment 20
times, and the table shows the mean p and sample standard deviation s of the
resulting p, along with the approximate value g predicted by (2.28) and, where
applicable, the exact value from Theorem 2.10. The approximation is worst in
the case of 02 = 0.6, 03 = 03 = 0.2, with an error of almost 21%. It generally
improves as the intrinsic dimensionality increases.

To model a similar case but with higher dimensionality, we used vectors
with ten components, normal distribution in each component, and the variance
distributed exponentially: o? = (02)', for different values of o2. As in the
previous experiment, we used 107 pairs of points for each distribution and
repeated each experiment 20 times. The results are shown in Table 2.2. As
expected, the approximation improves as the intrinsic dimensionality increases.

For large enough intrinsic dimensionality it seems clear that (2.28) gives a
number close enough to be useful, but real-life data sets often seem to have low
dimensionality and the error may be too great for the approximation to be useful
there. Further improvement goes beyond the planned scope of the present work,
but one approach that might be fruitful would be to seek a better approximation
of the sum of chi-squared variables. For instance, the same approach used in
Subsection 2.2.3 of fitting the sum with a two-parameter gamma distribution
could be used to fit a Gram-Charlier expansion, or a similar one based on
the gamma distribution, with the hope of getting a more accurate estimate of
E[D] [115, pages 25-33 and 343].

2.3. EXPERIMENTAL RESULTS WITH DISCUSSION 73

o? o o0 |Thm.210p (2.28)p Expt.p Expts
1.00 0.00 0.00 | 0.87597 0.87597 0.87611 0.00043
0.90 0.10 0.00 | 1.22836 1.08182 1.22841 0.00055
0.90 0.05 0.05 1.08888 1.28921 0.00061
0.80 0.20 0.00 | 1.47599 1.32020 1.47626 0.00095
0.80 0.15 0.05 1.35188 1.60854 0.00080
0.80 0.10 0.10 1.36278 1.64567 0.00081
0.70 0.30 0.00 | 1.66582 1.56332 1.66559 0.00064
0.70 0.25 0.05 1.63818 1.86062 0.00066
0.70 0.20 0.10 1.68650 1.96347 0.00099
0.70 0.15 0.15 1.70323 1.99707 0.00117
0.60 0.40 0.00 | 1.78769 1.75538 1.78795 0.00106
0.60 0.35 0.05 1.88991 2.03645 0.00114
0.60 0.30 0.10 1.99882 2.19730 0.00100
0.60 0.25 0.15 2.07016 2.29422 0.00103
0.60 0.20 0.20 2.09505 2.32665 0.00134
0.50 0.50 0.00 | 1.82990 1.82990 1.82991 0.00089
0.50 0.45 0.05 2.02207 2.11547 0.00074
0.50 0.40 0.10 2.20063 2.32352 0.00089
0.50 0.35 0.15 2.34792 2.47522 0.00131
0.50 0.30 0.20 2.44577 2.56780 0.00104
0.50 0.25 0.25 2.48015 2.59963 0.00108
0.40 0.40 0.20 2.58912 2.65400 0.00098
0.40 0.35 0.25 2.70772 2.74209 0.00120
0.40 0.30 0.30 2.74962 2.77156 0.00140

Table 2.1: Comparison of Theorem 2.10 and the approximation from (2.28) with
experimental results.

74 CHAPTER 2. REAL VECTORS, Lp METRICS, AND DIMENSIONALITY

o? | (2.28) p Expt.p Expt.s

0.05 | 0.97434 1.08528 0.00048
0.10 | 1.08438 1.25468 0.00057
0.15 | 1.20817 1.42499 0.00047
0.20 | 1.34829 1.60404 0.00072
0.25 | 1.50803 1.79869 0.00093
0.30 | 1.69159 2.01355 0.00064
0.35 | 1.90443 2.25524 0.00124
0.40 | 2.15367 2.53193 0.00157
0.45 | 2.44870 2.85278 0.00117
0.50 | 2.80170 3.22979 0.00152
0.55 | 3.22820 3.67560 0.00144
0.60 | 3.74694 4.20965 0.00186
0.65 | 4.37829 4.84617 0.00220
0.70 | 5.13930 5.59344 0.00250
0.75 | 6.03296 6.44938 0.00381
0.80 | 7.03008 7.37458 0.00345
0.85 | 8.04826 8.28791 0.00382
0.86 | 8.24279 8.45981 0.00380
0.87 | 8.43123 8.62514 0.00364
0.88 | 8.61216 8.78238 0.00421
0.89 | 8.78420 8.93185 0.00371
0.90 | 8.94595 9.06999 0.00482
0.91 | 9.09608 9.20014 0.00409
0.92 | 9.23335 9.31748 0.00392
0.93 | 9.35664 9.42141 0.00369
0.94 | 9.46496 9.51274 0.00508
0.95 | 9.55749 9.59158 0.00446
0.96 | 9.63361 9.65407 0.00514
0.97 | 9.69288 9.70540 0.00296
0.98 | 9.73511 9.74003 0.00469
0.99 | 9.76027 9.76178 0.00453

Table 2.2: Comparison of the approximation from (2.28) with experimental
results.

Chapter 3

Real vectors: distance permutations

Vectors of real numbers are typical candidates for indexing by distance permu-
tations: by reducing each point in a database to a small identifying code, we
can hope to save both time and space in indexing and searching the database.
The hope is that similar objects will have similar distance permutations, so by
examining the distance permutations we can quickly rule database points out of
a query without having to calculate a possibly expensive metric on the database
points.

Recall that the distance permutation of a point y with respect to k points
X1,X9,...,X; called the sites is the permutation that sorts the site indices into
increasing order of distance from y, breaking ties by placing the lower-index site
first (Definition 1.25). If the distance permutation is denoted by IT,,, we have for
any indices 1 <i<j <k, d(xny(i),y) < d(xny(j),y) or d(xny(i),y) = d(xny(j),y)
and 11, (i) < 1, (j).

In this chapter we discuss the question of how many distinct values the
distance permutation may have over the points in a real vector space. The
maximum number of values determines how much space the index needs to
store each permutation. We describe the connection between this problem and
work on Voronoi diagrams and oriented matroids, and discuss the difficulties
encountered in non-Euclidean spaces, particularly L,. We also give an exact
analysis for Euclidean space and an asymptotic upper bound for L; and L.,
spaces, improving on the previous best known storage space bound for a distance
permutation index. The results for L, L,, and L, appeared, without the detailed
proofs we give here, in SISAP’08 [191]. We begin by defining a notation for the
number of distance permutations.

Definition 3.1
Let N,, ,(k) represent the maximum number of distinct distance permuta-
tions generated by any choice of k sites in the space of n-dimensional real

75

distance
permutation

site

N, p (k)

76 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

vectors with the L, metric. Where S is the space and I, is the distance
permutation as defined above,

N,p(k)= max |{Illyes}. (3.1)

X1,X9,.., Xk ES

3.1 Achieving all permutations

If there are enough dimensions, it is possible to achieve all k! permutations of k
sites; and it turns out that k — 1 dimensions are sufficient. The following result
establishes that for all L, metrics. The concept is intuitive: in (k — 1)-dimensional
space, we can place k points equidistant from the origin and then all distance
permutations will occur in the neighbourhood of the origin. The actual proof is
more involved (an epsilon-delta induction) because the boundary cases L; and
L, cause problems if the points are exactly equidistant from the origin. Instead,
we place them at slightly different distances for each dimension to force the
inequalities to be strict.

Theorem 3.1

In n-dimensional real vector space with any L, metric, k sites can be chosen
such that all k! distinct distance permutations exist, for any k < n+ 1. That
is, N, p(k)=k!forn=k—1and p > 1.

Proof For k =1 the question is trivial: zero-dimensional space has only one point,
we choose it as the site, and it has the single distance permutation consisting
of itself. For k > 2 we prove a somewhat stronger statement by induction on k,
namely that for any integer k > 2 and real € > 0, there exist k sites X, X, ..., Xy
in (k — 1)-dimensional L, space such that for any permutation = : {1,2,...,k} —
{1,2,...,k}, there is a point y, such that

n, =n (3.2)

d(0,y;) <e (3.3)
11-d(x;,y.)l <e 3.4)
d(x;,y,) # d(x;,y,) if x; #x;. (3.5)

In other words, with k — 1 dimensions we can achieve all k! permutations (3.2)
with points that are near the origin (3.3), almost exactly unit distance from all
the sites (3.4), and not equidistant from any two sites (3.5).

3.1. ACHIEVING ALL PERMUTATIONS 77

Basis case. For k = 2, let x; = (—1), x5, = (1). Then where the two permutations
are denoted by 12 and 21, we have y;, = (—5) and y,; = (°4). These points are
easily seen to meet the conditions (3.2)-(3.5).

Inductive step. For k > 2 and some ¢ > 0, assume that there exist k — 1
sites x,Xy, ..., X;_, in (k — 2)-dimensional space such that for any permutation
n':{1,2,...,k =1} = {1,2,...,k — 1}, there is a point y/, such that H}/n/ =n
(3.2) and |1 —d(x;,¥,)| <4 (3.4).

Let X;,Xy,...,Xx_1 be the sites x],X5,...,x;_, extended to one more dimension
by appending a zero component to each, and let x; = (0,0,...,0,1 —¢}); that is,
we are adding one dimension and placing a new site on the newly-introduced
coordinate axis at distance 1 — /.

Let 7 be an arbitrary permutation of the k site indices and =’ be = with k
removed; for instance, if k =5 and © = 12543 then =’ would be 1243. Let y rep-
resent)/ﬂ, augmented with one more component (to make it (k — 1)-dimensional)
and let z represent the value of the last component of y. Consider the distance
permutation of y as we vary the value of z from 1 — ¢ to 1+ 3¢/,. In all cases the
distance permutation of y with respect to the first k—1 sites will be 7/, because the
distance permutation is determined by inequalities of the form d(x;,y) < d(x;,y),
each distance is the 1/p power of a sum of p-th powers of per-component dif-
ferences, and we are changing one of those per-component differences that is
added equally to all the distances. All the functions involved are monotonic, so
the inequalities continue to hold as we vary z.

Note 3.2

In the case of the L., metric we depend on the fact that the per-component
difference for the last component is smaller than any of the distances from
y to sites and so does not enter into the maximum that defines the metric.
We can ensure this by assuming € less than /,, so that 1 — e > €; we are
free to do that because the statement we are proving always holds for
larger e if it holds for small e.

The distance d(x;,y) < 1 — ¢/, when z = 1 — ¢/, by the triangle inequality,
using the distances d(x;,0) =z = 1 — ¢/, by definition, and d(0,y) < ¢/, from the
inductive assumption. But the distance from y to any other site than x; must be
greater than 1 — ¢/,, again by the inductive assumption. Therefore at z =1 — %,
the distance permutation of y with respect to the k sites x;,X,, ..., X; begins with
k.

However, when z = 1 + 3¢/, then the distance d(x;,y) > 1 + ¢/, because the
per-component difference between x; and y in the last component is 1+ €/,, and
the overall distance cannot be any less. By the inductive assumption, the distance
from y to any other site than x, must be less than 1 —¢/,. Therefore at z = 1 +3¢/,,

cell

m-th order
Voronoi diagram

78 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

the distance permutation of y with respect to the k sites x;,Xs, ..., X; ends with k.

By choosing a value of z between those two extremes, we can find a value of
y where k appears in any position in the distance permutation; and since this
holds for any permutation 7’ of the first k — 1 sites, we can find a y,, for any
permutation 7 of the k sites, giving (3.2), a point for every permutation. By doing
this we are perturbing each y’ by at most 3¢/, from its original position which
was within ¢/, of the origin, so each y remains within e distance of the origin
(3.3); similarly, the distance from each y to each site must be in the interval 1+ ¢
(3.4); and by our choices of z, all the distances to sites are distinct at each y (3.5).
Therefore the theorem holds for k sites.

By induction, the theorem holds for all values of k.

3.2 Voronoi diagrams and distance permutations

Voronoi diagrams are, as the title of Aurenhammer’s survey of the subject sug-
gests, “a fundamental geometric data structure” [15]. The concept has been
independently reinvented many times and its origins go back centuries. Voronoi-
gave a general n-dimensional definition in 1908 [207], and the popular name
“Voronoi diagram” refers to him. Lejeune Dirichlet used the diagrams, limited to
two and three dimensions, in his study of quadratic forms in 1850 [135], and
the name “Dirichlet tesselation” is also used for them.

The classic Voronoi diagram starts with a set of points called sites and divides
the Euclidean plane into regions called cells according to which of the sites is
closest, as shown in Figure 3.1. In the figure, the points in the cell at left are
those points that are closer to A than the B, C, or D.

There are many ways to generalise Voronoi diagrams, including the use of
more dimensions, distance functions other than the Euclidean metric, definitions
of the sites as things other than isolated points, and changes to how points are
divided into cells. Aurenhammer’s 1991 survey describes many of the varia-
tions [15]. One of particular interest for our work is the m-th order Voronoi
diagram, in which the cells correspond to the set of m nearest neighbours among
the k sites rather than just the one nearest neighbour. An example for m =2 is
shown in Figure 3.2. Note that the same sites from Figure 3.1 are used in this
diagram. Each cell corresponds to a set of two sites; for instance, the small cell
in the middle of the diagram contains points for which the closest two sites are B
and D, in either order.

The cells of m-th order Voronoi diagrams represent classes of distance per-
mutations, by definition. For instance, in Figure 3.1 the cell at left contains all
points whose distance permutations start with A, and in Figure 3.2 the cell in the
middle contains all points whose distance permutations start with B, D or D, B.

3.2. VORONOI DIAGRAMS AND DISTANCE PERMUTATIONS

D

Figure 3.1: A first-order Euclidean Voronoi diagram.

B
{A,B} {B,C}

°A {B.D}

{A,D} {C,D}

Figure 3.2: A second-order Euclidean Voronoi diagram.

bisector

bisector system

80 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

BID

AD . CID

BIC AIC IB

Figure 3.3: Bisectors of four points in Euclidean space.

Suppose we construct a diagram in which each permutation has its own cell.
We could do that by taking the union of all the cell boundaries from all the
m-th order Voronoi diagrams. Figure 3.3 shows such a diagram. The boundaries
shown are exactly the six (that is, (;’)) lines that bisect pairs of sites. We can
uniquely identify the distance permutation of a point by stating, for each of the
six pairs of sites, which one is closer; and in Euclidean space, each of those
statements divides the space along a flat hyperplane of dimension one less than
the space (a line, in the plane). The sets that divide the space are useful in other
spaces too, so we define a general name and notation for them:

Definition 3.3

The bisector of two points x and y, denoted by x|y, is the set of all points
z such that d(x,z) = d(y,z). The bisector system of a set of sites is the
collection of all their pairwise bisectors.

However, answering the “which side?” question for six bisectors in Figure 3.3
suggests that there should be 2° = 64 sets of answers and so 64 cells, evidently
impossible when there are only 4! = 24 permutations of the four sites. Moreover,
there are only 18 cells in the arrangement shown. The fact that all the bisectors
are straight lines limits the number of cells, and so does the fact that they are the
pairwise bisectors of four sites, not just any six lines in arbitrary position relative
to each other.

3.2. VORONOI DIAGRAMS AND DISTANCE PERMUTATIONS 81

Arrangements of hyperplanes, which include bisector systems in Euclidean
space, create combinatorial objects called oriented matroids, and those are well-
studied [29]. Although we obtain the count by other methods in the next section,
it appears that such methods could be applied to count distance permutations in
Euclidean space. Unfortunately, most of the relevant results are inapplicable to
bisectors in more general spaces.

Many authors, including Griinbaum [92] and Mandel [145], have applied
oriented matroids to generalised hyperplanes that are not necessarily flat, calling
them pseudolines and pseudospheres respectively. Griinbaum’s pseudolines are
defined in two dimensions with the requirement that any two must intersect
in exactly one point, using the projective plane if necessary to force parallel
lines to intersect at infinity. Mandel’s pseudospheres have an analogous higher-
dimensional requirement for well-behaved intersections: every intersection must
be topologically equivalent to a sphere. The bisector system shown in Figure 3.4
fails to meet those criteria because of the bisectors A|B and C|D, whose intersec-
tion consists of two points. Oriented matroids can also be described in terms of
sign vectors, representing whether a point in the space is on one side, on the
other side, or exactly on each bisector; and the sign vectors associated with Fig-
ure 3.4 fail to obey the properties defining an oriented matroid. (That sign-vector
definition of an oriented matroid is complicated, and omitted here; Bjorner and
others describe it in detail [29].)

So the obvious transformation from a bisector system to an oriented matroid
appears unworkable. There may be other ways to apply oriented matroid tech-
niques to bisector systems in non-Euclidean spaces. Santos successfully generates
a Delaunay oriented matroid from a point arrangement in non-Euclidean space
by considering the triangulation of the points instead of their bisectors, but his
main result is specific to two dimensions, and the connection to our question
about bisectors is not clear [181]. The Delaunay oriented matroid is defined in
terms of spheres passing through subsets of the points in the arrangement.

Lé studies the question of how many spheres can pass through a set of n + 1
points in n-dimensional space with various L, metrics, particularly the case of
p equal to an even integer [134]. That bears on the complexity of an ordinary
closest-point Voronoi diagram because it is the number of vertices in the diagram
for n+ 1 points. Icking, Klein, Lé, and Ma then continue this line of research
to describe in detail the number of spheres that can pass through four points
in 3-space with various convex distance functions [107]. Whereas in Euclidean
3-space, four points in general position define exactly one sphere passing through
all of them, they show that other smooth convex metrics allow for arbitrarily large
finite numbers of spheres. In particular, with the L, metric, they show that there
exists a set of four points that can be perturbed independently in 3-dimensional

82 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

5

°c
BID
AlB

°A
CID
D
AID BIC AlC

Figure 3.4: Bisectors of four points in L; space.

neighbourhoods (that is, the points are in general position) and through which
pass exactly three spheres. They display such a set of points. However, they
do not give the three spheres, only a proof of the spheres’ existence and some
intervals for their radii [107]. For their work, the startling result is that such
spheres exist at all. The four points are:

X Y VA
0 0 0
1Y -2 (3.6)
-1 =%
-3 -4)

The three-sphere result is significant for distance permutations because it
suggests that a larger number of distance permutations might exist in non-
Euclidean metrics. If four sites lie on the surface of a sphere, then by a simple
epsilon-delta argument all 24 distance permutations of those sites occur in the
neighbourhood of the sphere’s centre. If we add a fifth site, we will show in
Theorem 3.2 that only 96 of the 120 imaginable distance permutations can
actually occur in three-dimensional Euclidean space. Part of the reason seems
to be that the sphere centre with 24 permutations clustered around it can only
occur in one place relative to the new site. If more than one sphere could pass

3.2. VORONOI DIAGRAMS AND DISTANCE PERMUTATIONS 83

through the first four sites, then we would have a cluster of 24 permutations at
the centre of each sphere, and placing the fifth site carefully relative to those
clusters might allow us to give it a different relationship to each centre (inside
some sphere and outside another), and achieve more than the Euclidean limit of
96 distance permutations.

Hoping to gain a better understanding of why L, space is so strange, we
used simulated annealing to develop approximations for the three spheres whose
intersection is given by (3.6), with this result:

centre X centre Y centre Z radius
—16.969316 12.531628 —13.989112 19.5433 . (3.7)
—0.4230825 —0.042524706 —4.0244665 4.47108
—0.5513786 —2.2194826 —2.4523801 2.78927

A POV-Ray visualisation [167] of (3.6) and (3.7) is shown in Figure 3.5, and
it provides some intuition of what is going on. The four intersection points lie
approximately on a plane, and moreover on an arc of an ordinary Euclidean
circle. If it were Euclidean space, then four points exactly on an arc would be
a degenerate case, defining an infinite number of spheres that all shared the
circle containing the points. Cutting a sphere with a plane in Euclidean space
always creates a circle, so we can freely choose the size of the sphere (as long as
its radius is no smaller than that of the circle itself) and still find a centre for it
which will allow it to contain the specified circle. The Euclidean case is like a
child catching a bubble on a circular bubble wand: the same circular loop can
catch any sufficiently large bubble.

In the L, space, a sphere’s intersection with a plane is not a perfect circle, and
our four points are only approximately on a plane to begin with. The L, sphere
has just enough bumpiness that between scaling, moving the centre, and the fact
that there are only four points (not a whole circle) to match, we can place a sphere
to intersect the four points and still have enough freedom left over to choose one
of three centres and deal with the points being in general position. Note that each
of the spheres is cut in a qualitatively different way by the approximate plane
of the four points. Figure 3.6 shows schematically the least-squares plane and
its relationship to each of the three bounding cubes for the L, spheres. For the
largest L, sphere the plane cuts off one corner, approximately passing through
the other. For the middle-sized sphere the plane cuts off two corners. For the
smallest sphere, it cuts through the centre, separating three corners from the
other five. Thus the three spheres are to some extent independent of each other,
and we can keep them all fitted to the points while moving the points within
small neighbourhoods.

The same authors with Santos investigate the behaviour of bisectors with

84 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

SRR
| J
1

1

I

1

|

!

I
O = ‘s A—— z
:
" T .
1 v i
$ - = Le . * !

12

[}
7

vl e Y
VTR N 1 o A . O W | B
| N\

T
Y

| et
~~= LAY
|
i
: |
H :
L : I..
.
| 8 |
18

Figure 3.5: Visualisation of the four-point L, system.

3.3. EUCLIDEAN SPACE 85

| 7
e

Figure 3.6: How the least-squares plane cuts the bounding cubes.

convex distance functions in two and three dimensions, generalised to sets
equidistant from more than two sites [106]. They survey problematic results
obtained by other authors and by subsets of their own group, and show further
surprising results; in particular, that the combinatorial structure around the
one-dimensional bisector of three points can be different for different connected
components of the bisector. Note that the fact there can be more than one
connected component of the bisector in the first place is already a significant
departure from the Euclidean behaviour. As they describe it:

One of the reasons for the lack of results on Voronoi diagrams
for higher dimensions under arbitrary convex distance functions
is the surprising, really abnormal, structure of the bisectors which
behave totally different[ly] from what is known for the Euclidean
distance. [106]

3.3 Euclidean space

Gardner illustrates his concept of “aha! insight” with the classical problem of
cutting a circular cheese into eight slices with three cuts of a straight knife and
no rearrangement of the pieces between cuts [82]. The solution is shown in
Figure 3.7; the necessary “aha!” is that the cheese is three-dimensional. Attempts
to solve the puzzle while treating the cheese as a two-dimensional object cut
by straight lines will fail because with those restrictions, only seven slices are
possible.

Suppose we generalise the question to cutting an object in n-dimensional Eu-
clidean space with m flat cuts, each of which is an (n—1)-dimensional hyperplane.
If we assume the object is convex and has nonzero measure, we can ignore its
exact shape and simply consider the number of cells into which the hyperplanes

86 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

Figure 3.7: Cutting a cheese into eight pieces with three cuts.

divide the entire space, because we can always scale the hyperplane arrangement
to put all the bounded cells inside a neighbourhood entirely contained in the
object, and get as many slices from the object as we would from the entire space.
Let S,,(m) represent the maximum number of cells into which m cuts can divide
n-dimensional Euclidean space. Some example values for n = 2 (the “pancake
problem”) are shown in Figure 3.8.

Price gives a straightforward analysis of the general problem, finding that
S$,(0)=8y(m)=1, and S,(m)=S,(m—1)+S,,_;(m—1) forn,m >0 [171]. He
uses an induction that follows the structure of the recurrence relation: when
the m-th hyperplane is added to an arrangement that already contains S,(m — 1)
pieces, then the new hyperplane is itself a (n — 1)-dimensional space cut up by the
m — 1 existing hyperplanes into S,,_;(m — 1) pieces, and each of those partitions
off a new piece in the original n-dimensional space, proving the recurrence. Then
it follows easily that S,,(m) = ©(m™) [171].

As described in the previous section, the distance permutations for a set of
sites correspond to cells in the bisector system of the sites; and since bisectors in
Euclidean space are simply hyperplanes, we can apply the result on cells formed
by hyperplanes to count the distance permutations. There are (’;) bisectors
between k sites; so if the bisectors were in general position, we would have
Sn ((S)) distance permutations.

However, the bisectors are not in general position, and the actual number
of distance permutations is less. Note that for n = 2, k = 3, there are (3) =3
bisectors, which suggest S,(3) = 7 cells as shown in Figure 3.8, but there can
be only 3! = 6 distance permutations. However, Price’s result for hyperplanes in
general position remains an upper bound: N, 5(k) = O(k*") because (S) is ©(k?)
and S,(m) is ©(m"). With a more detailed argument we can get an exact count.

3.3. EUCLIDEAN SPACE 87

m=1 m=2
S,(m)=2 S,(m)=4
m=3 m=4
S,(m)=7 S,(m)=11

Figure 3.8: Cutting a pancake.

88 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

We emphasize that this bound is nearly always achieved: like Price’s result [171],
it does not depend on the arrangement of sites except that they are in general
position. In this respect Theorem 3.2 differs from other similar results we will
prove for other spaces, where sites matching the bound may be harder to find.

Theorem 3.2
In n-dimensional Euclidean (L,) space, we have

Noa(k) = Npp(1) =1 (3.8)
Nn’z(k) == Nn’z(k - 1) + (k - 1)Nn,1’2(k - 1) . (3.9)

Moreover, the upper bound N, ,(k) is always achieved by sites in general
position.

Proof Zero-dimensional space contains only one point and so can only contain
one piece, and with only one site, there are no bisectors and the space remains
undivided. Therefore Ny ,(k) =N, »(1) = 1.

For the general case we extend the line of reasoning used by Price [171].
Consider the space with n dimensions that already contains k — 1 sites, their
bisectors, and the resulting pieces. It contains, by definition, N, ,(k — 1) pieces.
Adding one more site adds a group of k — 1 bisectors. The first of those is a
(n — 1)-dimensional space cut by the existing bisectors of k — 1 sites into (by
definition) N,,_; ,(k — 1) pieces, and each of those pieces creates a new piece in
the n-dimensional space as well.

The second of the k—1 new bisectors appears to be cut by the existing bisectors
and also the one we just added. However, the intersection of the first new bisector
and the second new bisector is exactly the same set as the intersection of the
second new bisector with some other bisector that already existed. Let a and b
be sites added earlier and x be the new site, then we have a|x N b|x = a|b N b|x
by the transitivity of equality. So intersections between bisectors in the same
group need not be counted; they are always equal to the intersections already
counted between bisectors in the new group and bisectors in earlier groups.

Therefore each of the k — 1 new bisectors in the new group, not just the first,
adds exactly N,,_; 5(k — 1) pieces. There are also by definition N, ,(k — 1) pieces
that existed before we added the latest site. Therefore we have the recurrence
relation (3.9).

Bounds on N, 5(k) follow from Theorem 3.2 by induction:

3.3. EUCLIDEAN SPACE 89

Corollary 3.3
The function N, ,(k) satisfies:
N, 5(k) < k*" (3.10)
2n
N, (k) = + o(k>"). (3.11)
’ 2"n!

Therefore, the distance permutation in Euclidean space can be stored in
2nlgk bits with an appropriate encoding.

Proof The proof for (3.10) is by induction on k. The result holds trivially for
k = 1. Then we have:

Nyo(k) =Nk — 1)+ (k= 1)N,_q1 5(k— 1)
<(k—1)*"+(k—1)(k —1)*"2
=k(k —1)**"!
< k2n .

The space to store a distance permutation is IgN,, ,(k) bits, so 2nlgk is an upper
bound.

For (3.11) we use induction on n. It holds trivially for n = 0. Let a,, and b,
represent the leading two coefficients of the polynomial in k that defines N, 5(k);
then we have:

Ny o (k) = apk" + b, k"1 o (k*")
=a,(k—1)*"+b,(k —1)*" 1+ (k — Da,_,(k — 1)*""2 + o(k*""1)
= a,k* — 2na,k*" 1 + b k" + @, KX o (k2.

The sum of the coefficients for the k?"~! term must be b, by definition, so (with
ay =1 from the basis case) we can find a,:

b,=—-2na,+b,+a,_;

1
an = Ean—l

1

o

Numerical values of Ny ,(k) are shown in Table 3.1. Note that the lower
triangle contains factorials corresponding to Theorem 3.1.

90 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

k:
2 3 4 5 6 7 8 9 10
nnl| 2 4 7 11 16 22 29 37 46
212 6 18 46 101 197 351 583 916
312 6 24 96 326 932 2311 5119 10366
41 2 6 24 120 600 2556 9080 27568 73639
512 6 24 120 720 4320 22212 94852 342964
6| 2 6 24 120 720 5040 35280 212976 1066644
71 2 6 24 120 720 5040 40320 322560 2239344
8| 2 6 24 120 720 5040 40320 362880 3265920
9| 2 6 24 120 720 5040 40320 362880 3628800

Table 3.1: Number of Euclidean distance permutations N, »(k).

Corollary 3.3 implies an asymptotic improvement in the bound on storage
space for a distance permutation index, because a general permutation of k sites
would require ©(klogk) bits. This means that adding sites costs very little in
terms of index space, once the number of sites is significant compared to the
number of dimensions. On the other hand, additional sites only have a small
effect on the number of possible index values, so it may also suggest that there
is little value in adding more sites once we have about twice as many sites as
dimensions.

3.4 The L; and L, metrics

Other metrics than L, make the question of counting distance permutations
significantly more complicated. For instance, in the Euclidean plane, a bisector
is a line. Two bisectors in general position intersect at exactly one point. In
degenerate cases, they either coincide or fail to intersect at all. But in the two-
dimensional L; space shown in Figure 3.4, a bisector is in general an orthogonal
line with a diagonal kink in the middle. Two bisectors in general position may
intersect in one point, like A|B and B|C; or two distinct points, like A|B and C|D;
or they may fail to intersect, like A|D and B|C; and there are many degenerate
intersections possible, such as two disjoint rays, or a ray with a line segment
attached. In higher dimensions the number of possibilities grows rapidly.

The technique used in Theorem 3.2 of treating each intersection as a space of
the same type and one fewer dimension, which makes it amenable to induction,
fails for non-Euclidean metrics. As discussed earlier, oriented matroid theory
provides some tools for studying objects like these bisector systems, but current

3.4. THE L, AND L., METRICS 91

results do not solve the problem of counting distance permutations.

However, the greatest difficulties come from considering L, metrics for gen-
eral p. The special cases of L; and L., share one of the useful properties of
L,: their bisectors are piecewise linear. Each bisector is the union of subsets
of hyperplanes, with the number of hyperplanes a function of the number of
dimensions. Then from elementary results we can obtain bounds on the number
of distance permutations; perhaps loose bounds, but tight enough to improve the
best previous storage space bounds for a permutation-based index.

Theorem 3.4
The function N, (k) satisfies:

Npi(k)=0 (22"2k2”) (3.12)
N, 2(k) =0 (k") (3.13)
Ny oo(k) = 0 (2"n"k*") . (3.14)

All three of these are O (an) with respect to k, so the distance permutation
in Ly, Lo, or L, space can be stored in O(nlogk) bits with an appropriate
encoding.

Proof The case of the L, metric is already covered by Corollary 3.3. For the
other two, consider a pair of sites x and y, and let z be on their bisector; then
d(x,z) = d(y,z). We will show that for each value of p € {1, 2, 00}, the bisector
is a subset of the union of some flat hyperplanes, with an upper bound on
the number of hyperplanes determined only by the number of dimensions n.
Subscripts denote individual components of the vectors.

For the L, metric, we have

d(x,z) =[x — 21| + |xg — 25| + -+ + |x, — 2]
=£(x —2z) (g —2) £+ £ (%, — 2,)

for some choice of the signs (dependent on the component values). Thus d(x, z)
is equal to one of 2" linear functions of x and z. Similarly, d(y, z) is equal to one
of 2" linear functions of y and z. The set of points at which d(x,z) = d(y,z) is
thus a subset of the set of points at which at least one of the functions for d(x, z)
equals at least one of the functions for d(y, z); therefore it must be a subset of
the union of 22" hyperplanes.

92 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

For the L., metric, we have

d(x,z) = max{|x; — 2], |xy — 2ol,..., |x, — 2,[}
= £(x; — ;)

for some choice of the sign and the index i (dependent on the component values).
So, similarly to the L; case, d(x,z) is equal to one of 2n linear functions of x and
z, and d(y, z) is equal to one of 2n linear functions of y and z. The bisector is a
subset of the union of 4n? hyperplanes.

Since each bisector is a subset of the union of some hyperplanes, we can
only increase the number of cells in an arrangement of bisectors if we expand
each bisector to be the entire union instead of a proper subset. In the cake
analogy, that is like extending a cut to slice all the way through the cake instead
of only through the first layer. Assuming the hyperplanes to be in general position
can also only increase the number of cells. With k sites, there are (’;) = 0(k?)
bisectors, and by Price’s result the number of cells for m hyperplanes in general
position in n dimensions is ©(m") [171]. Combining those with the upper bound
on number of hyperplanes per bisector given above, the theorem follows.

It seems intuitive that in L; and L., space, there should be more distance
permutations possible than in Euclidean space. Consider the bisectors A|B and
C|D in Figure 3.4. They define five pieces between them, whereas two Euclidean
bisectors could define at most four. The function of n in the upper bounds of
Theorem 3.4 is superexponential for L; and L, but for L,, Corollary 3.3 gives a
leading term coefficient of (2"n!)~!. So it seems non-Euclidean L, metrics should
give many more distance permutations.

But there are only 18 pieces in Figure 3.4, the same as in Figure 3.3. The
Euclidean result of 18 applies in all non-degenerate cases; but in L; space, even
achieving that many is not easy. We made some informal experiments with
interactive computer graphics and found that choosing four sites without careful
thought often produces fewer than 18 cells. We found no examples where it gave
more than 18.

It appears that for every pair of bisectors like A|B and C|D, there must be a pair
like A|D and B|C; the first pair creates extra pieces, the second pair removes them,
and the total never seems to exceed the Euclidean limit of given by Theorem 3.2.
That raises the question of whether the Euclidean bound may actually apply to
all L, spaces. Does N, ,(k) = N, ,(k) for all p? As described in the next section,
the answer is “no.”

3.5. EXPERIMENTAL RESULTS ON Lp DISTANCE PERMUTATIONS 93

3.5 Experimental results on L, distance permutations

Our main investigation of distance permutations concerns the maximum possible
number of them over all choices of sites and assuming a database in which every
permutation that can occur, does occur, with uniform probability. That is the worst
case for index storage space, because it maximises the number of bits necessary
to store a distance permutation. It is also the best case for database search
time, because it maximises the amount of information in a distance permutation.
However, in a practical implementation, the sites may be chosen at random, and
some distance permutations may occur much less often than others, or not at all
even though they could, and so the actual number of distance permutations in the
database may be significantly less than the theoretical maximum. In this section
we present some experimental results on the number of distance permutations
actually occurring in randomly-generated vector databases. These experiments
were conducted for a paper in SISAP’08 [191], although space considerations
limited the presentation in that paper to a summary of the detailed results given
here.

We implemented distance permutation counting by extending the SISAP C-
language metric space library of Figueroa, Navarro and Chévez [71] to include a
new index type called distperm, as a minor modification of the library’s pivots
index type. Our index-generation program, while generating an index file which
is discarded, produces a line of ASCII for each point in the input describing its
distance permutation with respect to the pivots. The ASCII lines can be processed
with standard Unix utilities (sort | uniq | wc) to find the number of distinct
permutations. Site selection, inherited from the original library, simply chooses
the first k points from the database; since the database points are generated
independently and identically at random, this choice is equivalent to choosing
sites uniformly at random.

This implementation approach was chosen because of the workshop require-
ment to support theoretical results with experiments on the SISAP library. The
library’s variable names and internal documentation are sparse, and mostly writ-
ten in Spanish, and its conceptual design (in particular, the focus on testing
index data structure time performance, and the limitation of L, spaces to L,
Lo, and L) is not well-suited to some of our work. In the process of doing
these experiments we found bugs in the library, which were reported to and
acknowledged by one of the library’s authors [69]. However, we found no bugs
that would be expected to materially affect the experimental results, and the
most theoretically significant results, the counterexamples to N, ,(k) = N, 5(k),
have been carefully double-checked with our own independent Perl code.

For each vector length n from 1 to 10, number of sites k from 2 to 12, and

94 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

metric from {L,,L,, L.}, we did 20 trials of generating a random database of
10° points chosen uniformly from the unit hypercube, choosing k of them as
sites, and counting how many distinct distance permutations occurred among
the database points. Note that this count represents only a lower bound on the
number of distance permutations generated by the random sites. There could
well be some very small generalised-Voronoi regions which happen not to contain
any database points. So the results of this kind of experiment differ from the
N, , values described earlier by two maximisations: N, , is the maximum for any
choice of sites, but also the maximum for any choice of database points.

The sample mean permutations counted over 20 trials are shown in Tables 3.2
and 3.3. The column for k = 2 is omitted; it consists entirely of the value 2.00.
One observation from these tables is that the mean distance permutations seem
to decrease from L; to L, and from L, to L,,. The pattern is not consistent,
however; there seems to be substantial variation from one sample to the next,
so that 20 trials may not really be enough to get an accurate picture of how the
system behaves. Except for the lowest dimensions and numbers of sites, the
mean numbers of distance permutations for all three metrics seem to fall far short
of the Euclidean theoretical bound from Table 3.1. Note that for the Euclidean
metric, that bound is always achieved except in degenerate cases, so it is apparent
that very many of the generalised-Voronoi cells, which must exist by the theory,
are being missed by the database points. The fact that database points occur
only in the unit cube may be relevant, if some significant number of distance
permutations would only be possible for points outside the cube.

For the same sample of 20 random databases we also recorded the maximum
number of distance permutations observed, in order to test the hypothesis that
N, ,(k) = Ny, (k). Those results are shown in Table 3.4. The columns for k <5
are omitted; in those columns, all three metrics simply achieved the Euclidean
bounds from Table 3.1.

These results indicate the existence of counterexamples to N, ,(k) = N, 5(k)
for several cases of n, p, and k. The initial experiment did not allow for isolating
and reproducing such cases because the SISAP library as supplied took its random
number seeds from the system clock without saving or reporting them. Since
each trial overwrote the multi-megabyte database from the previous one, there
was no practical way to go back to an earlier trial for more detailed examination.
We have since extended the library to use reproducible seeds, and suggested that
feature to the authors. In a new experiment which simply ran trials repeatedly
until it found some with sufficiently large permutation counts, we were able to
find new counterexamples for each of the labelled cases from Table 3.4, and save
the complete database for each one. In all but one of the four cases, our new
counterexamples actually surpass the permutation counts from Table 3.4. We

3.5. EXPERIMENTAL RESULTS ON Lp DISTANCE PERMUTATIONS

k
3

4

5

6

7

8

B~
—_

4.00
5.10
5.90
6.00
6.00
6.00
6.00
6.00
6.00
6.00

—

7.00
14.65
20.85
23.95
24.00
24.00
24.00
24.00
24.00
24.00

11.00

34.75

71.45
107.50
117.40
119.50
119.20
120.00
120.00
120.00

16.00

78.70
251.40
440.55
584.40
672.85
700.50
719.40
718.50
719.90

22.00
149.00
591.25

1538.25
2699.25
3697.85
4188.10
4574.75
4755.90
4887.05

29.00
268.45
1405.20
4705.35
10390.85
16073.50
20811.65
26999.10
30309.60
30715.55

4.00
5.60
5.90
6.00
6.00
6.00
6.00
6.00
6.00
6.00

B~
N

—

7.00
15.25
19.60
22.70
23.90
23.75
23.95
23.95
24.00
24.00

11.00
38.65
72.75
99.40
109.60
115.35
116.65
115.95
119.60
119.50

16.00

77.35
205.20
380.00
535.00
610.80
655.30
647.50
704.90
697.15

22.00
155.45
577.00

1385.25
2043.25
3210.90
3443.85
4137.95
4258.60
4575.65

28.95
268.05
1332.75
4214.20
7515.05
13824.25
17349.30
20244.80
21936.45
25562.25

h
]

4.00
5.30
5.70
5.80
6.00
6.00
6.00
6.00
6.00
6.00

OV ONOOTUPRA,WNHFHIOOVOONOOTUPRA,WDNEH|OOVONOULD, WO R~ |=

—

7.00
13.15
18.05
23.50
22.80
23.35
23.70
24.00
24.00
24.00

11.00
34.10
68.30
84.30
93.60
110.00
115.45
109.15
118.50
118.50

16.00

69.75
206.40
358.95
459.70
571.60
626.20
585.55
627.30
709.00

22.00
136.85
537.70

1263.95
2138.85
2642.25
3133.55
3542.75
3779.65
4084.80

29.00
233.15
1219.75
3664.60
6488.30
11314.00
14384.65
15433.55
18494.20
22415.00

Table 3.2: Mean distance permutations in L, experiment.

95

96

CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

k

n 9 10 11 12
Ly 1 37.00 46.00 56.00 67.00
2 428.20 671.65 1021.85 1398.20
3 2924.30 5886.80 9880.55 16143.70
41 11078.20 24077.90 48544.80 82253.85
5| 30851.45 66953.80 126826.65 220231.20
6| 50826.35 123731.65 249919.70 394466.85
7| 76755.45 204455.05 377575.30 569807.35
8 | 109849.55 275752.35 518661.45 728040.20
91122789.75 326614.40 617099.95 809393.30
10 | 146384.95 386111.90 688443.85 884013.40
L, 1 37.00 46.00 56.00 67.00
2 443.05 686.90 1026.65 1440.15
3 2773.30 5133.30 8853.50 14584.20
4 9912.40 21230.50 38047.15 67179.40
5| 19816.05 51259.90 99545.40 182253.50
6| 36326.25 97967.25 210376.30 348609.25
7| 58430.65 161071.90 306082.00 502957.40
8| 74664.80 233592.90 434457.00 657013.80
9 1102166.35 260769.85 513928.05 730146.10
10 | 117556.60 325272.35 621300.75 815217.05
Lo, 1 37.00 46.00 56.00 67.00
2 400.20 602.75 929.15 1314.10
3 2529.90 5064.90 8094.35 13152.25
4 8457.70 18137.00 33338.65 54838.10
5| 19071.75 44301.15 87522.55 150360.55
6| 31869.30 87133.05 145385.35 265706.25
7| 49852.35 132839.80 243956.95 357331.00
8| 61401.00 153040.30 293299.55 496952.75
9| 80897.80 212181.70 385720.85 569572.75
10 | 95076.85 226682.85 436309.55 648613.15

Table 3.3: Mean distance permutations in L, experiment (continued).

3.5. EXPERIMENTAL RESULTS ON L, DISTANCE PERMUTATIONS 97
k
n 5 6 7 8 9 10 11 12
L, 1| 11 16 22 29 37 46 56 67
2| 43 92 168 290 462 772 1080 1532
3| 198 {354 838 1804 3769 7250 11747 18239
4| 120 1658 2030 5663 16592 30430 57171 94537
5| 120 697 3505 13573 35769 75298 151101 258874
6| 120 720 4904 20234 65759 155220 290896 471375
7| 120 720 4952 27824 97932 257603 435901 653015
8| 120 720 5035 33637 132672 334432 625364 770929
9| 120 720 5039 37198 169753 395440 659222 845181
10| 120 720 5038 35698 191743 492404 757208 917237
L, 1| 11 16 22 29 37 46 56 67
2| 45 94 180 298 527 735 1095 1539
3| 92 273 706 1568 3145 5859 9906 15929
4| 120 537 1845 5079 11754 24075 45396 75850
5| 120 711 3336 10471 27063 71921 129003 208301
6| 120 720 4814 18693 62457 143879 270655 402685
7| 120 720 4875 23944 91908 208659 393085 613857
8| 120 720 4973 34866 118958 304725 568608 796775
9| 120 720 5004 28635 135767 351849 637530 851775
10| 120 720 5040 33097 148751 473234 732197 905490
L, 1| 11 16 22 29 37 46 56 67
2| 39 87 163 278 492 780 1076 1485
3|100 271 823 1712 3676 6677 11331 16162
4| 119 544 1802 4912 12610 24745 40919 70354
5| 120 712 3266 12566 29275 71306 122876 213951
6| 120 711 4485 17837 50834 128718 200456 352150
7| 120 720 4650 23983 74802 192155 314927 466484
8| 120 720 4446 26906 82902 226039 408183 610841
9| 120 720 5002 27160 124835 328629 484824 714881
10| 120 720 5008 34281 129445 284997 532539 770769

T indicates counterexamples to N, ,(k) = N, 5(k).

Table 3.4: Maximum distance permutations in L, experiment.

98 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

also verified each one with a new and separate implementation.
First, for R3, L1, and k = 5, these sites give at least 108 permutations:

0.205281,0.621547,0.332507),

=
X5 = (0.053421,0.344351,0.260859),
x5 = (0.418166,0.207143,0.119789), (3.15)
x4 = (0.735218,0.653301,0.650154),
x5 = (0.527133,0.814207,0.704307) .
For R3, L, and k = 6, these sites give at least 369 permutations:
=(0.723033,0.528501,0.114338),
X5 = (0.537893,0.456652,0.887229),
x5 = (0.933624,0.852988,0.287647), (3.16)
x4 = (0.989538,0.902709, 0.683371),
= (0.271674,0.328448,0.779628),
Xg = (0.644903,0.690669, 0.969264) .
For R*, Ly, and k = 6, these sites give at least 665 permutations:
= (0.594251,0.972026,0.340673,0.046086),
X5 = (0.995420,0.894291,0.679227,0.073585),
x5 = (0.609278,0.466341,0.729449,0.924971), 3.17)
x4 = (0.330296,0.724184,0.379641,0.275436),
= (0.378577,0.690847,0.570682,0.657335),
Xg = (0.928232,0.417448,0.127706,0.183649) .

Finally, for R®, L., and k = 5, these sites give at least 100 permutations:

= (0.902333,0.530606,0.513334),
x5 = (0.202670,0.267084,0.123475),
x3 = (0.364960, 0.539546,0.615330), (3.18)
x4 = (0.063169,0.494804,0.465638),

= (0.080624,0.338353,0.681813) .

These counterexamples prove that N, ,(k) = N, 5(k) is not true in general. It
appears that the counterexamples must also hold for values of p slightly more
than 1, or finite but sufficiently large, because those metrics could be chosen
to have values sufficiently close to the values of L, and L, for the generalised-

Voronoi cells to remain nonempty. Many questions remain open on how far the
limits actually extend.

Chapter 4

Tree metrics

Tree metric spaces are of interest for several reasons. They have a simple
definition and allow easy demonstration of our techniques. They also have
applications in approximating other metrics, and in software obfuscation.

Definition 4.1

A tree metric space is a set S and distance function d such that there is a
tree T with S as its vertex set, and for any x,y € S, d is the number of
edges in the unique path from x to y in T. Then d is called a tree metric.
If T is instead a weighted tree, with a positive real weight associated with
each edge, and d(x, y) is the sum of the edge weights on the path from
x to y, then d is a weighted tree metric. Note that by setting all weights
equal to 1, every tree metric is a weighted tree metric.

Example 4.2

Figure 4.1 shows the flights offered by an airline, with their values in
frequent flyer points. A passenger wishing to travel between two cities
for which there is no direct flight must make connections in one or both
of the hub cities of Thunder Bay and Waterloo. For instance, a trip
between Armstrong and Ottawa would route through both hubs and earn
441+ 1203 + 391 = 2035 frequent flyer points. Because the route map is a
weighted tree, the number of frequent flyer points earned between two
cities is a weighted tree metric on the set of cities.

Terminology used to describe tree metrics varies, and many authors assume
the definition [4, 144]. Gupta does not define “tree metric” as such, but refers
implicitly to the distance in weighted trees [93], while Indyk and Matousek
define tree metrics as a special case of graph metrics, and always weighted [109,
pages 183-184]. Applications of tree metrics, such as to numerical taxonomy
in biology, often assume that the metric applies to a finite number of points [3].

99

tree metric space

tree metric

weighted tree
metric

100 CHAPTER 4. TREE METRICS

Fort Severn

Red Lake

Armstrong

777

Port France

Figure 4.1: Route map for a small airline.

101

However, to include such metrics as the prefix distance of Definition 4.5, we
permit infinite trees.

It is easy to verify that tree metrics as defined above do have the properties
required by Definition 1.1. Strong statements can be made about tree metrics
that might not apply to more general classes of metrics. For instance, with a tree
metric, the triangle inequality d(x,z) < d(x,y)+ d(y,2) holds as an equality if
and only if y is on the unique path between x and z. Tree metrics also have the
following property.

Definition 4.3
A metric space (S,d) satisfies the four-point condition if for every set of
four distinct points {x, y,z,t} € S, we have [34]

d(x,z)+d(y,t)
d(x,y)+d(z,t) Smax{d(x, O +d(y.2) . “4.1)

Some authors use the four-point condition as the definition of tree metrics,
calling any metric space a tree metric space if it obeys Definition 4.3 [64, 149].
However, the four-point condition applies to metric spaces that lack trees or
paths, such as discrete spaces (including finite ones) and the following infinite
example.

Example 4.4

Let S be the set of rational numbers in the closed interval [0,1], with
the metric d(x,y) = |x — y|. This space obeys Definition 4.3 but does
not correspond to distances among the vertices of any tree; no point is
adjacent to any other point.

We reserve the term tree metric space for the spaces satisfying Definition 4.1,
which requires that the points are exactly the vertices of some tree. There we
follow Lynn, Prabhakaran, and Sahai, whose work on obfuscated neighbourhoods
(robust hashes) does not define tree metrics rigorously but assumes the ability to
traverse a tree metric one edge at a time finding a point at each step [144]. As
Buneman shows, any finite metric space satisfying the four-point condition must
also be a subset of a tree metric space satisfying Definition 4.1 [34].

The prefix metric gives an especially convenient tree metric space; it names
points with strings, and the distance is easy to calculate from the strings. Here is
the formal definition:

Definition 4.5

The prefix distance between two strings x and y is the minimal number
of edits to transform one string into the other, where an edit consists of
adding or removing a letter at the right-hand end of the string.

four-point
condition

prefix distance

blind substring
search

102 CHAPTER 4. TREE METRICS

The distance between two strings in the prefix metric is the sum of their
lengths, minus twice the length of their longest common prefix. It can be thought
of as measuring the distance between two items organised in an hierarchical
structure labelled with strings, such as books in a library; longer common prefix
of LC or Dewey decimal call numbers implies more closely related content.

Because tree metrics are simple and strong statements can be made about
them, they are frequently used as approximations of less convenient metrics,
often in a randomised context. Alon and others displayed a randomised embed-
ding of an arbitrary finite metric space into a set of tree metrics, such that the
distortion from the original metric to a randomly selected one of the tree met-

rics was at most exp (O(«/ lognloglog n)) [4]. Their main application was the
k-server problem, an online problem in which k servers move from point to point
serving requests and attempting to keep the total distance moved as small as
possible. Bartal improved the distortion bound first to O(log? n) [19] and then to
O(lognloglogn) [20], with the introduction of additional points to the space, and
described multiple applications. Applications of these approximate embeddings
include that by Peleg and Reshef to the distributed directory problem [166]; by
Kleinberg and Tardos to classification [125]; and by Laoutaris, Zissimopoulos,
and Stavrakakis to allocating Internet bandwidth and storage [132, page 412].

Tree metrics are also of interest for software obfuscation. Many security
applications require disclosure of a piece of software that computes a function
without directly disclosing some secret parameter of the function. We considered
algorithms for blind substring search, in which a program to search for a substring
is published without publishing the substring, in 1998 [189]; and we cryptanal-
ysed a similar system used by a commercial Internet content filtering package, in
2000 joint work with Eddy Jansson [112].

Barak and others showed in 2001 that obfuscation is, in general, impossi-
ble [18]. However, users still demand it; and Lynn, Prabhakaran, and Sahai
give some very limited positive results for obfuscation. In particular, they show
that neighbourhood testing in a tree metric can be obfuscated [144]. As they
describe, some security functions of practical interest for access control can then
be obfuscated despite the general impossibility results.

4.1 Intrinsic dimensionality

Recall that the intrinsic dimensionality p of a space is defined as the square of
the mean, divided by twice the variance, of the distance between two random
points selected from the native distribution of the space (Definition 1.23). For
tree metric spaces this value depends on both the shape of the tree and the native

4.1. INTRINSIC DIMENSIONALITY 103

Figure 4.2: A star graph.

distribution for choosing points, and in general it may be difficult to calculate.
However, we solve a few simple examples here.

First of all, consider an unweighted tree metric space with a finite number
of points and a uniform distribution among them. If the tree is a path, p — 1.
That case can be analysed as approaching a one-component real vector with
the L, metric and the lone component uniformly distributed in [0, 1], at which
point Corollary 2.2 applies. That seems to be the minimum possible value if the
distribution is uniform. If the distribution can be non-uniform, we can achieve p
arbitrarily small with a distribution that chooses one point with almost certain
probability, and applying Theorem 1.1.

As for an upper limit, if the tree is a star graph with n vertices, as shown in
Figure 4.2, then in the limit for large n with a uniform distribution, the chance
of choosing the middle vertex is negligible, the space approximates a discrete
space, and p — n/2, which is the maximum for any finite metric space with any
distribution by Corollary 1.2, and thus maximal for any finite tree metric space
(including weighted ones).

For strings of length n with prefix distance, the intrinsic dimensionality is
quadratic. Note that this result does not contradict the previous claim that linear
intrinsic dimensionality is the maximum, because the value of n in this case is
the length of the strings, not the number of points in the space; the number of
points in this space of strings is exponential in n.

site

distance
permutation

104 CHAPTER 4. TREE METRICS

Theorem 4.1
For the space of strings of length n chosen uniformly at random with the
prefix distance, the intrinsic dimensionality p obeys

(2n+1—|z))?

4.2
BGED (4.2

where X is the alphabet.

Proof The length of the longest common prefix between two infinite strings has
a geometric distribution [114] with parameter p = 1/|%|. Our finite strings differ
only in that the longest common prefix is limited to n letters; but if n is large
in comparison to log|%|, the chance of the prefix being as long as the strings
becomes negligible, so we can approximate with the infinite case.

The mean and variance of a geometric distribution are (1—p)/p and (1—p)/p>
respectively. Then the prefix distance (equal to the total length of the two strings
minus twice the length of the longest common prefix) has mean 2(np+p —1)/p
and variance 4(1 — p)/p?. The result follows by substitution into the intrinsic
dimensionality definition p = E2[D]/2V[D] (Definition 1.23):

4(np +p —1)*p?
.

p?4(1-p)
_@n+1-[%))?
= -1

4.2 Distance permutations

Recall from Definition 1.25 that given k points xi,x,,...,x; called the sites,
the distance permutation for a point y is the unique permutation that sorts the
site indices into order of increasing distance from y, using order of increasing
index to break ties. Depending on the space and the choice of the k sites, some
permutations might not occur. That is, there may be some permutation = such
that there is no point y with 7 as its permutation.

If we store distance permutations as part of a database index, then the number
of bits required depends on how many distinct values really do occur; so we
consider the question of how many distinct distance permutations can occur. We
are interested in a worst-case maximum and so assume that the k sites are chosen

4.2. DISTANCE PERMUTATIONS 105

to maximise the number of distinct distance permutations. It turns out that the
maximum is quadratic in k. This result appeared, with a sketch of the proof, in
SISAP’08 [191].

Theorem 4.2
With k sites in a space with a (possibly weighted) tree metric, there can be

at most (’;) + 1 distinct distance permutations.

Proof Let d be the tree metric. For any three vertices x, y, and g with x # y,
consider whether d(x,2) < d(y,z). There is exactly one edge, and it happens to
be on the path between x and y, where the statement is true at one endpoint and
not the other. Removing that edge splits the tree into two connected components,
one containing all vertices z where the statement is true and one containing all
vertices where it is false. Repeat that procedure setting x and y to every pair
chosen from the k sites. The resulting components correspond to the distinct
distance permutations that can occur. There are at most (’;) +1 of them.

Furthermore, the bound of Theorem 4.2 is easily achievable in spaces like the
prefix distance space, where long paths are abundant.

Corollary 4.3
The bound of (’;) + 1 distinct distance permutations is achievable in a tree

metric space that contains a path of 2~1 edges with the same weight.

Proof Label the vertices along the path sequentially from one end with the inte-
gers 0 to 2K71. Let the sites, in order, be the vertices labelled 0 and 2,4, ...,251,
Now the midpoint of the vertices 0 and 2! for any i > 1 will fall on the vertex
labelled 2/~!; and the midpoint of the vertices labelled 2! and 2/ will fall on the
vertex labelled 27! + 2/, All those (’;) midpoint vertices are distinct, and the
edges from them to their higher-numbered neighbours are the distinct splitting
edges of Theorem 4.2. Removing those edges separates the tree into (S) +1

connected components corresponding to the (;) + 1 distinct distance permuta-
tions. Note that the midpoint vertices follow their lower-numbered neighbours
in the division because of the tiebreaking rule in Definition 1.25, which considers
lower-indexed sites, which are the lower-labelled sites by our choice, to be closer
in case of ties.

106 CHAPTER 4. TREE METRICS

4.3 Reverse similarity search

The VPREVERSE and GHREVERSE problems (Definitions 1.27 and 1.29 on
page 37) are constraint satisfaction problems originating from distance-based
binary tree data structures. Recall that a VPREVERSE instance consists of ordered
triples of a point which serves as centre, a real radius, and a bit specifying inside
or outside. The solution point must be inside or outside each of the spheres
as directed by the bits; that is, a point z such that for all triples (x,r, b) in the
instance, d(x,z) < r if and only if b = 1. A GHREVERSE instance specifies the
constraints as pairs of points; the solution z must be a point such that for all pairs
(x,y) in the instance, d(z,x) < d(z,y).

Note 4.6

As mentioned in Note 1.11, tree metric spaces are completely different

from distance-based tree data structures even though the data structures

could be used to index points that happen to be in a tree metric space. The

tree metric spaces discussed in this section, on which we do VPREVERSE

and GHREVERSE, are not VP- or GH-trees.

It is obvious that in a finite tree metric space, with the tree given explicitly in
the input, VPREVERSE and GHREVERSE are polynomial-time problems. A naive
algorithm for either of them in an n-point space might consist of finding all the
pairwise distances among points in O(n?) time by doing n depth-first searches,
then testing each of the n points against all the constraints, finding all solutions
in quadratic time overall. But in the case of VPREVERSE, it is possible to solve
the problem faster.

Theorem 4.4

There exists an algorithm to decide VPREVERSE on a weighted finite tree
metric space in time ©(n + m) where n is the number of points in the space
and m is the number of spheres in the instance.

Proof First, we split vertices as necessary to reduce the maximum degree of the
tree to three, giving each new edge a weight of zero and recording for each new
vertex which original vertex it came from. Note that each new vertex created
by a split is a solution to the original instance if and only if the original vertex
was a solution. With the tree expressed by an array of vertices each having a
doubly-linked list of outgoing edges and each directed edge linked to its partner
in the other direction, we can do this splitting in linear time. Each directed edge

4.3. REVERSE SIMILARITY SEARCH 107

in the tree will be labelled with an interval of distances, initialised to [0, 0c0),
as well as its weight. The interval on an outgoing edge represents the range
of distances from the vertex within which any solution must lie if it is on that
branch of the tree; the initial values signify no restriction on where solutions
could be.

For each sphere of the form (x, r,0), which requires solutions to be more than
distance r from the centre x, we set all the intervals on edges leading out of x to
their intersection with the interval (r,00). Similarly, for each sphere of the form
(x,r,1), requiring solutions to be at most distance r from x, we intersect all the
intervals on edges leading out of x with the interval [0, r]. Now the intervals
contain all the information from the input about which points can and cannot be
solutions; it remains only to propagate that information around the tree until we
have tested all the points.

We choose an arbitrary vertex to be the root and do two depth-first searches
starting from it. Each time we visit a vertex we intersect the intervals on its
incoming edges, adjusted for edge weight, with the intervals on its outgoing
edges to propagate the constraints. For instance, if (a, b] is the interval on an
edge from x to y with weight w when we visit y, then we set the intervals on all
outgoing edges of y, except the one leading back to x, to their intersections with
(a—w,b—w].

After doing our two depth-first searches, any vertex is a solution if and only if
all its incoming edges are labelled with intervals containing their weights and all
its outgoing edges are labelled with intervals containing the value zero. We can
test that for all vertices in linear time.

To establish correctness of the algorithm, note that a vertex y is a solution
to the instance if and only if there is no vertex x which is the centre of a sphere
such that the distance from x to y violates the constraint given by the sphere.
So if we test all paths for all pairs of x and y, against all spheres centred on x,
we can establish whether y is a solution. Each y must receive the information
from each x as to whether it is at an acceptable radius. That information starts
at each sphere centre when we initialise the intervals and the propagates to all
neighbours each time we visit a vertex.

The path from x to y may be monotonic downward if x is an ancestor of y,
monotonic upward if x is a descendant of y, or bitonic, proceeding first from
X up to its common ancestor with y and then down to y. The first depth-first
search propagates all constraints from ancestors down to descendants on the way
down, and from descendants back up to ancestors on the way up. That handles
all monotonic paths. It might handle some bitonic paths as well if they happen
to run left to right in the tree, but they might not. However, the first search
propagates the information at least up to the common ancestor in a bitonic path,

PATH(x, y)

108 CHAPTER 4. TREE METRICS

and then the second depth-first search propagates it the rest of the way. The
requirement for outgoing edges from a solution to include zero in their intervals
handles the case x = y, where a vertex can be excluded because it is the centre
of a sphere even without a path to any other distinct vertex.

The reason we cannot immediately use a similar algorithm for GHREVERSE
is that the information to be propagated along each edge is more complicated for
GHREVERSE. There could be an edge with one point from every input pair on
one side of the edge and the other point on the other side. Instead of labelling
each directed edge with an interval of allowable distances for paths containing
that edge, we would have to store the identities and distances of all the vantage
points on that side. It is not clear that we can process that much information for
every edge fast enough to improve on the quadratic algorithm.

Some tree metric spaces, notably strings with the prefix metric, have too
many points for examination of all points to be a useful strategy. Examining
all points is especially difficult in spaces where there are an infinite number of
points. Nonetheless it remains possible to solve these problems in many typical
large spaces, provided that it is reasonably easy to find paths among points. We
express this requirement by defining an operation which algorithms can use to
find points and relations between them in the space.

Definition 4.7

For any distinct points x and y in a tree metric space, the function
PATH(x, y) returns the path with weights from x to y. That is a list
of distinct points starting with x and ending with y, in which any two
consecutive points are adjacent to each other in the tree; and for each pair
of consecutive points, the distance between them, which is the weight of
the edge.

Given PATH(x, y) it is easy to compute distances, or test adjacency, between
points. For our main results on reverse similarity search in tree metric spaces,
we require that PATH(x, y) can be executed in time polynomial to its input. Note
that also implies a limit on the number of edges in the path between x and y,
because it must have time to write its output. This requirement is not particularly
onerous, and we expect it to be satisfied by any space one might use in practice;
it exists to exclude obscure special cases where spaces might be defined to have
very long paths among points with short names.

For spaces on which PATH is polynomial-time, GHREVERSE is a polynomial-
time problem. VPREVERSE places additional requirements on the space in order
to be polynomial-time, but we still expect it to be polynomial-time in all practical
cases. These results were presented (with the proofs given as sketches) in
SISAP’08 [192]. First we give the proof for GHREVERSE.

4.3. REVERSE SIMILARITY SEARCH 109

Figure 4.3: The central subtree.

Theorem 4.5

If S is a space with a (possibly weighted) tree metric, and PATH(x, y) runs in
polynomial time for this space, then GHREVERSE on S is a polynomial-time
problem.

Proof Since finding the path between two points is polynomial-time, the length
(number of edges) of the path must also be polynomial. Choosing one of the
points in a GHREVERSE instance, say x;, we find the path from it to all the
other points x; and y; in the instance. The union of all those paths, which we
call the central subtree, is the minimum spanning tree of the points, and it is of central subtree
polynomial size. See Figure 4.3. In polynomial time we can check all the vertices
of the central subtree tree as possible solutions to the GHREVERSE instance.
Now consider a point u that is not in the central subtree. Because all the points
in the space form a tree, there must be some point v in the central subtree such
that all paths from u to points in the central subtree pass through v, including
all paths from u to any x; or y;. Then for any x;, d(u, x;) = d(u,v) +d(v, x;). The
same holds for any y;. All the inequalities that define whether v is a solution to

110 CHAPTER 4. TREE METRICS

the GHREVERSE instance also apply to u with the addition of d(u,v) on both
sides. So u is a solution to the instance if and only if v is; testing every v also
gives us the answer for all u.

Therefore we can solve an instance of GHREVERSE on this space in polynomial
time, and the problem is in P.

For VPREVERSE, even subtler distinctions can be made among spaces, and to
resolve them we introduce the following simplified VPREVERSE problem which
can be used as a bellwether for a space’s difficulty.

Definition 4.8 (The Simplified VPREVERSE (SVPREV) Problem)

Given a point x in some tree metric space, a subset Y of points adjacent to
x in the tree, and an interval of reals I (which may be unbounded), accept
if and only if there exists a point z such that d(x,z) € I and the path from
x to z does not pass through any element of Y.

Theorem 4.6

If S is a space with a (possibly weighted) tree metric, and PATH(x, y) runs
in polynomial time for this space, then VPREVERSE on S is polynomial-time
reducible to SVPREV.

Proof As in Theorem 4.5, we begin by finding all paths between points men-
tioned in the VPREVERSE instance to form the central subtree (Figure 4.3). In
polynomial time we can test all the points in the central subtree as possible
solutions to the instance.

However, unlike the GHREVERSE case where points outside the central
subtree each had the same status as some point in the central subtree, with
VPREVERSE there could be some satisfying points outside the central subtree
without any in it. We detect such points by invoking SVPREV.

For each point y in the central subtree and each point x outside it but
joined through y (that is, all the paths from x to points in the central subtree
pass through y), then whether x satisfies the instance can be determined by
examining its distance to y and the status of y. The distance d(x, y) is added to
d(y,z) to get d(x,2) for all z in the central subtree, and d(x, y) does not change
for different z. So for each y in the central subtree, we construct an SVPREV
instance centred on y. Let Y (the excluded neighbours) be all the neighbours
of y that are in the central subtree, because we wish to consider only points
outside the central subtree and joined to it through y. Determine the interval of
d(x,y) values which would allow a point joined through y to be a solution to

4.4. BADLY-BEHAVED TREE METRICS 111

the VPREVERSE instance and let I be that interval. Evaluating this instance for
each y in the central subtree allows us to find any remaining solutions for the
VPREVERSE instance.

The restriction to spaces where PATH(x, y) runs in polynomial time serves to
limit the problem to cases where it is reasonable to do computations on paths at
all. Theorems 4.5 and 4.6 should apply to any practical tree space not designed
specifically to fall outside the criterion; see Example 4.12 for a carefully-designed
space in which Theorem 4.5 may fail.

Given a space where computing paths is easy and Theorem 4.5 applies, the
SVPREV problem still may or may not be hard, which is why we separate it out
into a defined problem. We would normally expect it to be easy in any practical
space, such as the prefix-metric space. But a carefully-designed space can make
it non-trivial, as in the following example. The reduction in Theorem 4.6 may
not always go in the other direction because of the difficulty in some spaces of
expressing the “no path through Y” constraint in terms of spheres, so hardness of
SVPREV does not necessarily prove hardness of VPREVERSE; but in the example,
the VPREVERSE problem is A"P-hard anyway.

Example 4.9

For an arbitrary instance of 3SAT with variables v;, v, ...,v,, construct a
space where the points are all binary strings b, b, ... b, where 0 <k <n
such that no constraints are violated by assigning each v; for 1 <i <k to
true if and only if b; is 1. Note that the empty string A is always included.
Use the prefix metric of Definition 4.5, which is equivalent to building a
trie of the strings and using unit weights.

It is trivial to test whether any given string is included in the space,
and to find the distance and path between any two strings if they are
included in the space. The GHREVERSE problem in this space is easy
by Theorem 4.5. However, the question of whether there exists a point
at distance at least n from A is the question of whether there exists a
satisfying assignment for the original 3SAT instance. That is an instance
both of VPREVERSE (with just one sphere) and SVPREV (with the set Y
empty), so those problems in this space are as hard as 3SAT.

4.4 Badly-behaved tree metrics

Tree metrics may seem so simple as to render our results on them trivial. That
appearance is misleading. Tree metrics can in fact be defined in devious ways
that render them hard to handle. We already mentioned Example 4.4, which

112 CHAPTER 4. TREE METRICS

is not a tree metric under our definition but meets the definition used by some
other authors. In this section we present some of the other difficult cases hinted
at by the limitations in the theorem statements of previous sections.

Theorem 4.2 gives the maximum number of distance permutations that can
occur in any tree metric space, but Corollary 4.3 only gives sufficient, not nec-
essary, conditions for that many permutations to actually occur. Any ordinary
infinite space, such as the prefix metric space of Definition 4.5, would be expected
to contain the maximum number of permutations for some choice of sites; if edge
weights are not all the same we can still find (g) distinct cuts by using a longer
path, provided the weights are reasonably close to uniform.

In a finite space we might expect to find fewer than (;) + 1 distance permuta-
tions. Since the number of permutations can never exceed the number of points
in the space, but the upper bound grows quadratically with the number of sites,
and there may be as many sites as there are points, then it is clear that the bound
cannot always be achieved in a finite space: we could run out of points to label
with distinct distance permutations. Note that our proof in Corollary 4.3 that
the bound can ever be achieved at all, relies on a number of points exponentially
larger than the number of sites.

The question remains of whether Theorem 4.2 could fail in some more
interesting way, with fewer than (S) + 1 permutations even though the space is
infinite. We give two examples of ways it can fail in infinite tree metric spaces.
Both are illustrated by Figure 4.4. The upper bound can be achieved in spaces
with long paths having reasonably uniform weights; it fails if there are no long
paths, or if the weights are not reasonably uniform, and we give one example
of each. Note that in each example there are k distance permutations; that is a
trivial lower bound because each of the sites must have a distance permutation
starting with itself, so with k distinct sites there must be at least k distinct distance
permutations for the entire space.

Example 4.10 (No long paths)

Let the points be the nonnegative integers, and let there be an edge (with
weight 1) from zero to each of the others. Note that this is distinct from
the star graph space of Section 4.1 because that was a finite space and this
one is countably infinite. Now if k points are chosen as sites, each of them
has its own distance permutation; the zero point has the same distance
permutation as the lowest-indexed site (if zero is not a site itself); and all
other points have the same distance permutation as zero. So there are k
distinct distance permutations.

Example 4.11 (Unreasonable weights)
Build a tree by starting with one vertex and adding vertices one at a time,
each with an edge to one existing vertex called its parent. Let the weight

4.4. BADLY-BEHAVED TREE METRICS 113

[
(a) No long paths (b) Unreasonable weights

Figure 4.4: Infinite tree spaces with only k distance permutations.

of each new edge be greater than the total weight of all previously-existing
edges, which could be accomplished by giving them power-of-two weights
in order (1,2,4,...). Note that any tree with only finite-degree vertices can
be given an ordering and edge weights like this, by a breadth-first search.

The midpoint between any two vertices x and y, where y was added
after x, must cut the tree on the edge from y to its parent, because that
edge must be on the path, the other edges must have been added earlier,
and the sum of all earlier-added edges is still less than the weight of
the edge from y to its parent. Therefore among any k sites, every pair’s
midpoint must fall on the edge from the later-added site to its parent. One
of the sites is the earliest-added; each of the remaining k — 1 sites has an
associated edge that cuts the tree; and so the tree is cut into k components
corresponding to k distinct distance permutations.

The statements of Theorems 4.5 and 4.6 also have a subtle condition: they
are limited to tree metric spaces where it is a polynomial-time problem to find
the path, with weights, between two points. That raises the question of how
common such spaces are. Are they easy to find? Yes—we expect all practical
spaces to be of this type.

However, the theorems need this limitation because it may be possible to
deliberately construct a very badly-behaved space in which they could fail. Our
example encodes a problem from /P into a tree space in such a way that distances
are easy to calculate but paths depend on solving the problem; if P # U/P, then
we can choose a problem to make path-finding non-polynomial. This example

upr

114

CHAPTER 4. TREE METRICS

yes—instance certificate

prefixed by 1 prefixed by 0 other s.tring .
beginning with 0

yes—instance

certificate other string
prefixed by 1 prefixed by 0 beginning with 1

Figure 4.5: A space with easy distances and hard paths.

appeared in SISAP’08 [192]. The class UP is the class of decision problems in
which yes-instances have unique polynomial-time certificates. It is known that
P # UP if and only if worst-case one-way functions exist, which is a necessary
condition for security of cryptographic hashes [90].

Example 4.12
For any given problem in U/ P, create a weighted tree metric space where
the points are the set of all binary strings and the edges are defined as
follows.

Let there be an edge with weight 1 from every string that begins with
0 to the empty string A. For every string of the form 1x, let there be an
edge from 1x to A with weight 2 if x is not the encoding of a yes-instance
for the problem. If x is the encoding of a yes-instance for the problem,
let there be an edge with weight 1 from 1x to 0x1z0x~! where z is the
unique certificate for x and x ! is x with the order of bits reversed. See
Figure 4.5.

In this space, the distance between any two given strings is easy to
compute. For strings x and y with x # y, we have

d(A,0x)=1

d(A,0x)=2
d(0x,0y)=2
d(1x,1y)=4.

If z is the unique certificate for x, which we can test in polynomial time
by examining 0x1z0x ™!, then d(0x1z0x~!,1x) = 1. For any other cases,
d(0x,1y)=3.

However, finding the path between 1x and A where x is the encoding
of an instance of the problem in ¢/P, requires solving the problem in order

4.4. BADLY-BEHAVED TREE METRICS 115

to write out the certificate that might be on the path; and that may not be
polynomial-time if P # UP.

Chapter 5

Hamming distance

An edit distance is a distance function that counts the minimum number of edits
made on one object to turn it into another object. Provided that the individual
edits are symmetric—that is, making and reversing any given edit count the same
toward the distance—edit distances are always metrics. The Hamming distance
considered in this chapter is a simple metric on strings and an example of an edit
distance.

Definition 5.1

Where x and y are strings with the same length, the Hamming distance

d(x, y) is the number of locations at which they differ. That is, if x;x,...x,

and y,y, ...y, are the letters in x and y, then

d(X,)’):Hie{1,27---:n}|xi7£}’i}|- (51)

The Hamming distance is usually applied to binary strings, and that is the
case we primarily consider here, but it can be applied to strings on any alphabet,
and even to vectors of reals or more general elements.

The space of n-bit binary strings with Hamming distance is central to the field
of coding theory, and widely studied as a result [169]. Movement through this
space provides a model of what happens to a signal subjected to bit errors, so
many problems in communications are stated in terms of Hamming distance.
For instance, Hamming codes, which are basic to coding theory, are described
in terms of their minimum distance: the smallest Hamming distance between
any two code words, which determines how many errors the code can guarantee
to correct. These codes, like the metric, are named for Richard V. Hamming, a
pioneer in the field.

Many computer architectures provide an instruction, generally named “pop-
ulation count,” for computing the Hamming weight of a machine word, which
is the same as the number of 1 bits in the word or its Hamming distance from

117

edit distance

Hamming
distance

minimum
distance

Hamming weight

intrinsic
dimensionality

118 CHAPTER 5. HAMMING DISTANCE

the all-zero word. Used with a bitwise exclusive-or instruction, population count
can measure Hamming distance between any two words. Popular legend among
computer programmers holds that population count must be included in comput-
ers sold to the US National Security Agency, as a contractual requirement. For
that reason, the population count instruction is often called the “NSA instruc-
tion” [184, pages 379-380]. Warren comments that “No one (outside of NSA)
seems to know just what they use it for.” [212, page 160]

Indexing systems may attempt to reduce a high-dimensional database to some-
thing more computationally tractable by describing each object with the answers
to a list of yes-or-no questions. The Nilsimsa spam filter is one example of such a
system, in which email messages are reduced to 256-bit digests representing the
answers to 256 questions about their content [53, 159]. The questions express
whether individual hash buckets (filled with hashed trigram counts) have more
or less than the median count. Testing two messages for similarity then means
examining the Hamming distance between their digests. This kind of match
counting applies any time that objects are described in terms of a fixed list of
features that may or may not be present; thus, Hamming distance on binary
strings can become relevant to indexing objects even when the objects themselves
are more naturally thought of as existing in some other space.

An attempt to solve our VPREVERSE and GHREVERSE problems (Defini-
tions 1.27 and 1.29) approximately instead of exactly would also implicate
Hamming distance: the constraints in an instance form a list of bits describing
a point by its answers to yes-or-no questions, much like a Nilsimsa digest. A
point that almost, but not necessarily exactly, solves the instance would be a
point whose digest is within a small Hamming distance of that specified by the
instance.

5.1 Intrinsic dimensionality

The difficulty of indexing strings with Hamming distance can be measured by the
intrinsic dimensionality p of the space, defined as the square of the mean divided
by twice the variance of the distance D between two random points drawn from
the native distribution (Definition 1.23). Where ,u’l and u’z are the first two raw
moments of the distance, intrinsic dimensionality is given by

E*[D] ut

= = . 5.2
P72avID] T 20 - e

In this section we consider the intrinsic dimensionality of binary strings with
Hamming distance. The first result (on Bernoulli-distributed bits) appeared
previously in SPIRE’05 [190].

5.1. INTRINSIC DIMENSIONALITY 119

The most obvious native distribution for n-bit binary strings is a simple
uniform choice from the 2" possible strings. Consider a slightly more general
case: let the bits be independent and identically distributed Bernoulli random
variables, equal to 1 with probability ¢ and 0 otherwise. We use q for the
probability to avoid conflict with p from L, distance. If we treat these strings as
vectors, their Hamming distance is equal to their L; distance (the sum of per-
component differences, Definition 2.1) and then by Corollary 2.2, the intrinsic
dimensionality is given by p = nq(1 — q)/(1 — 2q + 2¢?). By simple calculus, the
maximum intrinsic dimensionality of "/, is achieved with q = !/,, which is the
uniform-distribution case.

As a more complicated example, consider a ball of radius r in Hamming-
distance space with the uniform distribution. In other words, the native distri-
bution is, for some centre string ¢ and radius r, to select a string x such that
d(x,c) < r uniformly from the set of all such strings. The string length n is
assumed to grow large in comparison to the radius r. In that case, the intrinsic
dimensionality is linear in n with a constant that depends on r and increases
with r to a limit of !/, agreeing with the previous result.

Theorem 5.1
In the space of n-bit binary binary strings chosen uniformly from a ball of
constant radius r, the intrinsic dimensionality p obeys

-
— n.
2r+1

o (5.3)

Proof Consider how many ways we could choose i of the n bits, then j of the
remaining n — i bits, then k of the remaining n — i — j bits. This number is given
by the multinomial coefficient [85, 88, page 168]

n _ n! (5.4)
i,j,kn—i—j—kJ) iljlki(n—i—j—k)~ ’

We can find the first two terms of the expansion of (5.4) into powers of n as
follows:

n
i,jkn—i—j—k

1 . .
= ikl [(M(n-1)(n—-2)---(n—i—j—k+1)]

multinomial
coefficient

120 CHAPTER 5. HAMMING DISTANCE

nl+]+k i+j+k—1
_ _ -1 -1
= T 1 Z s|n +o(n)
1j1k! =

i+j+k 1
=2 1—~(i+j+ki+j+k=1n"+o(n")
ijik! PAE J '

If we choose two strings x and y from the ball, let i be the number of bit
positions where x is different from ¢ and y is equal, let j be the number of bit
positions where y is different from ¢ and x is equal, and then let k (which must
be from zero to r — max{i, j}) be the number of bit positions where x and y are
both different from ¢ and thus equal to each other. We can count the number of
ways to choose these two strings as

r r—max{i,j} n
N= ZZ Z (i,j,k,n—i—j—k)

i=0 j=0

_ n + n
“\r,r0,n—2k r—1,r—1,1,n—2r+1

n n 2r—1
+(r—l,r,O,n—2r+1)+(r,r—1,0,n—2r+1)+o(n)

1 1 2 2r—17 ., r_
=" +[(r—1)!2+r!(r—1)!_ ri2 }nz o (n)
_ n?" 1
—m[——(r—i’))n +o(n):| (5.5)

To compute the first two raw moments of the distance between two strings
chosen uniformly from the ball, we note that that distance is i + j and so its
expected value can be computed in the same way:

r r r—max{i,j}
:_ZZ Z (H_])(l]knnl—j—k)

i=0 j=

1 n n
=—|2r +2(2r—1)
N r,r,0,n—2r rnr—1,0,n—2r+1

n
2 _2 2r—1
Her)(r—l,r—l,l,n—2r+1)+o(n)}

3 12 o1 | T -r?(2r—-1) 2r—1 r—1)
"N ettt T PCES (r—1)12 +o(1)
1 2n?" _ _
TN rir—1)! [1-C -1 4o (n)] (5.6)

When we substitute the value of N from (5.5) into (5.6), the n?"/r!(r — 1)!

5.1. INTRINSIC DIMENSIONALITY 121

factors cancel out, and we can find u by long division:

2r —2r(r+1)n"' +o (n_l)

% —(r=3)n"t4o (n‘l)) 2 —2(r—=1%n"t+o (n_l)
2 —2r(r=3)n"t+o (n‘l)

—2(r+1n ! 4o (n‘l)

- 2(r+1n ! +o (n_l)

pi=2r=2r(r+1n ' +o(nh). (5.7)

Note 5.2

There is an intuition for why this should be the value of y, at least as far as
the leading term. As discussed in Section 1.3, points in high-dimensional
spaces tend to all be equally distant from each other, at the maximum
possible distance, and most (in the limit, all) of the volume of an object
tends to be on its surface. Applying those heuristics to two points chosen
uniformly from a ball of radius r, we should expect the points to be on
the surface of the ball (at distance r from the centre). We should also
expect k to go to zero, because the chance of choosing r bits for one string
to collide with the r bits from the other, will decrease with increasing n;
thus all 2r differing bits will tend to count. Sure enough, uj — 2r: the
expected distance approaches 2r for large n.

Since the intrinsic dimensionality formula (5.2) uses the square of u7, we
take the opportunity to calculate it:

p? = [2r —2r(r+1n"t+o (n_l)]z =4r—8r’(r+1n"'+o (n_l) (5.8)

For the second raw moment, we put (i + j)? inside the summation and find
the first two terms of its expansion:

1 I r—max{i,j} n
/ . -\2
=~ i+) (o)
2 N;; kzz(:) i,j,kyn—i—j—k

g " +2(2r — 1)? "
N r,r,0,n—2r rnr—1,0,n—2r+1

n
—1)? 2r—1
A =1) (r—l,r—l,l,n—2r+1)+o(n)}

1 {Z—rz —2r’@2r-1) (2r-1? 2(r-1)° + o(ﬂ}

:_2 2r—1 +
N 2T TG A=) (=112

122 CHAPTER 5. HAMMING DISTANCE

1 2n2r—1
= N - [2rn—4r3+2r2+4r2—4r—|—1+2r3—4r2+2r+o(1)J
1 2n*
- . _ 3_9..2 _ -1 -1
=N -0 [Zr (2r’=2r*4+2r—1)n +o(n)] (5.9)

Substituting (5.5) into (5.9), the n?"/r!(r — 1)! factors again cancel out, and
us, follows:

4r2 — 2r(4r?+2r—-1n! +o (n_l)

% —(r=3)n"'4o0 (n‘l)) 4r —(4r¥ —4r’+4r-2n"t+o (n_l)
4r — (4r® —12r®)n~! +o (n_l)

(8r2+4r—-2)n"' +o (n_l)

- (8r2+4r-2)n"' +o (n‘l)

wy=4r2 —2r(4r? +2r —Dn" +o (n71) . (5.10)

The we can use (5.8) and (5.10) to evaluate the intrinsic dimensionality
formula (5.2) and get (5.3).

1 uy
P = CRYY)
Mo — Mg
1 4r2 —8r3(r+1)n ' +o (n‘l)
T2 4r2— 2r(4r2+2r—Dn ' —4r2+8r2(r+)nt+o (n71)
r=2r(r+Dnt+o (n‘l)
T @r+Dnl+o(n)
— r n
2r+1

5.2 Distance permutations

site Suppose that given k fixed strings x;, x,, ..., X, called the sites, for any string
y we find the closest site to y, the second-closest site to y, and so on, to form
a permutation of the sites. If two sites are equidistant from y we choose the
lowest-index one first, to make the permutation unique. Such a permutation is

distance called the distance permutation of y (Definition 1.25). On strings with Hamming

permutation distance, it represents a generalisation of the nearest-neighbour decoding concept
from coding theory [169, page 19].

5.2. DISTANCE PERMUTATIONS 123

We are interested in how many distinct distance permutations can occur
among the 2" binary strings of length n, if the k sites are chosen to maximise
the number of distinct distance permutations. Let N, ;;(k) represent that number.
The H for “Hamming” in the subscript is to distinguish this from the similar
notation used in Chapter 3 for the maximum count of distance permutations in
L, space. An exact solution for this question seems difficult, partly because of the
complexity introduced by tiebreaking among equally distant sites, but we offer
some bounds.

Trivial bounds on N, ;1(k) follow naturally from the definitions:

N, yu(k) < 2" (5.11)
N, (k) < k! (5.12)
Npu(k) > k. (5.13)

Because there are only 2" points in the space and each one has only one distance
permutation, there cannot be more than 2" distance permutations (5.11). Simi-
larly, with k sites there cannot be more than k! permutations of any description,
so there can be at most k! distance permutations (5.12). An even stronger state-
ment than (5.13) can actually be made: as described in Section 4.4, there are
always at least as many distinct distance permutations as there are distinct sites
(not just in the maximum case implied by N, ;;(k)).

A less-obvious bound follows from the work on vectors with L, metrics in
Chapter 3. Consider each n-bit binary string as an n-component vector all of
whose components happen to be equal to 0 or 1; that is, a zero-one vector. Then
the Hamming distance between two strings is just the L; distance between the
corresponding vectors. Restricting vectors to be of this form cannot create any
additional distance permutations over the ones that would exist for the same
number of unrestricted vectors, so where N, ,(k) is the maximum number of
distance permutations of k sites for n-component vectors with the L, metric, we
have N, (k) < N, ; (k).

Furthermore, the L, distance between two zero-one vectors for any finite p
is a strictly increasing function of the Hamming distance, and so the distance
permutation of a given point with a given list of sites will be the same regardless of
which finite-p L, metric we use. Thus N, (k) < N, ,(k) for all finite p. Combining
that statement with Theorem 3.4 in the case p = 2 gives an asymptotic bound on
the maximum number of distance permutations:

Ny (k) < Ny (k) =0 (k) . (5.14)

Note 5.3
This argument does not apply to the L., metric because it is not a strictly
increasing function of Hamming distance. All unequal zero-one vectors

zero-one vector

124 CHAPTER 5. HAMMING DISTANCE

have L., distance exactly 1. (It degenerates to the equality metric of
Example 1.3.) This breakdown of strict increase is discussed at length in
Chapter 8, where it necessitates different proof techniques for L., from
the other L, metrics.

It is natural to ask under what circumstances we might be able to have a
distinct distance permutation for each of the 2" points. As the following theorem
shows, that can be achieved with n + 1 sites, and nearly achieved with n sites.

Theorem 5.2
In the space of n-bit binary strings with Hamming distance, the maximum
number of distance permutations for k sites N, (k) obeys

N,uy(n+1)=2", (5.15)
N,u(n)>2"—n. (5.16)

Proof Let u; be the n-bit string consisting entirely of zero bits except for a one
bit in bit position i counted from 1; that is,

u; = 010"t (5.17)

Consider (5.15). The sites used are uq,u,,...,u,,0" in that order. For any
arbitrary n-bit binary string y, let h be its Hamming weight (the number of 1 bits
in the string). The distance from y to u; is h+ 1 if y contains a 0 in bit position i,
and h — 1 if y contains a 1 in bit position i. The distance from y to 0" is always h.
Then from any string y, the distance permutation will consist of the indices
of all the bit positions where it contains 1, in order of increasing index; then
n (the index of the all-zero site); then the indices of all remaining sites, which
correspond to the bit positions where y contains 0. Furthermore, given any
permutation of that form, we can find a unique y to generate that distance
permutation by placing 1 in all the positions whose indices appear before n and 0
in all the positions whose indices appear after n. For instance, withn =6, k =7,
the permutation (2,4,5,7,1,3,6) corresponds to the bit string 010110. Therefore,
there is a bijection between distance permutations and points in the space, and
(5.15) holds.
Consider (5.16). The sites are the same except without the all-zero string:
uy,us,...,u,. As in the previous case, the distance permutation of a string y
will consist of all the indices of its 1 bits in ascending order followed by all the

5.2. DISTANCE PERMUTATIONS 125

indices of its 0 bits in ascending order. Each pair of successive indices will be
increasing except the pair representing the last 1 and first 0. If the first 0 bit
comes before the first 1 bit, that pair will be decreasing, so we can decode such
a permutation unambiguously to find the value of y by searching for the one
decreasing pair of indices. Indices before that correspond to 1 bits and indices
after that correspond to 0 bits. For example, with k = n = 6, the permutation
(1,4,2,3,5,6) corresponds to the bit string 100100.

However, if it happens that all 1 bits (if any) appear before all 0 bits (if any),
then the distance permutation of y will be the identity permutation, and there
may be many such bit strings. For instance, with k = n = 6, the strings 100000 and
111100 both give the distance permutation (1,2,3,4,5,6). All strings with this
property must be of the form 1:0"™' for some integer 0 < i < n. There are n+ 1
strings, together they share one distance permutation, and among the 2" points
in the space these are the only ones with non-unique distance permutations.
Therefore the total number of distinct distance permutations is 2" — n, and that
is a lower bound on N, y(n) (5.16).

The bound given by (5.16) is not perfectly tight, as shown by the following
example.

Example 5.4

Let k = n = 6 and let the sites be (000000, 000011, 001101, 011110, 110100,
111001). Then each point in the space has a unique distance permutation
except for these three pairs of points, each of which describes two points
with the same distance permutation:

000010 000110 (1,2,4,3,5,6)
010001 100001 (1,2,6,3,5,4) .
011110 101110 (4,3,5,1,2,6)

That makes a total of 61 distance permutations, where the lower bound
is only 58.

From the other direction, we can ask how many dimensions are necessary to
provide a point for each of the k! distance permutations. The following result
gives a loose upper bound on the answer.

Theorem 5.3
We can choose k binary strings of length k(k — 1) such that for each of the k!
permutations of sites there is a string having that as its distance permutation.

126 CHAPTER 5. HAMMING DISTANCE

That is,
Nk(k—l),H(k) == k' . (518)

Proof We divide each string into k blocks of k — 1 bits each. The sites x; are the
strings with one block consisting of all ones and all other blocks zero:

x; = U k=D qk=1(n=D-(k=1) for jntegers 1 <i < n.

Then where 7 : {1,2,...,n} — {1,2,...,n} is the distance permutation, con-
sider this string:

y= 1k—n(l)orc(l)—l.lk—rc(Z)Oﬂ(Z)—l . 1k—n(k)ort(k)—1 .

The number of ones in y is ©(1) — 1+ n(2) —1+---+ n(k) — 1, which is a
constant relative to k because 7 is a permutation. Call this number h. (It happens
to be equal to k(k — 1)/2.) Now the distance from y to a site x; is h, because
ones in y generally differ from zeros in x;; minus the number of ones in the
i-th block of y, because within that block they match; plus the number of zeros
in the i-th block, which differ from the ones in x;. Therefore the distance is
h—k —1+ 2n(i). That is a strictly increasing function of 7(i), so the closest
site is x; where 7(i) = 1, the second-closest site is x; where 7(i) = 2, and so
on; the distance permutation is exactly 7. We can find such a y for any =, so
Nix—1)u(k) = k!.

The encoding used in Theorem 5.3 is more powerful than necessary in that it
allows all the inequalities defining the distance permutations to be strict, for all
k! permutations. The space includes many points from which two or more sites
are equidistant, and none of those are used by the construction. Making use of
the tiebreaking rule in the definition of distance permutations can allow for all
k! permutations with fewer dimensions. For instance, with n =4 and k = 3, we
have all k! = 6 permutations with the sites (0001,0010,1100).

5.3 Reverse similarity search

The difficulty of reverse similarity search on binary strings with Hamming dis-
tance follows from work by Frances and Litman on two closely-related prob-
lems: the “minimum radius” (MR) and “maximum covering radius” (MCR)
problems [76]. These results were presented, with the proofs given as sketches,
at SISAP’08 [192].

5.3. REVERSE SIMILARITY SEARCH 127

The formal definitions we give below are generalised to all metric spaces, and
written in a way that emphasises their similarity. We mention numeric precision
for cases where it may be important, but since we only use the case of binary
strings with Hamming distance, where distances must be integers, the issue
vanishes.

Definition 5.5 (The MR Problem)

In some metric space (S,d), given a set C € S and real r given to some
precision, accept if and only if there exists a point z € S such that d(x,z) <
r for all x e C.

Definition 5.6 (The MCR Problem)

In some metric space (S,d), given a set C € S and real r given to some
precision, accept if and only if there exists a point z € S such that d(x,2) >
r for all x € C.

The MR problem asks whether there exists a sphere of a given radius such that
all the points in a set are inside the sphere, and the MCR problem asks whether,
for a list of spheres, there exists a point anywhere in the space that is outside all
of them. Recall that VPREVERSE is a constraint sat