
Aspects of Metric Spaces
in Computation

by

Matthew Adam Skala

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2008

c©Matthew Adam Skala 2008

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Matthew Adam Skala

iii

Abstract

Metric spaces, which generalise the properties of commonly-encountered physical
and abstract spaces into a mathematical framework, frequently occur in computer
science applications. Three major kinds of questions about metric spaces are
considered here: the intrinsic dimensionality of a distribution, the maximum
number of distance permutations, and the difficulty of reverse similarity search.
Intrinsic dimensionality measures the tendency for points to be equidistant, which
is diagnostic of high-dimensional spaces. Distance permutations describe the
order in which a set of fixed sites appears while moving away from a chosen
point; the number of distinct permutations determines the amount of storage
space required by some kinds of indexing data structure. Reverse similarity
search problems are constraint satisfaction problems derived from distance-based
index structures. Their difficulty reveals details of the structure of the space.
Theoretical and experimental results are given for these three questions in a
wide range of metric spaces, with commentary on the consequences for computer
science applications and additional related results where appropriate.

v

Acknowledgements

This work for supported by an NSERC Postgraduate Scholarship during the first
two and a half years. My thanks to all the usual suspects: my supervisor Ian
Munro for his support and patience; my family members for offering shoulders to
cry on; and the library and other staff at the University of Waterloo for providing
an environment where I could get my work done. Thanks also to the good people
of CTRL-A, Infinite Circle, HealthDoc/Inkpot, #ook, and #nerdsholm for helping
me stay sane through what turned out to be a much longer and more stressful
program than I ever expected.

vii

Nou paha e ka inoa
E ka‘ika‘ikū ana
A kau i ka nuku
E hapahapai a‘e.

ix

Table of Contents

Author’s Declaration iii

Abstract v

Acknowledgements vii

Dedication ix

Table of Contents xi

List of Tables xv

List of Figures xvii

1 Introduction 1
1.1 Metric spaces and similarity search . 2

1.1.1 Metric spaces . 2
1.1.2 Other abstract spaces . 5
1.1.3 Similarity search and geometry 7
1.1.4 V P-trees . 8
1.1.5 GH-trees . 9
1.1.6 Other data structures for similarity search 11

1.2 Notation and organisation . 12
1.2.1 General mathematics . 12
1.2.2 Probability and statistics . 14
1.2.3 Vectors . 15
1.2.4 Strings . 16
1.2.5 Computational complexity . 16

1.3 Dimensionality measurement . 17
1.3.1 Dq dimension . 23
1.3.2 Intrinsic dimensionality . 26

xi

1.4 Distance permutations . 33
1.5 Reverse similarity search . 35

2 Real vectors, Lp metrics, and dimensionality 41
2.1 Asymptotic intrinsic dimensionality with all components indepen-

dent and identically distributed . 44
2.1.1 Generally distributed components 45
2.1.2 Uniform components . 51
2.1.3 Normal components . 54

2.2 Normal components, Euclidean distance, and finite n 57
2.2.1 All components with the same variance 58
2.2.2 Exact result for n= 2 and distinct variances 59
2.2.3 Approximation for larger n . 63

2.3 Experimental results with discussion 67
2.3.1 All components independent and identically distributed . . 68
2.3.2 Components independent and normal but not identically

distributed . 72

3 Real vectors: distance permutations 75
3.1 Achieving all permutations . 76
3.2 Voronoi diagrams and distance permutations 78
3.3 Euclidean space . 85
3.4 The L1 and L∞ metrics . 90
3.5 Experimental results on Lp distance permutations 93

4 Tree metrics 99
4.1 Intrinsic dimensionality . 102
4.2 Distance permutations . 104
4.3 Reverse similarity search . 106
4.4 Badly-behaved tree metrics . 111

5 Hamming distance 117
5.1 Intrinsic dimensionality . 118
5.2 Distance permutations . 122
5.3 Reverse similarity search . 126

6 Levenshtein edit distance 131
6.1 Intrinsic dimensionality . 132
6.2 Number of neighbours . 140
6.3 Reverse similarity search . 142

xii

7 Superghost distance 153
7.1 Intrinsic dimensionality and neighbour count 155
7.2 Distance permutations . 157
7.3 Reverse similarity search . 159

8 Real vectors: reverse similarity search 165
8.1 VPREVERSE with the Lp metric for finite p 168
8.2 VPREVERSE with the L∞ metric . 173
8.3 GHREVERSE in Euclidean space . 174
8.4 GHREVERSE with the Lp metric for finite p 6= 2 176
8.5 GHREVERSE with the L∞ metric . 188
8.6 VPREVERSE with equal radii . 194

9 Additional results 197
9.1 Independence of dimensionality measures 197
9.2 Other problems that reduce to GHREVERSE 201
9.3 Distance permutations in practical databases 204
9.4 Distance permutations in hyperbolic space 207

10 Conclusion 211

Bibliography 213

Index 233

xiii

List of Tables

1.1 Intrinsic dimensionality results from Chapter 2. 30
1.2 Intrinsic dimensionality results from Chapters 1, 4–7, and 9. . . . 31
1.3 Results for maximum number of distance permutations with k sites. 36
1.4 Reverse similarity search results. 39

2.1 Comparison of Theorem 2.10 and the approximation from (2.28)
with experimental results. 73

2.2 Comparison of the approximation from (2.28) with experimental
results. 74

3.1 Number of Euclidean distance permutations Nn,2(k). 90
3.2 Mean distance permutations in Lp experiment. 95
3.3 Mean distance permutations in Lp experiment (continued). 96
3.4 Maximum distance permutations in Lp experiment. 97

6.1 Experimental results on random strings with Levenshtein distance. 137

8.1 Some variable names used in vector reverse-similarity proofs. . . . 167

9.1 Distance permutations for sample databases. 205
9.2 Distance permutations for sample databases (continued). 205

xv

List of Figures

1.1 How the V P-tree divides space. 9
1.2 How the GH-tree divides space. 11
1.3 Distance distribution changes with dimensionality. 22
1.4 Intrinsic dimensionality describes the average case, while Dq di-

mension describes the limit for small distances. 23
1.5 A VPREVERSE instance. 37
1.6 A GHREVERSE instance. 38

2.1 Some Lp unit circles. 43
2.2 Intrinsic dimensionality for the bivariate normal distribution as a

function of τ. 63
2.3 Intrinsic dimensionality for the bivariate normal distribution as a

function of σ2
2/σ

2
1. 64

2.4 Comparison of exact ρ for bivariate normal with its approximation
from (2.28). 67

2.5 Error in the (2.28) approximation. 68
2.6 Experimental results: short vectors, uniform components. 69
2.7 Experimental results: long vectors, uniform components. 70
2.8 Experimental results: short vectors, normal components. 70
2.9 Experimental results: long vectors, normal components. 71

3.1 A first-order Euclidean Voronoi diagram. 79
3.2 A second-order Euclidean Voronoi diagram. 79
3.3 Bisectors of four points in Euclidean space. 80
3.4 Bisectors of four points in L1 space. 82
3.5 Visualisation of the four-point L4 system. 84
3.6 How the least-squares plane cuts the bounding cubes. 85
3.7 Cutting a cheese into eight pieces with three cuts. 86
3.8 Cutting a pancake. 87

xvii

4.1 Route map for a small airline. 100
4.2 A star graph. 103
4.3 The central subtree. 109
4.4 Infinite tree spaces with only k distance permutations. 113
4.5 A space with easy distances and hard paths. 114

6.1 Edits between two long strings. 135
6.2 Levenshtein distance from the experiment. 138
6.3 Intrinsic dimensionality from the experiment. 139
6.4 Automata accepting strings of the form {0n, 0n1}2n and strings not

of that form. 147

8.1 Limiting the solution to the corners for VPREVERSE in Lp space. . 169
8.2 Limiting vector components to [0, 1]. 177
8.3 Limiting a pair of components to {0,1}. 180
8.4 The function fx(p) for some representative values of p. 182
8.5 The function gx(p) for some representative values of p. 183
8.6 Curve showing the non-monotonicity of gx(p). 184
8.7 The gadget for limiting one component in L∞ fails if some other

component is too large. 190
8.8 Multiple limiting gadgets support each other. 192
8.9 The gadget for clause satisfiability in L∞. 193
8.10 Gadgets used in proof of Theorem 8.11. 196

9.1 Constructing a distribution of arbitrary dimension: d = 2, λ = 0.4,
δ ≈ 1.513. 199

9.2 Four-point bisector systems with between 7 and 18 regions on the
Poincaré disc. 209

xviii

Chapter 1

Introduction

The idea of objects existing in some sort of space is fundamental to human beings’
understanding of the universe. Not only are real-life phenomena intimately
connected to the space-time described by physics, but abstract concepts are
routinely imagined as existing in a conceptual space. This imagination is implicit
in language that uses geometric and spatial terms to describe things other than
physical space: we may speak of a discussion going off on a tangent, friends
being close, a joke that goes too far, or ideas being on one or the other hand.
Psychological theories posit that an association between locations and directions
in physical space, and abstract ideas in our minds, may be fundamental to
cognition [131, 163].

The spatial metaphor is also fundamental to many computer applications,
especially in the realm (which is another spatial term) of databases. Objects in
a database may be imagined as points in a space, which also imposes a spatial
meaning on queries. Typically the answers to a query will all be clustered in
a definite region of the space; and the query may even be defined in terms of
a region of the space. This dissertation presents results on several computer
science problems related to searching in abstract spaces.

We primarily consider three basic questions: intrinsic dimensionality, number
of distance permutations, and the difficulty of reverse similarity search. In this
introductory chapter we present general metric spaces, and each of the problems,
with comments on the history of relevant previous work. There follow chapters
for different kinds of metric spaces, and the answers to our questions for each
of them. The discussion of real vectors is split into three chapters to keep their
lengths manageable and resolve interdependencies between the real vector and
Hamming string results.1 Relevant previous work for the individual spaces is

1Chapter 8 depends on Chapter 5 which depends on Chapters 2 and 3.

1

2 CHAPTER 1. INTRODUCTION

covered in the respective spaces’ chapters, along with some results on other
problems specific to particular spaces. We close with some notes on other results
of interest.

1.1 Metric spaces and similarity search

First of all, what is an abstract space of the kind we are studying? Many kinds of
space exist that generalise in different ways the familiar physical space of human
reality. The present work is primarily concerned with metric spaces, which can
be glossed as spaces where there are points with distances between them, and
the distances are reasonably well-behaved.

Definition 1.1
Let S and d : S × S → R be a function that may or may not satisfy these
properties, for all x , y, z ∈ S:

d(x , y)≥ 0 (1.1)

d(x , x) = 0 (1.2)

d(x , y) 6= 0 if x 6= y (1.3)

d(x , y) = d(y, x) (1.4)

d(x , z)≤ d(x , y) + d(y, z) . (1.5)

The property (1.5), which is of particular importance to our work, is
called the triangle inequality.triangle

inequality Any function d : S × S→ R used to express some concept of distance
will be called a distance function. Elements of the set S will be calleddistance function

points. If the distance function satisfies all the above properties, then itpoint

is a metric and the pair 〈S, d〉 is a metric space. Other kinds of distancemetric
metric space functions are defined by relaxing one or more of the properties: without

(1.3), it is a pseudometric; without (1.4), a quasimetric; without (1.5), apseudometric

quasimetric semimetric; and without any of those (leaving only (1.1) and (1.2)), a
semimetric prametric2 [10, 121, 200].
prametric

1.1.1 Metric spaces

Most properties of metric spaces are ones we would intuitively associate with
travel among points: a journey cannot take less than no distance, two points with

2The definition of notation such as R is deferred to Section 1.2 to avoid interrupting the general
introduction and motivation; nothing very unusual will be used before then.

1.1. METRIC SPACES AND SIMILARITY SEARCH 3

zero distance between them must be identical, and a journey (along the same
route) in either direction must be of the same length. The triangle inequality is
the real key to the definition of metric spaces: it says that stopping at a third
point on the trip from one to another cannot ever result in a shorter trip than
just going directly between the two points. That property is common to all the
familiar kinds of spaces we might consider. It is strong enough that we can use
it to infer useful things about points based on their distances from each other,
while still being weak enough to permit the existence of a rich variety of metric
spaces. A few examples follow.

Example 1.2
Ordinary physical space, with distances measured as by a ruler, is a metric
space: there are points, there is a distance between any two points, all the
distances are nonnegative, distance is the same in either direction, two
points have distance zero if and only if they are the same point, and the
triangle inequality applies.

Example 1.3
Any set S is a metric space, using the equality metric defined by d(x , y) = 0 equality metric

if and only if x = y, d(x , y) = 1 otherwise. It is easy to verify that this
satisfies Definition 1.1. Such a space is called a discrete space. discrete space

Example 1.4
The set of all 43252003274489856000 legal configurations [28, page
761] of a Rubik’s Cube is a metric space, with the distance between two
configurations being the minimum number of moves required to trans-
form one to the other. The maximum distance between any two points
in this space is known to be at most 26 [130]. Berlekamp, Conway, and
Guy give a lower bound of 18 [28, page 767] and, in a result apparently
published only on an electronic mailing list, Reid gives a lower bound of
20 [174]. Hofstadter also gives some commentary of interest on the Cube
and variations [103, pages 301–363]. Note that legal configurations are
configurations reachable by twisting the starting “solved” configuration.
Configurations only reachable by taking apart and reassembling the Cube
do not count unless one also counts the disassembly-and-reassembly op-
eration as a move, in which case this becomes just another (large, finite)
discrete space.

Fréchet introduced spaces like these in his 1906 thesis on functional analysis,
defining spaces in which a voisinage (“vicinity”) function, which he notated as
(A, B), had the properties that (A, B) = (B, A) ≥ 0, (A, B) = 0 if and only if A= B,
(A, B) tended to zero if A and B tended to each other, and a relaxed form of the

4 CHAPTER 1. INTRODUCTION

triangle inequality held: if (A, B) ≤ ε and (B, C) ≤ ε, then (A, C) ≤ f (ε) where
limε→0+ f (ε) = 0 [78, page 18]. We note that right from the start, the study of
metric spaces has been combined with the study of relaxed versions like this one,
which is clearly designed for proving limits but does not quite restrict spaces as
far as the metric spaces of Definition 1.1.

Fréchet went on to define the écart des deux éléments (“variation of two el-
ements”) to satisfy the full triangle inequality (A, B) ≤ (A, C) + (C , B), making
it a metric under the modern definition [78, page 30]. Hausdorff later gave
such spaces their current name of metrische Räume, that is, “metric spaces” [99,
page 211] [100]. Hausdorff used both overbar notation (as in xz ≤ x y + yz)
and the function notation we prefer (d(A, C) ≤ d(A, B) + d(B, C) [99, page 291]).
Around the time of Fréchet’s work, Minkowski was developing a geometry for the
unified space-time entity postulated by Lorentz and Einstein, based on an innova-
tive distance function that allowed negative values and used them to describe
the distinction between space-like and time-like directions [154]. Minkowski’s
name is now applied to a class of metrics on real vectors which we discuss in
detail in Chapters 2, 3, and 8.

Metric spaces generalise an important and useful concept, and so they have
applications in a wide variety of mathematical fields. In topology, every metric
defines a unique topology for its space, and such spaces often have interesting
or useful topological properties [10, 200]. Differential geometry considers anal-
ysis in metric spaces [209]. In coding theory, the Hamming metric (subject of
Chapter 5) is central to the study of channel errors [169]. Linear algebra studies
vector norms, which are related to inner products and also generate metrics on
the vectors [102].

Practical metric space applications arise when computation is applied to prob-
lems that involve a concept of distance among things. Geographic information
systems are entirely concerned with spatial questions, expressed not only in the
three-dimensional Euclidean space of ordinary experience, but also more ab-
stract conceptual spaces describing things like travel time between locations [77].
Database applications use metric spaces not only for geographic questions but
also anywhere that similarities and differences between data objects are relevant.
As a result, there is a massive literature on representing objects as points in
metric spaces [142, 178], transforming the spaces for ease of processing [56],
and especially on searching in metric spaces. Multiple surveys, software packages,
and conferences cover the question of metric space searching [42, 71, 101, 220].

Note 1.5
The space for a given application, including both the points and the
metric, is typically imposed by the application. We do not get to choose
a nice metric. At best we might try to substitute a convenient metric

1.1. METRIC SPACES AND SIMILARITY SEARCH 5

for the application’s metric and then argue that the consequences of the
substitution are not too bad. Also, the metric for a space may be expensive
to compute. As a result, it is often an important goal for data structures to
minimise the number of times the metric must be computed, even if that
means doing more work elsewhere.

The issue of not being able to choose the metric is significant because it
creates a need for data structures and theoretical work applicable to general
metric spaces. In general, we must assume that the metric will be expensive
and badly-behaved, with the properties guaranteed by Definition 1.1 but not
necessarily any others.

Example 1.6
Local descriptor techniques are successful at detecting similar images, or
objects in common between images, despite changes in lighting, move-
ment, image compression, and other transformations [7, 142]. Comparing
two images with local descriptors involves scanning each image for certain
features to make a list of descriptors—an expensive operation which can
at least be done as a precomputation, roughly analogous to a dimension
reduction—and then searching for similar descriptors in common between
the two images. In the case of the SIFT technique described by Lowe, there
are typically a few hundred descriptors per image, each a 128-component
vector [142]. The search for matching descriptors is itself much like a
similarity search problem, but it must be done just to compare a single
pair of images. Any practical data structure for searching images based
on local descriptors must somehow avoid doing a linear number of full
image-to-image distance measurements.

1.1.2 Other abstract spaces

Metric spaces are not the only way to formalise these kinds of studies. The
most natural distance measure for a given space may not be a metric. All the
relaxed versions mentioned in Definition 1.1 see some amount of use. The
compression distance is one example of a non-metric distance function of interest
in bioinformatics applications. It describes the amount of information in one
string conditional on the other, as measured by a data compression program.
Assuming optimal compression (taking each string to a compressed length equal
to its Kolmogorov complexity [141]) the compression distance would be a metric,
but since Kolmogorov complexity is uncomputable, real-life data compression
programs are used to approximate it instead. The compression programs may give
far from ideal performance [91] and their estimates do not necessarily obey the

6 CHAPTER 1. INTRODUCTION

properties of a metric (in particular, symmetry and the triangle inequality) [25,
140]. Sahinalp and others have studied almost metrics, in which the trianglealmost metric

inequality holds to within a constant factor; they show that compression distance
obeys that relaxed definition, and that some data structures designed for metric
spaces are still useful with almost metrics [177].

Another way to describe the relationship between two points is with a measure
of similarity rather than distance, typically on a scale where the measure takes a
finite maximum value for identical points and a minimum value for points that
are unrelated to each other. With two Euclidean vectors x and y, the quantity
u·v/|u||v|, which is equal to the cosine of the angle between the vectors, expresses
similarity on a scale of −1 to 1. It takes the value ±1 if one vector is a scalar
multiple of the other (according to the sign of the scalar) and 0 if they are
orthogonal. Correlation coefficients used in statistics express relations between
variables on a similar scale of −1 to 1 [62, pages 215–217].

Similarity measures used in text processing applications include what has
become known as the Dice coefficient, originally proposed for comparing biologi-
cal species. It counts how many features (such as occurrence in a given sample
location) the species have in common, normalising the result to be between 0
and 1; two species are considered similar if they tend to occur in the same loca-
tions [63]. Sokal and Sneath review that and other similarity coefficients used in
biological taxonomy [198]; and Adamson and Boreham apply the Dice coefficient
to similarity of strings, letting the features be presence or absence of two-letter
substrings [2]. Other similarity measurements for strings and documents come
from using different similarity coefficients, longer substrings, or words as features
instead of pure substrings.

In applications like search engines, where a measurement of the relation-
ship between documents is exposed to users, it may be easier for the users to
understand a similarity measure on a finite scale than a distance measure with
unknown or complicated units. Kondrak defines a function called n-gram similar-
ity as a further development from the Dice coefficient, with n-gram distance as a
modification of the similarity. He takes the position that the similarity view of
this measure is “conceptually simpler than n-gram distance” [128]. We are not
convinced there is a meaningful difference.

In a context like plagiarism detection where the interesting thing that can
be said about two documents is where they are the same, not where they differ,
a measure of similarity may be more natural. The MOSS plagiarism detection
system, for instance, starts with a robust hash, formed by robustly selecting
ordinary hashes of n-grams from the documents, and then expresses similarity
between documents as the raw number of matching n-gram hashes. Schleimer,
Wilkerson, and Aiken describe the system and report that MOSS users find a

1.1. METRIC SPACES AND SIMILARITY SEARCH 7

sharp correlation between plagiarism and number of matches over a constant
threshold, with the threshold dependent on the type of documents [183].

However, in this work we consider primarily a distance point of view, and
primarily metric spaces in particular, because of the usefulness of strict properties
like the triangle inequality that may be harder to define or use in a similarity
context. Depending on the properties of the similarity, it may be possible to
define a metric as some function of similarity, or similarity as some function of
a metric, to create an equivalence between the two. Li and others nod to the
similarity view by defining their “similarity metric” [140] to take values between
0 and 1 so that it can be easily converted to a similarity by subtracting it from
1. Any metric d can be converted to a similarity score on a scale of 0 to 1 by
computing 1/(1+ d); the result will be 1 for identical points and approach 0 for
distant points.

1.1.3 Similarity search and geometry

Even when considered from a metric point of view, the two most common metric-
space search problems are generally called similarity search problems. They are similarity search

defined as follows.

Definition 1.7 (Range search)
Given a database of points in some metric space, a query point q, and a range search

real r > 0, find all the points z in the database such that d(q, z)≤ r.

Definition 1.8 (k-Nearest Neighbour (kNN) search)
Given a database of points in some metric space, a query point q, and an kNN search

integer k > 0, find the k points in the database nearest to q.

The simplest way to solve a similarity search problem would be to just compute
all the distances from the query point to points in the database, in linear time.
Algorithmic work on these problems focuses on doing precomputation to build an
index data structure on which the searching operation can run more efficiently.
Hjaltason and Samet review similarity search from a practical perspective [101]
and Chávez and others review the subject from a theoretical perspective [42].

Some techniques for searching in metric spaces depend on the geometric prop-
erties of special spaces. In two and three dimensions, quadtrees [104, 211] and
octrees [111] are popular in applications like graphics [75] and finite element
analysis [172]. The obvious generalisation of this technique is seldom applied to
higher dimensions, however, because each node requires space exponential in
the number of dimensions. The kd-tree described by Bentley provides improves
performance in higher dimensions from a similar technique by considering only
one dimension per node so that the tree remains binary [26]. The R-tree of

8 CHAPTER 1. INTRODUCTION

Guttman [95] is similar, and has many variants, including R∗-trees [23], R+-
trees [186], and SR-trees [119]. The hybrid tree of Chakrabarti and Mehrotra
uses overlapping subtrees instead of a strict split, to guarantee balance proper-
ties [38]. The pyramid trees of Berchtold, Böhm, and Kriegel are specifically
designed for high-dimensional vector spaces, making use of the geometry of such
spaces (in particular, the tendency for one vector component to dominate the
others) [27].

However, general metric spaces do not provide the geometry required by those
techniques. For a general metric space with no other assumptions, it is necessary
to use a distance-based approach that indexes points solely on the basis of theirdistance-based

distance from each other. Burkhard and Keller [35] offered one of the first such
index structures, now known as a BK-tree for their initials, in 1973. In a BK-tree,
the metric is assumed to have a few discrete return values, each internal node
contains a vantage point, and the subtrees correspond to the different values of
the metric.

1.1.4 V P-trees

Yianilos describes a V P-tree (for “vantage point”), which resembles a binary
BK-tree with the metric values at each node simplified down to a binary thresh-
old [217]. It also resembles the binary search trees widely used for sorted lookups
in a single dimension [50, pages 244–280]. Each internal node contains a vantagevantage point

point and two subtrees of points divided up according to their relationship to the
vantage point. Instead of dividing points according to whether their key is greater
than or less than the node’s, as we would in a single-dimensional binary search
tree, the V P-tree stores a radius in each node and the two subtrees correspond to
points that are or are not within the radius; so the tree divides space according to
spheres about the vantage points. The geometric situation at one node is shown
in Figure 1.1.

Definition 1.9
A V P-tree for a metric space S is a binary tree data structure in whichV P-tree

each leaf stores a set of points and each internal node stores a point v ∈ S
and real radius r ≥ 0, as well as its left and right child subtrees. At each
internal node, all points appearing in the left subtree must be on or inside
the sphere of radius r centred on v, and all points appearing in the right
subtree must be outside that sphere.

For a balanced tree, the radius should be the median of distances from the
vantage point among points in the tree. This approach necessitates calculating
those median distances, making it not directly suitable for the dynamic applica-
tions served by single-dimensional balanced search tree structures, but it has the

1.1. METRIC SPACES AND SIMILARITY SEARCH 9

r

q x

v
y

Figure 1.1: How the V P-tree divides space.

advantage of guaranteeing balance as long as the distribution of queries is close
to the distribution of objects in the database. It also appears at first glance to
be nicely efficient: just like a conventional low-dimensional binary search tree,
there is one comparison to one vantage point made at each node.

Searching the V P-tree proceeds by descending through the nodes, using the
triangle inequality and the inequalities defining the subtrees to prove bounds
on how far the points in a subtree must be from the query. Then subtrees
that provably cannot contain the query results can be pruned from further
examination. Hjaltason and Samet describe this kind of algorithm in detail [101];
it applies to all space-dividing data structures in general, not just V P-trees.

Where v is the vantage point, for each x in the left subtree (within r distance
of v) and each y in the right subtree (at least r distance from v), we can compute
the distance d(q, v) for a query point q and then the triangle inequality gives us
these bounds, which are used to prune the search:

d(q, v)− r ≤d(q, x)≤ d(q, v) + r

r − d(q, v)≤d(q, y) .

1.1.5 GH-trees

The V P-tree has an apparent problem: spheres may be far from ideal shapes
for dividing the search space. Intuitively, the problem is that a sphere’s surface
is curved: if our query point is outside the sphere (which happens half the
time, assuming a balanced tree), then after removing the contents of the sphere
from consideration, the remaining points may be near, far, or at about the same
distance from the query point as were the points in the sphere; eliminating the

10 CHAPTER 1. INTRODUCTION

sphere tells us little about the distance to the remaining points from the query
point.

The “generalised hyperplane” tree (GH-tree) introduced by Uhlmann attempts
to divide space in a more useful way [205]. If we had to divide Euclidean space
as neatly as possible, the obvious choice would be to use a hyperplane (that is,
the constant-value set of a linear function). In general metric spaces we cannot
define hyperplanes so easily, but Uhlmann describes a generalised hyperplane
capturing one essential property of the Euclidean hyperplane. Given two points
u and v, the generalised hyperplane between them is the set of all points in
the space that are equidistant from u and v. The GH-tree, then, is a binary
space-partitioning tree with a generalised hyperplane at each node.

Definition 1.10
A GH-tree for a metric space S is a binary tree data structure in whichGH-tree

each leaf stores a set of points and each internal node stores two points
u, v ∈ S, as well as its left and right child subtrees. Any point x appearing
in a subtree must be in the left subtree if d(u, x)≤ d(v, x) and in the right
subtree otherwise.

Figure 1.2 illustrates how a node of the GH-tree partitions space. The point e
represents any arbitrary point on the generalised hyperplane, that is, equidistantgeneralised

hyperplane from u and v. Suppose the query point q is, as shown, closer to u than v. Then
because d(u, e) = d(v, e), we have:

d(q, v)− d(q, u) = d(q, v)− d(q, u) + d(u, e)− d(v, e)

= (d(q, v)− d(v, e)) + (d(u, e)− d(q, u))

≤ 2d(q, e) (by the triangle inequality).

If we have found an x that is close to the query point, such that d(q, x) <
(d(q, v) − d(q, u))/2, then we know that no point y on the other side of the
generalised hyperplane can possibly be closer to q, and so in a simple nearest-
neighbour search, we can prune that subtree. Similar pruning occurs in other
kinds of similarity search on GH-trees.

Note 1.11
The V P- and GH-tree data structures are not covered further in this work.
We give definitions and descriptions for them only to motivate similarity
search and in particular our definitions of VPREVERSE and GHREVERSE
(Definitions 1.27 and 1.29), which are constraint satisfaction problems
formed by the constraints implicit in the data structures. But our results
on VPREVERSE and GHREVERSE relate to those constraint satisfaction

1.1. METRIC SPACES AND SIMILARITY SEARCH 11

y

e

u

q

x

v

Figure 1.2: How the GH-tree divides space.

problems, not directly to the data structures. In particular, the tree metric
spaces of Chapter 4 are not V P- or GH-trees.

1.1.6 Other data structures for similarity search

Instead of organising the database primarily into a tree structure and pruning
the tree to narrow down the search, a data structure could exclude objects one
at a time on the basis of some index information stored with each object. The
amount of processing required to satisfy a query in such a structure might be
linear, but if it means saving some computations of the metric, it can still provide
an advantage. Since the metric may be expensive (Note 1.5), the usual cost
model for these kinds of data structures counts only the number of invocations
of the metric. Even a large amount of other data and computing on the side can
be excused in the name of avoiding metric computations.

The AESA technique (Approximating and Eliminating Search Algorithm) of
Vidal Ruiz carries that approach to an extreme: it precomputes and stores all
the pairwise distances among database objects [176]. Then the distance from a
query point to any object in the database can be used with the triangle inequality
to exclude other objects as possible answers to the query. This approach works
well in the sense of answering queries with very few distance computations;

12 CHAPTER 1. INTRODUCTION

however, it requires index space quadratic in the number of database objects and
so becomes impractical for databases of any significant size. Shasha and Wang
describe a technique that similarly keeps a quadratic-sized matrix of distances,
but instead of precomputing them all, they start with lower bounds, initially very
loose, and update the bounds with the triangle inequality as queries are applied
and better estimates (or exact measurements) become available [187]. Further
improvements on AESA are discussed in Section 1.4.

Paredes and Chávez describe a different approach to storing limited data:
instead of storing the exact distances to a limited set of pivot elements, their
k-nearest neighbour graph technique stores the identities, not the distances, of
the k other database objects closest to each database object [164]. Search in
such a database proceeds by heuristically applying rules to infer which objects
could be in the result set based on as few distance computations as possible.
Compare this approach to the pyramid-trees of Berchtold, Böhm, and Kriegel,
which use the identity of the greatest-magnitude vector component to choose
a one-dimensional tree to contain the object [27]. Both techniques depend on
storing a clue as to which measurement or measurements of the object will be
most useful in further evaluation.

The approach of storing some data about each point to eliminate points one
at a time can also be combined with tree-based approaches. A typical example is
the Geometric Near-neighbour Access Tree (GNAT) described by Brin [31]. In a
GNAT, each internal node stores some number of vantage points, and subtrees
descend from the node based on the nearest vantage point (as in a GH-tree
generalised to k vantage points per node), but the internal nodes also store, for
each subtree, its range of distances to each vantage point. Each internal node
then resembles a miniature AESA data structure. The size of the node is Θ(k2),
but there are many more opportunities to prune subtrees than with a simple
generalised GH-tree.

1.2 Notation and organisation

Important notational conventions will be described again when they are used,
but we collect them here as well for ease of reference.

1.2.1 General mathematics

We use log for the natural logarithm, base e ≈ 2.71828, and lg for the base-2log

lg logarithm. If y = log x then x = e y and lg x = y/ log 2. The set of real numbers
is denoted by R. The factorial of an integer n is denoted by n!, and the gammaR

factorial
gamma function

function (generalised factorial) of a real z by Γ(z). For integers, Γ(z) = (z− 1)!.

1.2. NOTATION AND ORGANISATION 13

Note 1.12
The gamma function exists for complex z but we only use it on positive
real z. It is well-behaved for such inputs. In particular, the value between
positive integer inputs increases smoothly from one factorial to the next,
and going half-way to the next positive integer multiplies the result by
approximately the square root of the next integer. A stronger version of
this property will be stated and used in the proof of Corollary 2.11.

The following definition gives three other extensions of the factorial concept
which we use occasionally.

Definition 1.13
The multinomial coefficient for four terms is given by [85, 88, page 168] multinomial

coefficient
�

n

i, j, k, n− i− j− k

�

=
n!

i! j!k!(n− i− j− k)!
; (1.6)

and the double factorial of an integer n is given by [9, pages 544–545] !!

n!!=







1·3·5· · · · ·n odd n> 0,

2·4·6· · · · ·n even n> 0,

1 n ∈ {−1, 0} .

(1.7)

Note that n!! is quite different from (n!)!. Finally, (x)n denotes the rising rising factorial

factorial, or Pochhammer symbol, x(x + 1) · · · (x + n+ 1).

Note 1.14
As Weisstein describes, the standard notation for rising factorial is different
in different fields; in combinatorics it is often denoted by x (n) whereas in
the theory of special functions it is often denoted by (x)n [213]. We follow
Abramowitz and Stegun in using (x)n [1, page 256], and we use it at all
only in the following definition of hypergeometric functions.

Definition 1.15
As described by Oberhettinger [160], the Gaussian hypergeometric function hypergeometric

function
2F1(a, b; c; x) is given by

2F1(a, b; c; x) =
∞
∑

n=0

(a)n(b)n
(c)nn!

xn . (1.8)

That describes a power series in which the ratio between successive coeffi-
cients is a rational function (quadratic over quadratic) of the index.

14 CHAPTER 1. INTRODUCTION

We use the standard asymptotic notation (O, o, Θ, Ω, ω) throughout. TheO, o, Θ, Ω, ω

case of ω is less common than the others and may be unfamiliar; note that
f (n) = ω(g(n)), read “ f (n) is little-omega of g(n),” if f (n) is greater than any
constant multiple of g(n) for sufficiently large n. Just as o is a strict version
of O, ω is a strict version of Ω. It is also convenient to have right-arrow for
convergence to within lower-order terms.

Definition 1.16
If

lim
n→+∞

f (n)
g(n)

= 1 (1.9)

then we write f (n)→ g(n). Note that f (n)→ g(n) is a stronger statement→

than f (n) = Θ(g(n)) because it implies that the constant is 1.

Although the need to remain consistent with other authors sometimes forces
exceptions to this policy, we attempt to follow a consistent practice for paren-
theses and brackets. Angle brackets are for sequences with a specific order; so
〈1,2, 3〉 is a vector with three components, not equal to 〈3,2, 1〉. Curly braces are〈·〉

for sets; so {1,2, 3} = {3,2, 1} is a set. Round parentheses and square brackets{·}

are for grouping operations, as in [(1+2) ·3] = 9, and occasionally to denote the(·)
[·] open and closed bounds of intervals, as in 1/2 ∈ [0, 1). Special brackets may be

used for the arguments of some functions and function-like operators, as a clue to
the special types of the arguments; for instance, max{S} operates on a set S, and
E[X] operates on a random variable X . We follow the general rule of big letters
for big ideas: a real x might be a component in a vector x which is in a set X
which is part of a class X , although we seldom use that many levels of abstraction
simultaneously. To reduce confusion among things made of smaller things, we
note that sets contain elements, vectors contain components, and strings containelement

component letters.
letter

1.2.2 Probability and statistics

We write Pr[E] for the probability of an event E, and E[X] and V[X] for theprobability

expectation and variance of a random variable X , respectively. Where X is the setexpectation

variance of values X can assume, we have

E[X] =
∑

x∈X
x Pr[X = x] (1.10)

for a discrete random variable, or where f (x) is the probability density function
of a continuous random variable, then

E[X] =

∫

X
x f (x) d x . (1.11)

1.2. NOTATION AND ORGANISATION 15

Then variance can be defined as

V[X] = E[(X − E[X])2] . (1.12)

The following computational formula [62, page 110] is invaluable when dealing
with variance:

V[X] = E[X 2]− E2[X] . (1.13)

Following the notation used by Arnold, Balakrishnan, and Nagaraja [13], we
write X

d
=Y if X and Y are identically distributed, X (n) d→Y if the distribution d

=
d→of X (n) converges to the distribution of Y as n goes to positive infinity, and

X (n) d↔Y (n) if the distributions of both X and Y depend on n and converge to d↔

each other.
Especially when discussing the L∞ metric, which is defined in terms of the

maximum function, it is convenient to define for any real random variate Z
random variates max(k){Z} (read “max over k from Z”) and min(k){Z} (“min over max(k){Z}

min(k){Z}k from Z”) realized as random variables max(k)i {Z}. and min(k)i {Z} respectively.
Each max(k)i {Z} is the maximum, and each min(k)i {Z} the minimum, of k random
variables from Z .

1.2.3 Vectors

Points in general spaces are denoted by italic letters like other variables, such
as x , y, z. For points as real vectors in particular, we use bold like x,y,z, with
subscripted italics like x1, x2, x3 for individual components of a vector. As men-
tioned earlier, we use angle brackets to enclose the components of a vector when
writing the vector out explicitly, as in 〈1,2, 3〉. In a few cases subscripted bold is
used for individual vectors within a family of vectors; for instance, the u1,u2,u3

defined in Chapter 8 are unit vectors along the first three axes, not components
of a vector u. Indices start from 1. The zero vector is represented by 0. zero vector (0)

The Minkowski Lp metrics are the subject of Chapters 2, 3, and 8 and dis-
cussed in detail there. The basic definition is that where x= 〈x1, x2, . . . , xn〉,y=
〈y1, y2, . . . , yn〉, the Lp metric dp(x,y) is defined by Lp metric

dp(x,y) =

n
∑

i=1

|x i − yi|p
!1/p

(1.14)

for real p ≥ 1 or
d∞(x,y) =

n
max
i=1
|x i − yi| (1.15)

for p =∞.

16 CHAPTER 1. INTRODUCTION

1.2.4 Strings

Many of our spaces have strings over some alphabet as their points. We generallystring

alphabet use Σ to represent the alphabet and α as an arbitrary element of Σ. Binary strings
Σ
α

binary

are strings for which Σ = {0, 1}. The empty string is denoted by λ. The elements

empty string

of a string or an alphabet are called letters even if we happen to denote them

letter
with numerals.3

Definition 1.17
In the context of strings, juxtaposition denotes concatenation and expo-concatenation

nentiation denotes repetition. For instance, if x = 100 and y = 011 thenrepetition

x y = 100011; and the notation 13 refers to the string 111, not the number
1 (one cubed). Similarly, α0 = λ. The metaphor is that concatenation is
like multiplication.

By choosing any interval of the indices in a string we can extract a substring,
and by choosing any subset of the indices we can extract a subsequence. These
two concepts are similar, but the distinction is important.

Note 1.18
A substring is contiguous; a subsequence is not necessarily contiguous. Allsubstring

subsequence substrings are subsequences but not all subsequences are substrings. Thus
BANANA has AAA as a subsequence but not as a substring, whereas it has
NAN as both.

The notation lcs(x , y) denotes the longest common contiguous substringlcs(x , y)

between x and y, a concept used frequently in Chapter 7. The longest common
possibly-discontiguous subsequence is also an important concept, but we do not
define a specific notation for it.

1.2.5 Computational complexity

We use P to denote the class of polynomial-time decision problems: problemsP

for which a yes- or no-instance can be recognized in polynomial time by a deter-
ministic universal Turing machine. Similarly, NP is the class of nondeterministicNP

polynomial-time problems; problems in NP have polynomial-sized certificates
verifiable in polynomial time. An NP-hard problem is one to which any problem
in NP can be reduced in polynomial time, and a problem that is both NP-hard
and in NP is in NPC, the class of NP-complete problems. Finally, we useNPC

UP to denote the class of unique-certificate polynomial-time problems. TheseUP

abbreviations are standard, but mentioned here for reference.
3Letters like 0 and 1 are printed in a different typeface from numbers like 0 and 1, but it should

also be clear from context which one is meant.

1.3. DIMENSIONALITY MEASUREMENT 17

1.3 Dimensionality measurement

The familiar space of human experience is basically Euclidean space with three
dimensions. Any point can be uniquely identified with three real numbers.
Present-day models of physics allow for physical space-time to be non-Euclidean,
and to have more dimensions, as many as 26 in the case of bosonic string the-
ory [221]. More abstract spaces used in linear algebra also associate points with
tuples called vectors, of real or perhaps complex numbers, with defined rules for
measuring distances among points. In a linear-algebra vector space, the number
of components in each vector is an intrinsic property of the space, invariant
over multiple representations of the space. For instance, points in Euclidean
three-space have three coordinates each no matter whether they are represented
with Cartesian, cylindrical, or spherical coordinates. The number three is the
number of dimensions, or dimensionality of the space, and differentiates it from dimensionality

(for instance) the two-dimensional Euclidean plane.
At first glance it appears that the number of dimensions of a space is simply the

number of components in the vectors that describe points. That is an inadequate
definition because it is too closely tied to the vector representation. Not all spaces
are naturally represented as vectors in the first place. For instance, in the Rubik’s
Cube space of Example 1.4, it would seem more natural to represent a point as
the permutation between its cubelet positions and the cubelet positions of the
“solved” state, with some information about rotation of cubelets. We could write
that as a list of numbers, but how long the list would be would depend on how
we chose to represent a concept like “the red and green side cubelet has been
moved down and to the right by one quarter-turn.”

It would be preferable that the metric defined on the original space correspond
to some metric appropriate to vectors; but with any naive translation from Cube
positions to vectors, the fewest-moves metric between two vector-represented
Cube positions would end up being something along the lines of “first, transform
the vectors back to a more natural representation of Cube positions; then count
the minimal number of moves. . . ” Also, there might be multiple representations
for a given point, corresponding for instance to rotating the entire Cube without
twisting it (which would not normally count as a move); then the metric space
property that d(x , y) = 0 if and only if x = y would be violated. We would be
faced with requiring the vectors to be some kind of canonical representation
instead of just any vectors following the encoding scheme.

Even in a space with a well-agreed vector representation, there are issues of
whether a data set uses all the dimensions that may exist. For instance, consider
a meteorological data set consisting of triples of temperature, humidity, and dew
point. That seems to have three dimensions. But dew point happens to be a

18 CHAPTER 1. INTRODUCTION

calculated function of temperature and humidity, uniquely determined by them
at least up to effects smaller than measurement error. If the three numbers were
plotted in a three-dimensional graph, they would all fall on a smooth surface
immersed in the three-dimensional space. It seems that in some meaningful
sense that is a two-dimensional data set notwithstanding that it happens to be
represented as three-dimensional vectors. The portion of the set of all three-
dimensional vectors actually occupied by data values can be described by a
probability distribution governing how likely a given combination of temperature,
humidity, and dew point would be to occur in the data. That leads naturally to
the idea that in a metric space application, we also have a probability distribution.
From the application’s point of view the distribution is part of the space.

Definition 1.19
The probability distribution associated with a space in a given application
is called the native distribution of the space. Unless otherwise specified,native

distribution any time we talk about drawing points from the space, that means drawing
points independently and identically distributed from the native distribu-
tion of the space.

The effective or intrinsic number of dimensions in a data set is determined not
only by the representation of points, but by how those points are distributed. For
instance, four-dimensional vectors that happen to be uniformly distributed along
a one-dimensional line segment might be expected to behave very much like
one-dimensional real numbers distributed on an interval, and not much like four-
dimensional vectors chosen uniformly from a four-dimensional hypercube. Given
that we can freely translate data among multiple equivalent representations,
we can ask what kind of dimensionality is invariant among the representations.
Mandelbrot claims that “effective dimension [is] a notion that should not beeffective

dimension defined precisely.” [146, page 17, italics his]; but we propose to find a definition
for it anyway.

This question came to our attention as a result of work on robust hashing. A
secure robust hash [51, 79] is designed to recognise points that are close to a
secret point without revealing the secret point until a “close” point has been found.
If the points exist in for instance n-dimensional Euclidean space, then someone
searching for the secret point can start with an initial guess and then explore
increasing neighbourhoods around the initial guess, hitting the secret point after
Θ(ln) attempts where l is the distance from the initial guess to the secret point.
The number of dimensions determines the difficulty of finding the secret point.
But this is an adversarial application, where it must be assumed that attackers
will transform points into whatever representation they find most advantageous—
that is, the one with fewest dimensions. So the important question is not how

1.3. DIMENSIONALITY MEASUREMENT 19

many dimensions did we use in our own representation, but rather what is the
smallest number of dimensions the attacker will be able to use while still correctly
representing the data? That question depends not only on the points in the space,
but also the metric, and the probability distribution of points the attacker expects
for our choice of secret point.

A similar issue is also important in database indexing, where it has become
known as “the curse of dimensionality” [24, 41, 110]. As dimensionality in-
creases, parameters of interest to similarity search increase exponentially. For
instance, as discussed above, quadtrees in two dimensions become octrees in
three dimensions, and an analogous data structure quickly becomes unworkable
in higher dimensions because the branching factor doubles for each added di-
mension. Even distance-based data structures, with no direct dependence on the
geometry of the space, show rapidly declining performance as dimensionality
increases, and performance in high-dimensional spaces is an important design
goal for distance-based data structures.

To compare performance of data structures among spaces of varying dimen-
sionality, we need some way of describing the dimensionality of a space. The
measure of dimensionality should be applicable even to spaces that are not
vector spaces; it should capture the idea of how many actual or effective di-
mensions are contained in a native distribution that might be represented in a
higher-dimensional space; and it should correlate with the observed difficulty
of indexing in the space. We can start looking for ways to measure the dimen-
sionality of metric spaces by listing known properties of high-dimensional spaces
and finding ways to measure those. These properties, when suitably formalised,
can be proved to apply to high-dimensional Euclidean and other well-behaved
spaces; but more importantly, they are empirically observed to be typical of the
spaces that we tend to think of as high-dimensional.

1. High-dimensional objects require many bits to write down.

2. It is difficult to cover a high-dimensional space with small spherical subsets;
in particular, such a covering must cover some points many times over.

3. The volume of a sphere in high-dimensional space increases rapidly with
its radius.

4. Points chosen from a high-dimensional distribution tend to be equidistant
from each other.

The first property comes from the simple definition of vector dimension as
the number of components; if we generalise that to arbitrary objects that can be
represented as binary bits, it seems natural to ask how many bits we need per

20 CHAPTER 1. INTRODUCTION

object. However, that approach is tied to the particular representation chosen
unless we make it the length of the minimal representation—which would make
the question equivalent to Kolmogorov complexity, and uncomputable [141]. It
also ignores differences among spaces with the same points and different metrics;
whereas difficulty of indexing or robust hashing in a space depends very much
on the metric.

Because topology studies invariant properties of spaces, it is one place to
look for a satisfactory definition of dimensionality. Indeed, topologists have
defined and studied in detail a number of different concepts of dimensionality,
and our second property, about covering with spherical subsets, is a simplified
description of one of them. Introductory works like that of Kinsey give more
precise detail; she discusses building a cell complex to model a space, at which
point the dimension can be observed from the kinds of cells needed to build the
complex [123, page 61]. Fedorchuk devotes an entire book part to topological
dimension theory [67]. Topological dimension considers the metric on a space,
and it can be applied to the set of data values that actually occur (treating that set
as a space in its own right) rather than only to the entire representation space, so
it seems both more relevant to indexing and more invariant to representation than
Kolmogorov complexity. However, topological dimension still does not consider
the native distribution of the space. There can also be difficulties applying it to
spaces in which the distance is discretised, such as the Hamming-distance space.

We do not consider topological issues in much detail in the present work
because of those limitations. However, two definitions from topology will become
important in our work on Dq dimensions, so we reproduce them here. Kinsey
gives more detail on the implications of these definitions [123].

Definition 1.20
A subset O of a metric space S is called an open set if every x ∈ O has aopen set

neighbourhood entirely contained in O.

Definition 1.20 may seem unhelpful because it simply shifts the definitional
problem to another target: we know what an open set is given a neighbourhood,
but what is a neighbourhood? In topological work, the definition of neighbour-
hood is considered to be part of the space; one of the equivalent definitions of a
topological space is as a set of points and a collection of their neighbourhoods.
For our work on metric spaces, neighbourhoods can be defined in terms of the
metric: a neighbourhood of a point x is the interior of a sphere centred on x ,
that is, for some ε > 0 an ε-neighbourhood of x is the set of points y such thatε-neighbourhood

d(x , y)< ε, and a neighbourhood as such is any ε-neighbourhood. These defini-neighbourhood

tions formalise for general metric spaces the familiar notions of neighbourhoods
and open sets used in real analysis.

1.3. DIMENSIONALITY MEASUREMENT 21

Definition 1.21
A space S is compact if every open cover of S has a finite subcover. That is, compact

if C is a set of open sets in S such that the union of all sets in C is equal to
S, then there must be a finite subset F of C such that the union of all the
sets in F is equal to S.

Compactness describes, in abstract topological terms without direct reference
to coordinates or a metric, something like boundedness. Indeed, basic theorems
in topology relate compactness of spaces to boundedness and certain other prop-
erties, like the convergence of Cauchy sequences [10, page 60]. The subtleties of
these definitions are relevant to some of the more badly-behaved spaces studied
in topology, and generally not important for computational spaces where points
are represented by explicit data structures on which we can compute distances
with actual computer software.

The two remaining properties we mentioned for high-dimensional metric
spaces can both be defined, and quantified, in terms of the probability distribution
of distance between two random points from the space. As such, they consider
not only the points and the space but also the native distribution. Changes of
representation that do not affect the metric, or do not affect it much, also have
no or little effect on the probability distribution of distance between two random
points, so a dimensionality measurement based on this probability distribution
should be immune to representation changes.

The volume of a sphere in d-dimensional Euclidean space increases as the
d-th power of the radius; that is, exponentially with dimension. There is an
intuitive link between rapidly increasing sphere volume and points tending to be
equidistant: because the volume of a sphere in high-dimensional space is much
larger than the volume of a sphere with even slightly smaller radius, that means
most of the volume is contained at or just below the surface. The deep interior
of the sphere is much smaller than the surface. So considering how the native
distribution appears from the point of view of one point, if we draw increasing
spheres until one contains most of the native distribution, we will find that most
of the distribution ends up near the surface of the sphere just because there is
vastly more space there.

On the fourth point, about points tending to be equidistant, we emphasise
that this contemplates a form of dimensionality deeper than the specific rep-
resentation chosen. It is possible to imagine that data may be represented in
a high- or infinite-dimensional space (in some sense) while still behaving like
low-dimensional data (in some other sense). Indeed, that seems to be the usual
case for high-dimensional representations actually encountered in practice, such
as the word space model of documents as described by Sahlgren [178]. Doc-
uments correspond to vectors with thousands of components, but they have

22 CHAPTER 1. INTRODUCTION

P
ro

b
a

b
ility

 d
e

n
s
ity

Distance between two random points

Low−dimensional

high−dimensional

Figure 1.3: Distance distribution changes with dimensionality.

indexing properties similar to those of randomly chosen vectors with far fewer
compoents. It may be said, then, that documents in the word-space model are
not really high-dimensional. They can be called low-dimensional because they
behave like other low-dimensional things—and it is that kind of dimensionality
we seek to measure. Situations where the representation may have a much higher
dimensionality than the data can include vectors where components are highly
correlated to each other, and native distributions that produce strong clumping
behaviour.

In Figure 1.3 we see illustrative probability density functions for the distance
between two points chosen from several spaces of varying dimensionality. Two
phenomena can be observed corresponding to our high-dimensional metric space
properties. First, the density on the lower tail of the curve, corresponding to the
amount of probability density inside a randomly chosen sphere, increases more
sharply (like a higher-degree polynomial) for the higher-dimensional curves.
Second, the peaks of the curves are sharper for higher dimensions, with less
variance in relation to the mean: points have more tendency to be equidistant.

Others have introduced dimensionality measures based on each of these
properties. The Dq dimensions, which generalise several dimensionality measures
used in fractal geometry and chaos theory, express the tendency of higher-

1.3. DIMENSIONALITY MEASUREMENT 23

Intrinsic

dimensionality

Distance between two random points

P
ro

b
a

b
ility

 d
e

n
s
ity

Dq dimension

Figure 1.4: Intrinsic dimensionality describes the average case, while Dq dimen-
sion describes the limit for small distances.

dimensional probability distributions to look like higher-degree polymonials; it
essentially answers the question “What power law does the distribution look
like at short distances?” The intrinsic dimensionality measures the tendency
for random points to be equidistant; noting that discrete spaces can only be
searched by linear search and thus can be seen as having very high dimensionality,
intrinsic dimensionality answers the question “How much does this space look
like a discrete space?” As shown in Figure 1.4, the two measurements are
complementary, measuring different parts of the probability distribution.

1.3.1 Dq dimension

Suppose we start with a small sphere in a space and evaluate the probability
that a point chosen from the native distribution will be within that sphere. If
we increase the radius of the sphere, the probability increases, until it becomes
a certainty if the sphere encompasses the entire support of the distribution.
For many common well-behaved distributions, the probability for small-radius
spheres increases with some power of the radius; and for distributions in spaces
where dimensionality is easy to define, the power seems to correspond to the
dimensionality. For instance, in k-dimensional Euclidean space with the native

24 CHAPTER 1. INTRODUCTION

distribution uniform on the unit hypercube, the probability increases with the
k-th power of the radius. If for some space we can find a value of k such that
probability exhibits this behaviour, we can say that in some sense the space has k
dimensions.

That approach to defining dimensionality is the basis for several measures of
dimensionality used in the studies of chaos and dynamical systems. Many things
can go wrong while looking for a value of k. In particular, it could be that the
probability does not show polynomial behaviour in the limit of small distances.
It could be that it shows polynomial behaviour but with a different exponent k
depending on the centre we chose. If we average over a random selection of the
centre, then it may depend on the distribution we use to choose the centre. The
metric might be discrete-valued (like edit distance, for instance), so that the idea
of limiting behaviour for small spheres is not meaningful.

The exponent might turn out not to be an integer—but although counterintu-
itive, that situation is not necessarily a problem. Some distributions and spaces
really do display behaviour in some sense intermediate between two integer
dimensions, and the insight that non-integer dimensions can be meaningful is the
basis for the study of fractals, pioneered by Benoit B. Mandelbrot in the 1970s
and 1980s.

The Dq dimension examines the power-law behaviour of the distance proba-
bility distribution, addressing many of the mentioned issues [162, Section 3.3].
The definition is often described in terms of coordinate-aligned boxes of size ε,
but we have used general open balls in order to address general metric spaces
without coordinate axes.

Definition 1.22
For a compact metric space S and a real radius ε > 0, let {B1, B2, . . . , Bn}
be a minimum-size (necessarily finite by compactness; see Definition 1.21)
cover of S by open balls of radius at most ε, let x represent a random
point drawn from the native distribution of S, and for q ≥ 0 define the DqDq dimension

dimension in general as the following limit, if it exists:

Dq =
−1

1− q
lim
ε→0+

log
∑n

i=1 Pr[x ∈ Bi]q

logε
(1.16)

By convention, when q = 0 we use 00 = 0 and for q = 1, we use the
limit of Dq as q goes to 1.

For specific values of q, the Dq dimension reduces to other cases that have
been independently described. In particular, D0 (for subsets of Euclidean space)
is the box-counting dimension, describing dimensionality of a set without ref-box-counting

dimension erence to the probability distribution over it. The Hausdorff dimension has a
Hausdorff
dimension

1.3. DIMENSIONALITY MEASUREMENT 25

complicated measure-theoretic definition, but turns out to be equal to D0 in the
cases ordinarily encountered [162, pages 100–103]. The term fractal dimension fractal dimension

is often applied interchangeably to the D0 and Hausdorff dimensions even though
they can be theoretically distinct; Mandelbrot, who coined the term, writes
that Hausdorff dimension is “a fractal dimension,” leaving open the possibility
that other measures of dimensionality could also be fractal dimensions [146,
page 15].

Evaluating D0 from a specific point results in the pointwise dimension, which pointwise
dimensioncan depend on the point we chose; and then the D1 dimension is the expected

pointwise dimension for a point chosen from the native distribution, also called
the information dimension. Most relevant for our study of distance-based indexing, information

dimensionthe D2 dimension, called the correlation dimension, describes the growth of
correlation
dimensionprobability density for the distance between two points chosen from the native

distribution. As Grassberger and Procaccia describe, correlation dimension is also
especially convenient for empirical measurements of chaotic systems [89].

Much work has been done on the relationships between Dq for different val-
ues of q. One important result is that Dq must be nonincreasing with increasing
q. On the other hand, it is an empirical observation that in practical systems,
Dq is generally constant or nearly constant regardless of q [162, pages 79–80].
The relatively rare exceptions, where Dq decreases in a significant way with
increasing q, are called multifractals and they are of significant interest in the multifractals

theory of dynamical systems. Mandelbrot’s well-known book on fractals is cred-
ited with popularising the idea of fractional dimensions in chaotic dynamical
systems [146]. Ott describes much of the subsequent development of the field at
an introductory level [162]. Pesin gives a more detailed presentation, including
the subtler topological and measure-theoretic issues [168]. Young proves con-
nections between Hausdorff dimension, entropy, and the Lyapunov exponents,
which measure the tendency for dynamical systems to amplify small changes in
initial conditions [219].

The Dq dimension is attractive for studies of distance-based indexing struc-
tures, especially trees, because it describes the behaviour of distances in the
limit for small distance. To prove asymptotic behaviour of data structures, we
are generally interested in the limit for large numbers of points in the database,
which translates to small distances between them. The distances encountered
while searching the bottom leaves of the tree will be the ones described by
Dq (especially D2) dimension, so this dimension should be useful for proving
bounds on index behaviour. Faloutsos and Kamel use that approach to analyse
R∗-trees, giving an estimate of search performance based on the D1 dimension
and experimental results supporting the accuracy of the estimate [66].

However, the limitation to spaces where arbitrarily small distances are mean-

26 CHAPTER 1. INTRODUCTION

ingful (roughly equivalent to the complete spaces defined in topology) is a
significant limitation. It rules out use of Dq dimension without severe modifi-
cation on important spaces like strings with Hamming or edit distance. Since
real-life data sets are necessarily limited to a finite number of objects, it is also
difficult to compute Dq dimension on practical data as opposed to theoretically-
defined probability distributions; at best we can approximate it by looking at the
smallest distances available in our data set, essentially plotting the probability
density for smaller and smaller distances until the data runs out and then drawing
a line on the graph and hoping it represents the limiting behaviour. That is the
approach others have generally used for applying Dq dimension to real-world
data sets [66, 89, 162].

1.3.2 Intrinsic dimensionality

The other natural way to examine the distance distribution is to look at the
main body and measure the tendency for points to be equidistant. In higher-
dimensional spaces, the distance between two random points is more likely to be
close to its mean, so a statistic measuring that likelihood can be used to compare
and describe spaces. Chávez and Navarro define such a measure, which they call
intrinsic dimensionality [40].

Definition 1.23
Where S is a space and µ and σ2 are the mean and variance of the distance
between two random points from native distribution in that space, the
intrinsic dimensionality of S, denoted by ρ, is given by [40]intrinsic

dimensionality

ρ = µ2/2σ2 . (1.17)

The formula (1.17) may appear arbitrary, but it follows naturally from the
concept it is designed to measure. The measure of dimensionality should grow
as the distribution becomes less variable, so σ2 is in the denominator. Scaling
all distances by a constant should have no effect, so µ2 is in the numerator to
make such scaling cancel out. Dimensional analysis of the formula also supports
squaring µ: the units of µwill be the units of the metric (for instance, metres), but
the units of σ2 will be the metric’s units squared (for instance, metres squared)
and they should cancel out to make ρ a unitless number. The factor of 2 in the
denominator scales the result to be equal to number of vector components in
some common cases, as we shall prove in Chapter 2. By this definition discrete
spaces have high intrinsic dimensionality (increasing linearly with the number of
points), even though in topological terms, discrete spaces are zero-dimensional.

1.3. DIMENSIONALITY MEASUREMENT 27

Note 1.24
In the case where the native distribution consists of always selecting the
same point, then the mean and variance of the distance are zero, and
the intrinsic dimensionality is formally undefined (division by zero). It
is convenient to define ρ = 0 for this case. That value is intuitively
reasonable—a single point seems like it should be zero-dimensional—and
it is consistent with evaluating the formula from Theorem 1.1 in the limit
as Pr[x = y] approaches 1.

Intrinsic dimensionality is an attractive way of describing spaces because it is
easy to compute, both in theory and in practice. In the present work we give both
kinds of results: theoretical proofs of the value of ρ for specified distributions,
and experimental measurements for actual databases. Unlike Dq dimensions,
which are based on the behaviour at arbitrarily small distances and so can only
be approximated in real-life experiments, ρ is defined by basic summary statistics
and can be computed easily from a sample.

However, for intrinsic dimensionality to be useful we must not only know
its numerical value, but be able to draw conclusions about other things based
on that value. To draw conclusions from intrinsic dimensionality requires a
link between the number and questions like performance of similarity search.
Chávez and Navarro introduce some theoretical results of that kind in their
original paper introducing intrinsic dimensionality. In particular, they prove
bounds on the performance of several kinds of distance-based index structures
for metric spaces in terms of ρ [40]. However, most work that uses intrinsic
dimensionality relies instead on the practical observation that it does correlate
with increased difficulty of indexing and with other measures of dimensionality,
for which links to indexing difficulty are known. For instance, Mao and others
describe its practical use in a biological context without going into the theoretical
link between large values of ρ and hard bounds on the algorithms [147].

The question of how much a distribution varies about its mean is of course
interesting in the general statistical context, not only for indexing databases. The
precise form of Definition 1.23 seems to be original with Chávez and Navarro,
but similarly-intended statistics have been thoroughly studied. In particular,
the coefficient of variation σ/µ equal to 1/

p

2ρ, and the squared coefficient of coefficient of
variationvariation, are well-known [126, page 107]. Handbooks of statistical distributions

give formulas for coefficient of variation for many well-known distributions,
from which intrinsic dimensionality would be easy to calculate [114, 115, 116].
However, the distributions that actually occur in our database problems often
are not of the well-studied forms for which those results apply. For example,
the Euclidean distance between vectors with independent and identical normal
components ends up having a chi distribution, representing the square root of a

28 CHAPTER 1. INTRODUCTION

chi-squared variable. The chi distribution has relatively few published results;
and for Lp metrics with finite p other than the Euclidean metric, it becomes the
general p-th root of a sum of p-th powers, with even fewer published results. We
consider those cases, and a number of others, in Chapter 2. It may seem intuitive
that these kinds of results should be well-known already, but the actual results,
let alone detailed presentations like ours, are absent from the usual sources.

It is an observation that easy spaces to index have small ρ, and the statistic
increases as the spaces become harder to index. Chávez and Navarro use a
result of Yianilos to argue that intrinsic dimensionality should be proportional
to the number of vector components for vectors chosen uniformly at random
from hypercubes [40, 218]. They also give calibration data consisting of ex-
perimental results on the ρ values for vector spaces. We give a more detailed
theoretical and experimental examination of these questions in a paper presented
at SPIRE’05 [190]; those results are included in Chapter 2 and similar results
for other spaces are given throughout the present work, forming the first of the
three main studies in this dissertation. The overall situation is that intrinsic
dimensionality does indeed correlate, both in theory and in practice, with other
attributes of spaces we think of as high-dimensional; but some individual spaces
display counterintuitive behaviour, and in some cases the relationship between ρ
and other features we might think of as dimensionality, may not be linear.

The intrinsic dimensionality statistic may have other useful applications be-
yond indexing. In particular, scale-free graphs [17] are a current topic in the
study of systems like semantic networks [201] and the Internet [139]. These are
graphs in which the degree sequence of vertices follows a power-law distribution,
and as described by Li and others, the coefficient of variation of that distribution
has important consequences for interesting properties of the graph [139]. The dis-
tribution of distance between nodes in a network is not precisely the same thing
as the distribution of degrees of individual nodes; but distance between nodes is
certainly an important topic for scale-free graphs. The fact that essentially the
same statistic (coefficient of variation as opposed to intrinsic dimensionality) is
already used for a similar purpose (describing the kinds of connections that exist)
suggests that scale-free graphs may also yield applications for this kind of study.

Tables 1.1 and 1.2 summarise the new intrinsic dimensionality results in the
present work. Chapter 2 describes results for vector spaces, where in most typical
cases the intrinsic dimensionality turns out to be asymptotically linear in the
number of vector components. We give an asymptotic analysis for random vectors
in which all components are independent and identically distributed, with Lp

metrics. In the case of L1, the asymptotic approximations become exact. In the
case of L∞, the asymptotic behaviour is not necessarily linear, and in particular,
it turns out to be Θ(log2) when the components are normally distributed. We

1.3. DIMENSIONALITY MEASUREMENT 29

also give more detail on several cases of multivariate normal distributions in
Euclidean space, as summarised in the table.

For non-vector spaces the results are more diverse. Discrete spaces are easy,
and analysed in this introductory section. We consider tree metrics, Hamming
distance, Levenshtein distance (the usual form of edit distance), and Superghost
distance (which we introduce, in Chapter 7); each of those is described in detail in
its own chapter. For tree metrics, ρ is between a constant and linear in the number
of points, depending on the distribution. For the string metrics it shows a variety
of behaviours. We give exact results for Hamming distance. The theoretical issues
for Levenshtein edit distance are complicated, and connect with much previous
work on statistical behaviour of that distance; we discuss the previous work and
give experimental results suggesting that intrinsic dimensionality for this space is
approximately Θ(n5/4) in string length for uniformly chosen equal-length strings.
The Superghost metric implicates many of the same issues, but we can at least
prove a lower bound: ρ = Ω(n2/ log2 n). Finally, we examine the relationship
between intrinsic and Dq dimensionality, showing that no relationship necessarily
exists because we can construct a space with both chosen arbitrarily; and we give
experimental results for some practical databases.

We close this section by proving simple intrinsic dimensionality results for
discrete spaces, which do not have a chapter of their own.

Theorem 1.1
If S is a discrete space, then where x and y are random points from the
native distribution of S and q = Pr[x = y]< 1, the intrinsic dimensionality
of S is given by ρ = (1− q)/2q.

Proof The result follows almost trivially from the definition. The distance be-
tween two random points is a Bernoulli random variable, equal to 0 with proba-
bility q and 1 with probability 1−q. Then its mean is 1−q, its variance is q(1−q),
and substitution into the definition of ρ gives the result.

Corollary 1.2
If S is a discrete space comprising n points with the native distribution
uniform, then ρ = (n − 1)/2, and this is the greatest possible intrinsic
dimensionality for any finite space with n points.

30 CHAPTER 1. INTRODUCTION

Vectors of n iid real components

Lp, finite p L∞

general Theorem 2.1:

ρ→





p2(µ′p)
2

2(µ′2p − (µ
′
p)

2)



n

where µ′k is the k-th raw moment
of |X − Y |.

Theorem 2.5: ρ
approaches one of
three expressions,
depending on limit
behaviour of
|X − Y |; not
necessarily linear.

uniform Theorem 2.6:

ρ→
�

4p+ 2

p+ 5

�

n

Theorem 2.7:

ρ→
�

1

2− π/2

�

n

normal Theorem 2.8:

ρ→





p2Γ2
� p+1

2

�

2
�p
πΓ
�

p+ 1/2
�

−Γ2
� p+1

2

��



n

Theorem 2.9:

ρ→
12

π2 log2 n

By Corollary 2.2, the approximations for large n above are exact for all n in
the case of the L1 metric.

Multivariate normal vectors in Euclidean space

Theorem 2.10: When all nonzero variances equal,

ρ =
1

2
·

Γ2 ((n+ 1)/2)
Γ(n/2)Γ ((n+ 2)/2)−Γ2 ((n+ 1)/2)

.

Theorem 2.12: With two variances σ2
1,σ2

2, and τ= (σ2
1 −σ

2
2)/(σ

2
1 +σ

2
2),

ρ =
�

8

π

�

(1+τ)(1−τ) 2F1

�

3/4, 5/4; 1;τ2
��−2

− 2
�−1

.

Subsection 2.2.3: With variances σ2
1,σ2

2, . . . ,σ2
n,

ρ ≈
1

2
·

Γ2(α+ 1/2)
Γ(α)Γ(α+ 1)−Γ2(α+ 1/2)

where α=
(σ2

1 +σ
2
2 + · · ·+σ

2
n)

2

2(σ4
1 +σ

4
2 + · · ·+σ

4
n)

.

Table 1.1: Intrinsic dimensionality results from Chapter 2.

1.3. DIMENSIONALITY MEASUREMENT 31

Discrete spaces

Theorem 1.1: ρ = (1− q)/2q where q = Pr[x = y].

Corollary 1.2: ρ = (n− 1)/2 when there are n points and uniform distribu-
tion, and this is maximum for any distribution.

Tree metrics

Section 4.1: With finite number of points n, ρ can be as small as a constant
(→ 1) with uniform distribution, or arbitrarily small with general distri-
bution, and as large as linear (→ n/2) for uniform distribution, which is
maximum for any distribution by Corollary 1.2.

Theorem 4.1: ρ→ (2n+ 1− |Σ|)2/|Σ|(|Σ| − 1) for uniformly-chosen strings
of length n with alphabet Σ and prefix distance.

Strings of n bits with Hamming distance

Section 5.1: ρ = nq(1−q)/(1−2q+2q2) if each bit is chosen from a Bernoulli
distribution with parameter q.

Theorem 5.1: ρ→ [r/(2r + 1)]n for uniform distribution on radius-r ball.

Strings of length n with Levenshtein distance

Section 6.1: very difficult theoretical question; experimental results suggest
ρ approximately Θ(n5/4).

Strings of length n with Superghost distance

Theorem 7.3: ρ = Ω(n2/ log2 n).

Other results

Theorem 9.2: There is not necessarily any relationship between ρ and Dq.

Section 9.3: Experimental values of ρ for SISAP library databases.

Table 1.2: Intrinsic dimensionality results from Chapters 1, 4–7, and 9.

32 CHAPTER 1. INTRODUCTION

Proof The value of ρ follows from Theorem 1.1 with q = 1/n. Now, suppose that
we have a finite space whose metric is not the equality metric. We will modify
the distance function, never decreasing the intrinsic dimensionality, until the
distance function becomes the equality metric. Some of the intermediate steps
may not satisfy the metric space properties, but since the equality metric does, the
conclusion that no other metric can give greater intrinsic dimensionality remains
valid. Note that the native distribution cannot be such as to always choose the
same point; otherwise the distance between two random points would always be
zero and the intrinsic dimensionality would be zero by definition (see Note 1.24).

Let E[d] represent the expected distance between two points chosen from the
native distribution, and E[d2] the expectation of the square of the distance. The
intrinsic dimensionality is given by

ρ =
E2[d]

2(E[d2]− E2[d])
.

Observe that intrinsic dimensionality is unchanged if we scale all distances by
a constant factor c, because both numerator and denominator increase by c2 and
it cancels out. Scale the distances such that the maximum distance is 1. There
must be some distance d(x , y) < E[d] for distinct points x 6= y (otherwise d
would be the equality metric by definition). We will increase d(x , y), and d(y, x)
to match, to bring d closer to the equality metric while not decreasing ρ.

Consider the distances between distinct points as a vector d (it will have
�n

2

�

components). Quantities like ρ and E[d] are functions of d. Let prime represent
derivative with respect to d(x , y); for instance, ρ′ = ∂ ρ/∂ d(x , y). Let Pr[z]
represent the native distribution of the space; that is, the probability of drawing
z when we draw a point. Now we will compute the sign of ρ′.

E[d] =
∑

a 6=b∈S

1/2 Pr[a]Pr[b]d(a, b)

E′[d] = Pr[x]Pr[y]

E[d2] =
∑

a 6=b∈S

1/2 Pr[a]Pr[b]d2(a, b)

E′[d2] = Pr[x]Pr[y]2d(x , y)

ρ =
E2[d]

2(E[d2]− E2[d])

ρ′ =
E[d](2E′[d]E[d2]− E[d]E′[d2])

2(E[d2]− E2[d])2

=
�

Pr[x]Pr[y]

E[d2]− E2[d]

�2

(E[d2]− E[d]d(x , y))

1.4. DISTANCE PERMUTATIONS 33

The squared quotient must be nonnegative, so we are left to evaluate the sign
of E[d2]−E[d]d(x , y). But since d(x , y)< E[d] and we know E[d2]−E2[d]> 0
because it is the (necessarily positive) variance of the distribution, then E[d2]−
E[d]d(x , y)> 0; by subtracting less, we can only increase the expression. Then
ρ′ ≥ 0. So by increasing a distance up to the mean distance, we can only increase
the intrinsic dimensionality. Repeatedly doing that to all distances less than the
mean, leaves us in the limit with a distance function where all distances among
distinct pairs of points are equal to 1, which is the equality metric. Therefore the
equality metric gives maximum intrinsic dimensionality.

Now, as in Theorem 1.1, the distance between two points is a Bernoulli
random variable with parameter q equal to the sum of squared probabilities of
individual points, and ρ = (1− q)/2q. That is maximised when q is minimised,
which occurs when the probabilities of all points are equal. Therefore the discrete
space with n points and native distribution uniform has the maximum possible
intrinsic dimensionality.

1.4 Distance permutations

The second of the three main questions considered in the present work has to
do with the maximum number of distance permutations possible in a space. We
begin by defining distance permutations.

Definition 1.25
Given k points x1, x2, . . . , xk, called the sites, in some space with distance site

function d, the distance permutation of a point y, denoted by Πy , is the distance
permutationunique permutation on {1,2, . . . , k} such that if i < j then d(xΠy (i), y) <

d(xΠy (j), y) or d(xΠy (i), y) = d(xΠy (j), y) and Πy(i)< Πy(j). That is, Πy is
the permutation that sorts the site indices into order of increasing distance
from y, using order of increasing index to break ties.

Chávez, Figueroa, and Navarro introduce distance permutations (also called
proximity preserving orders) in the context of similarity search, as part of a
suggested improvement to the LAESA technique of Micó, Oncina, and Vidal [39,
152]. Our interest in them stems from their possible use as a robust hashing
scheme and for revealing differences in the geometry of otherwise-similar spaces.

Any algorithm that answers similarity search queries must evaluate the dis-
tance from the query point to all points in the database, at least to the point of
knowing for each point in the database whether that point should be included
in the answer. Algorithms improve on linear exhaustive search by using data
from the index to avoid direct computations of the metric. In the case of metric

34 CHAPTER 1. INTRODUCTION

tree data structures like the V P- and GH-trees described in Subsections 1.1.4
and 1.1.5, the search algorithm proceeds down the tree using the triangle in-
equality to prove that subtrees cannot contain any points to be included in the
result; then those subtrees are pruned from further consideration.

Another way to speed up the search would be to examine database points
exhaustively, but store information about each one allowing it to possibly be
excluded without a call to the metric. Since we generally assume that the metric
is expensive (Note 1.5) and measure performance in terms of the number of calls
to the metric, even a linear search of the entire database can be advantageous if
it avoids actually computing the metric too many times.

The classic algorithm of this type is the Approximating and Eliminating Search
Algorithm (AESA) of Vidal Ruiz [176]. In that algorithm, the database contains a
precomputed and quadratic-sized matrix of all the pairwise distances between
database points. Using that precomputed data and the triangle inequality it is
often possible to place a bound on the distance from the query to a database point,
proving that that database point must or cannot be in the result, without actually
computing many distances. However, it is seldom practical to precompute and
store a quadratic amount of index data. Indices normally must be linear or
smaller.

The next step is to limit the size of the precomputed matrix. The LAESA
(Linear AESA) technique of Micó, Oncina, and Vidal is a standard way of doing
that: instead of storing all the pairwise distances, k reference sites or pivots
are chosen from the database and the index stores the k distances from each
database point to those, for a total index size linear for constant k [152]. The
resulting search algorithm is known to perform well; almost as well as AESA, and
for much less cost.

Chávez, Figueroa, and Navarro introduce distance permutations as a further
improvement on LAESA [39]. Instead of storing the actual distances to the k
sites, they store the distance permutation as defined above. They demonstrate
that most of the information useful to the search algorithm is preserved in
the transformation from k real distances to a permutation on the k sites, with a
considerable saving in index size (allowing the use of larger k). The same authors
with Paredes develop the idea further into an algorithm called iAESA (improved
AESA) [70], for which an implementation is available in the SISAP library [71].
In iAESA, distance permutations not only rule objects in and out directly, but also
help select the next distance measurement to make for AESA-like narrowing of
the search set.

In the present work we show that further space savings are possible without
any further compromise of the information content, because in many spaces
of interest, the geometry of the space limits how many distance permutations

1.5. REVERSE SIMILARITY SEARCH 35

actually occur and therefore the number of bits needed to store a distance
permutation. This combinatorial question is also of theoretical interest because
it reveals differences among spaces, like the differences revealed by intrinsic
dimensionality. It connects to work in pure mathematics, specifically the field of
combinatorial geometry.

Table 1.3 summarises our results. For tree metric spaces, k sites can generate
up to

�k
2

�

+ 1 distinct distance permutations, and we display cases where the
bound is and is not achieved. For strings in general, the question is complicated,
especially where the strings may be of unlimited length. We show some bounds
for Hamming distance, and use them to give a loose bound for Levenshtein
distance as well. For Superghost distance the length of the strings becomes
important (the question seems trivial with unlimited-length strings) and we
give a bound relating string length to number of permutations. Finally, we
give experimental results for some practical database and discuss the distance
permutation question in hyperbolic space.

1.5 Reverse similarity search

The third focus of the present work is on constraint satisfaction problems arising
from V P- and GH-trees. In either kind of tree, the internal nodes describe
constraints on the points that can appear in leaves of each subtree. Every leaf
then contains points that satisfy all the constraints of the internal nodes above it.
If we consider the set of constraints for a leaf in isolation from the database or
tree that generated them, we can ask the basic constraint satisfaction question:
is there any point satisfying all the constraints on the list? Could this leaf ever
appear and be nonempty in a tree generated from actual data? We call that
reverse similarity search, because it reverses the process of doing an ordinary reverse similarity

searchsearch in the tree. Rather than going from a query to a leaf, we go from a
description of a leaf to a query (if one exists) that would end up in that leaf.

Note 1.26
The reverse similarity search problems studied here are distinct from
the reverse nearest neighbour search of Korn and Muthukrishnan. In
their problem, a query starts with a point x and finds the other points
in a database that have x as their nearest neighbour [129]. That is a
close variation of the ordinary kNN search and approached with similar
techniques. Our reverse similarity searches are decision problems more
closely resembling constraint satisfaction problems like 3SAT.

We begin by defining the problems formally.

36 CHAPTER 1. INTRODUCTION

Vectors of n reals with Lp metrics

Theorem 3.1: k! achievable when n≥ k− 1 for all Lp metrics. Theorem 3.2
and Corollary 3.3: recurrence relation giving maximum for Euclidean (L2)
space, ≤ k2n, k2n/2nn!+ o(k2n). Theorem 3.4: O

�

22n2
k2n
�

for L1, O
�

k2n
�

for L2, O
�

22nn2nk2n
�

for L∞. Section 3.5: experimental results on dis-
tance permutations actually occurring as opposed to maximum, including
examples proving the Euclidean limit is not an upper bound for L1 and L∞.

Tree metric spaces

Theorem 4.2:
�k

2

�

+ 1 maximum for any tree space. Corollary 4.3: space
containing unweighted path of length 2k−1 is sufficient condition for achiev-
ing the bound. Examples 4.10 and 4.11: spaces in which the bound is not
achieved.

Strings of n bits with Hamming distance

Theorem 5.2: 2n when k > n, ≥ 2n − n when k = n. Example 5.4: 2n − n
bound from Theorem 5.2 is not tight. Theorem 5.3: k! when k(k− 1)≤ n,
achieving the permutations without resort to tiebreaking.

Strings with Levenshtein distance

Corollary 6.7: strings of length 2n(n+ 1) with Levenshtein can have at least
as many distance permutations as strings of length 2n with Hamming.

Strings with Superghost distance

Theorem 7.4: k strings of length O(k log k) can achieve all k! permutations
and all the strings achieving the permutations will be of length O(k2 log k).

Other spaces

Section 9.3: experimental results for SISAP library databases. Section 9.4:
apparently ranges from

�k
2

�

+ 1 to Euclidean limit in hyperbolic geometry.

Table 1.3: Results for maximum number of distance permutations with k sites.

1.5. REVERSE SIMILARITY SEARCH 37

0 1 3

1

0

2

z

Figure 1.5: A VPREVERSE instance.

VPREVERSE
Definition 1.27 (The VPREVERSE Problem)
In some metric space (S, d), given a set P of ordered triples (x i , ri , bi) with
x i ∈ S, ri real given to some precision, and bi ∈ {0,1}, accept if and only
if there exists a point z ∈ S such that for every (x i , ri , bi) ∈ P, d(z, x i)≤ ri

if and only if bi = 1. Mnemonic for the bit values: 1 looks like “I” and
requires points to be Inside the sphere; 0 looks like “O” and requires points
to be Outside the sphere.

Example 1.28
Where (S, d) is the Euclidean plane, let P be the set of triples {((3/2, 0), 1, 0),
((5/3, 1), 2, 1), ((0,0), 1, 1)}. This is a yes-instance satisfied by the point
z = (0.4,0.7). See Figure 1.5. The point z must be outside the circle
centred on (3/2, 0) and inside the other two. Only points in the small
curved-sided triangle-like region satisfy the instance.

GHREVERSE
Definition 1.29 (The GHREVERSE Problem)
In some metric space (S, d), given a set P of ordered pairs of points from
S, with n = |P|, accept if and only if there exists a point z ∈ S such that
d(z, x i)≤ d(z, yi) for every (x i , yi) ∈ P.

Example 1.30
For the Euclidean plane, let P be the set of pairs of points {((2,1), (0, 0)),
((1, 0), (1,1)), ((1, 0), (3,0))}. This is a yes-instance satisfied by the point
z = (1.8,0.3). See Figure 1.6. The satisfying point z must be on the shaded
side of each of the three lines that define the constraints.

38 CHAPTER 1. INTRODUCTION

0 1 3

1

0

2

z

Figure 1.6: A GHREVERSE instance.

The original motivation for considering these problems came from the desire
for robust hashing in security applications. Security applications sometimes
require the ability to recognise objects without keeping examples for comparison.
For instance, a multi-user computer system might wish to recognise users who
provide an exactly correct password, without storing an explicit copy of the
password that could be vulnerable to intruders [184, 216]. But an object like a
fingerprint, which could be distorted by noise or measurement error, requires a
fuzzy match; and current techniques store information from which the fingerprint
can be reconstructed, thereby opening themselves to attack [175]. Robust
hashes are designed to recognise such objects while keeping some of the security
properties of existing one-way hashes [51].

One way to build a robust hash would be as a list of predicates—yes or no
questions that describe an object. If the predicates are chosen so that for each
question and a randomly selected object, either answer is equally likely, and so
that the answers to different questions are as nearly as possible independent,
then the possibly-complicated native distribution of the space can be transformed
into a uniform distribution on binary strings. Nearby points are likely to give
the same answers to most of the questions, but distant points are likely to give
uncorrelated answers and result in binary strings with no special relationship.

Assuming the robust hash works well, we can store just the bit string as the
hash value for a secret object, and recognise other similar objects by their similar
hash values. On the other hand, generating a new object (short of guessing at
random) to produce or approximate a given hash value, should be difficult. Our
study begins with the question of whether such hashes are secure. They are
already in use, with experimental rather than theoretical backing, in the Nilsimsa

1.5. REVERSE SIMILARITY SEARCH 39

GHREVERSE VPREVERSE VPREVERSE,
equal radii

tree metrics* P, Thm. 4.5 † †
Hamming NPC, Cor. 5.5 NPC, Thm. 5.4 NPC, Thm. 5.4
Levenshtein NPC, Thm. 6.8 NPC, Thm. 6.8 open
Superghost NPC, Thm. 7.9 NPC, Thm. 7.9 open
L2 P, Thm. 8.5 NPC, Thm. 8.3 NPC, Thm. 8.11
Lp, p 6= 2 NPC, Thm. 8.9 NPC, Thm. 8.3 NPC, Thm. 8.11
L∞ NPC, Thm. 8.10 NPC, Thm. 8.4 NPC, Thm. 8.11

* With some exceptions; see Section 4.4.
† Depends on space (Theorem 4.6); may be P (Definition 4.5) or NPC
(Example 4.9).

Theorem 9.3: DPREVERSE ⇒ generalised GHREVERSE ⇔ GHREVERSE
⇐ VPRU.

Table 1.4: Reverse similarity search results.

spam filter [53].
The V P- and GH-tree data structures suggest forms for lists of predicates to

use in such a robust hash. Deciding whether a point can be included in a given
leaf consists of answering a series of yes or no questions about it: Is it inside this
sphere? Is it outside that sphere? Is it closer to this point than to that one? Such
a list of questions naturally forms a candidate robust hash scheme, and then
the task of attacking the robust hash’s main security guarantee (“it is difficult
to construct a point having a chosen hash value”) is exactly the VPREVERSE or
GHREVERSE problem. Successful reverse similarity search would reverse the
hash.

There are two ways the attacker’s problem could be hard, and we would
like both. We want hard instances of the problem to exist, and we want hard
instances to be easy to generate (for instance, by choosing them at random).
Our results on reverse similarity search are summarised in Table 1.4. For many
spaces the problems turn out to be NP-complete. We also show some reductions
connecting variations of the problems in Theorem 9.3.

Having NP-completeness means that some instances are as hard as any
problem in NP, which provides the first kind of hardness we might want for
security. But that does not mean all instances are hard, and it in fact militates
against the hardness of randomly chosen instances. We would like the problems

40 CHAPTER 1. INTRODUCTION

to exhibit random self-reducibility: the property of any instance being reducible
to a reasonable number of randomly chosen instances. In that case we could
argue that random instances are as hard as the hardest instances in the problem.
But as Feigenbaum and Fortnow show, if there were any NP-complete random
self-reducible problem, then the polynomial hierarchy would collapse at the third
level [68]. Such a collapse would be a deep, important, and unexpected result
in computational complexity theory, and seems too much to hope for. Achieving
one of the desired security properties makes it difficult to expect the other.

However, the complexity landscape of VPREVERSE and GHREVERSE has
theoretical interest apart from the original security application. As shown in the
table, these problems are generally NP-complete, but polynomial-time in some
spaces. Among vector metrics, the fact that GHREVERSE is polynomial-time for
Euclidean space but not any other Lp metrics highlights the special nature of
that space. Among string edit distances, there is an important boundary between
prefix distance (with edits allowed at one end of the string; it is a tree metric
for which reverse similarity searches are polynomial time) and even very simple
modifications such as Superghost distance (in which edits are allowed at both
ends of the string). Like the different behaviour of intrinsic dimensionality among
different spaces, the differences in reverse similarity search complexity provide a
way to classify and distinguish among spaces that otherwise appear similar.

Chapter 2

Real vectors, Lp metrics, and dimen-
sionality

Vectors of real numbers, especially with the Euclidean metric, are among the
standard examples of metric spaces. Vector spaces are intuitively easy to under-
stand because their properties closely resemble those of physical space; there
is a well-studied and widely-applied theory of linear algebra based on vectors;
and they are typically used as test cases for metric-space data structures. In this
chapter we focus on the well known class of metrics called the Lp metrics, which
generalise the Euclidean metric, and study the intrinsic dimensionality of various
distributions of real vectors with these metrics.

Recall that Chávez and Navarro define the intrinsic dimensionality of a space intrinsic
dimensionalityas µ2/(2σ2) where µ and σ2 are the mean and variance of the distance between

two random points drawn from the native distribution of the space [40]. Intrinsic
dimensionality is denoted by ρ. As discussed in Subsection 1.3.2, calculating
intrinsic dimensionality is equivalent to calculating the coefficient of variation,
which is known for many common distributions. However, some of the specific
distributions we study are not common well-known distributions. For instance,
Theorem 2.8 contemplates the p-th root of a sum of p-th powers of the absolute
values of normal variables; that is, a chi distribution as opposed to chi-squared,
generalised to arbitrary powers. Even in cases like Theorem 2.5 where the con-
clusion should follow easily from well-known results, we give original derivations
because those are hard to find in the standard literature. We also express the
result in terms of intrinsic dimensionality ρ for convenient application to the
problems we study.

This chapter uses much of the notation for probability and statistics defined
in Subsection 1.2.2. In particular, recall that E[Z] is the expectation of a random
variable Z; and V[Z] is the variance of a random variable Z . We use an arrow

41

42 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

f (n) → g(n) to indicate that f approaches g up to lower-order terms (Defini-
tion 1.16). In the discussion of the L∞ metric we use the notation max(k){Z},max(k){Z}

read “max over k from Z ,” for the random variate consisting of the maximum of
k independent and identically distributed random variables drawn from the ran-
dom variate Z; min(k){Z} is defined analogously for the minimum of k variablesmin(k){Z}

from Z . Following the notation used by Arnold, Balakrishnan, and Nagaraja [13],
we write X

d
=Y if X and Y are identically distributed, X d→Y if the distribution of

X (n) converges to the distribution of Y as n goes to positive infinity, and X d↔Y if
the distributions of both X and Y depend on n and converge to each other.

Definition 2.1
Where x = 〈x1, x2, . . . , xn〉,y = 〈y1, y2, . . . , yn〉, the Lp metric dp(x,y) isLp metric

defined by

dp(x,y) =

n
∑

i=1

|x i − yi|p
!1/p

(2.1)

for real p ≥ 1 or

d∞(x,y) = lim
p→∞

dp(x,y)

=
n

max
i=1
|x i − yi| (2.2)

for p =∞.

The name of Hermann Minkowski is often attached to the Lp metrics by way
of the Minkowski Inequality, a basic result in functional analysis, which amounts
to the statement that the Lp metrics obey the triangle inequality [153, pages
112–113, 273–274]. Some values of p are especially popular and have specific
names of their own:

• L1 is called the Manhattan or taxicab distance, because in the integer-Manhattan
distance
taxicab distance

coordinate case it measures the distance travelled by a taxicab through a
grid-structured city.

• L2 is the familiar Euclidean distance calculated by the Pythagorean Theorem.Euclidean
distance

• L∞ is called the Chebyshev distance or the chessboard distance, the latterChebyshev
distance
chessboard
distance

because in the integer-coordinate case it measures the number of moves
required by a Chess King to get from one point to another.

The unit circles of Lp distance functions for two-dimensional space and several
different values of p are shown in Figure 2.1. Note that L1/2 is not actually
permitted by the Lp metric definition, which requires p ≥ 1; the defining formula

43

L L L

L L L

1/2 1 3/2

2 4 ∞

Figure 2.1: Some Lp unit circles.

(2.1) can be evaluated with p < 1, but the resulting distance function fails to
obey the triangle inequality and so it is not a metric. The failure to satisfy the
triangle inequality in this case is closely related to the fact that the L1/2 circle, as
shown, is not convex.

Circles from Lp, possibly stretched or generalised in other ways, are known as
Lamé curves or superellipses. They provide a visually pleasing shape somewhere
between a square and a circle, and have seen use in fields such as architecture and
font design. Zapf based the Melior typeface on them [103, page 291]. Piet Hein1

famously designed the traffic roundabout at Sergels Torg, Stockholm, around
a stretched L5/2 circle; and Balinski and Holt suggested one as a shape for the
table in the Vietnam War peace negotiations [83]. The POV-Ray ray tracer offers
a three-dimensional superellipsoid as a scene primitive [167, section 2.4.1.11].

Knuth’s Computer Modern typeface family, which is the LATEX default, also
includes superellipse-based forms in some of its fonts [127]. Since Computer
Modern is nearly universal in computer science documents,2 most computer
scientists see Lp circles every day without consciously knowing it.

1As Gardner writes, “he is always spoken of by both names.” [83, page 241]
2This dissertation is an exception. The main text is set in Bitstream Charter to better survive

limited-resolution processes like microfilming.

44 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

More general classes of vector distance functions exist. Chew and Drysdale
discuss convex distance functions in the plane, and the resulting Voronoi dia-convex distance

function grams [44]. Convex distance functions are defined by their unit circles: the unit
circle must be a convex set containing the origin, and then the length of a vector
is the factor by which the unit circle must be scaled to bring the vector onto its
boundary. The distance between two vectors d(x,y) is the length of x−y. Convex
distance functions, generalised to arbitrary-dimensional vectors, are popular in
the study of Voronoi diagrams, as are restricted versions which require the unit
sphere to be a polyhedron, or symmetric about the origin. If it is symmetric
about the origin, the convex distance function is also a metric. All the Lp metrics
are convex distance functions with symmetric unit spheres, but only in the L1

and L∞ cases (and the trivial one-dimensional case) are their unit spheres also
polyhedra.

2.1 Asymptotic intrinsic dimensionality with all components inde-
pendent and identically distributed

When Chávez and Navarro introduced the intrinsic dimensionality statistic ρ,
they presented some experimental results for Lp vectors showing that ρ on
vectors chosen from the unit cube was well-approximated by a linear function
of the number of components n for n between 2 and 20 and p ∈ {1,2,∞}. They
also gave an intuitive argument for why it should be linear [40]. The intuitive
argument for linear behaviour is based on a result of Yianilos [218, Proposition
2] that only applies to Lp metrics with finite p, and as we will show, the behaviour
of ρ is not in fact necessarily linear for L∞ although it is linear for the uniform-
component case of the experiments.

Exact theoretical analysis of ρ is difficult for finite n because it requires
computing the distributions of functions of multiple random variables for which
no convenient representations are known. We consider some of the easier cases
of that in Section 2.2. In the present section, we characterise the asymptotic
behaviour of ρ on vectors with all components independent and identically
distributed, as the number of components n increases. The results of this section
were first presented in an extended abstract at SPIRE’05 [190]. The expositions
given here have been revised and expanded to provide a clearer description of
the results, especially in the proofs.

Consider the space consisting of Rn with the Lp metric for some p and the
native distribution being vectors with every component drawn independently
and identically from some distribution on R. If we let X = Y be random variates
representing the component distribution, then we can construct random vectors

2.1. ASYMPTOTIC ρ WITH ALL COMPONENTS IID 45

x = 〈X1, X2, . . . , Xn〉 and y = 〈Y1, Y2, . . . , Yn〉, which are points drawn from the
space. We consider the intrinsic dimensionality of such a space, and especially its
asymptotic behaviour as n goes to infinity. Letting Dp,n, itself a random variable,
represent the distance between x and y under the Lp metric, then the intrinsic
dimensionality is ρ = E2[Dp,n]/2 V[Dp,n] [40].

2.1.1 Generally distributed components

The following two results offer a method for computing the asymptotic behaviour
of intrinsic dimensionality depending on the distribution of |X − Y |, the absolute
difference between two components drawn from the component distribution
in question. First we consider the case for Lp metrics with finite p, which is
relatively straightforward.

Theorem 2.1
For a space of n-component real vectors with independent and identically
distributed components as described above, using the Lp metric for finite p,
then if µ′2p is defined and finite, the intrinsic dimensionality ρ obeys

ρ→





p2(µ′p)
2

2(µ′2p − (µ
′
p)

2)



n , (2.3)

where µ′k is the k-th raw moment of |X − Y |, that is, E[|X − Y |k].

Proof The Lp distance consists of the p-th root of a sum of p-th powers of
absolute differences of components, so first we must describe the distribution of
the sum. Let s =

∑n
i=1 |X i − Yi|p. Gut gives a strengthened version of the Central

Limit Theorem for independent and identically distributed random variables [94,
Theorem 7.5.1], by which the finiteness of µ′2p implies that the sum is uniformly
integrable up to order 2p. Not only does its distribution converge to a normal
distribution, but its moments up to the 2p-th moment also converge to the
moments of that distribution. Then we can calculate the expectation and variance
as follows:

E[s] = n E[|X i − Yi|p]
= nµ′p

V[s] = n V[|X i − Yi|p]

46 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

= n(E[|X i − Yi|2p]− E2[|X i − Yi|p])
= n(µ′2p − (µ

′
p)

2) .

Now, Dp,n = s1/p. The mean and variance of s both increase linearly with n,
so the standard deviation increases according to the square root of n and its
ratio to the mean decreases according to the square root of n. For large n, s
does not vary much around its mean, and s1/p can be approximated by a linear
function of s; then in an application of the delta method (see Gut [94, page 349]
and Knight [126, page]) we can move the 1/p power outside the expectation to
approximate the distribution of Dp,n. As in the previous step, the condition on
existence of high enough moments gives us moment convergence of the needed
order.

E[s1/p]→ E[s]1/p = n1/p(µ′p)
1/p

V[s1/p]→ V[s]
�

d

ds
s1/p
�2
�

�

�

�

�

s=E[s]

=
µ′2p − (µ

′
p)

2

np2(µ′p)
2 n2/p(µ′p)

2/p

ρ =
E2[s1/p]

2V[s1/p]
→





p2(µ′p)
2

2(µ′2p − (µ
′
p)

2)



n .

This corollary follows naturally:

Corollary 2.2
If the space in Theorem 2.1 uses the L1 metric, then the approximation is
exact even for finite n:

ρ =





p2(µ′p)
2

2(µ′2p − (µ
′
p)

2)



n . (2.4)

Proof When p = 1, then x1/p is the identity function, the linear approximation is
perfect, and the limits for large n in the proof of Theorem 2.1 become equalities.

As for the L∞ metric, the distance D∞,n is the maximum of n variables of the
form |X − Y |. The maximum is a simple example of an “order statistic”; and
order statistics are well studied and much is known about them [13, 80]. The
cumulative distribution functions of maxima are easy to calculate: if F(x) is the
cumulative distribution function of Z , then it follows from the definitions that
F n(x) is the cumulative distribution function of max(n){Z}.

2.1. ASYMPTOTIC ρ WITH ALL COMPONENTS IID 47

For a large collection of independent and identically distributed random
variables, it is known that the maximum obeys something like the Central Limit
Theorem. Just as the distribution of a sum tends to one known form (the normal
distribution), the distribution of a maximum tends to one of three forms. We
say that the random variable W with non-degenerate cumulative distribution
function G(x) is the limiting distribution of the maximum of Z if there exist limiting

distributionsequences {an} and {bn > 0} such that F n(an + bn x) → G(x). The following
well-known result describes the distribution of W if it exists at all.

Theorem 2.3 (Fisher and Tippett, 1928)
If (max(n){Z} − an)/bn

d→W , then the cumulative distribution function G(x)
of W is one of the following, where α is a constant greater than zero [13,
Theorem 8.3.1] [72]:

G1(x;α) = exp(−x−α) for x > 0 and 0 otherwise; (2.5)

G2(x;α) = exp(−(−x)α) for x < 0 and 1 otherwise; or (2.6)

G3(x) = exp(−e−x) . (2.7)

The distributions described by (2.5)–(2.7) are called Fréchet type, Weibull
type, and Gumbel type respectively [116, Chapter 22]. The criteria for finding
which of the three limiting distributions applies, and its parameters, can be
complicated, and they are often stated in terms of sufficient conditions rather
than a complete characterisation. Also, the sequences of constants an and bn

are not necessarily unique. Arnold, Balakrishnan, and Nagaraja give a detailed
presentation of these criteria [13], and we will cite specific results as we use
them.

The theory of asymptotic order statistics also gives rise to the following lemma.
It eliminates the absolute value function when we study the maximum of a large
enough collection of random variables. This result in this form is original, but a
reasonably obvious application of the cited well-known principles.

Lemma 2.4
If Z is a real variate with distribution symmetric about zero, and W, an, and
bn exist such that (max(n){Z} − an)/bn

d→W , then max(n){|Z |} d↔max(2n){Z}.

48 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

Proof The maximum absolute value among n variables from Z must be either
the maximum, or the negative of the minimum. We could find those separately
and then see which one is larger. But as explained by Arnold, Balakrishnan, and
Nagaraja, the maximum and minimum of a collection of random variables are
asymptotically independent [13, Theorem 8.4.3]. Therefore, instead of finding
the maximum and minimum of one set of n variables, we could find the maximum
of a set of n variables and the minimum of a different set of n variables; or by
symmetry, the maximum of 2n variables. Symbolically,

max(n){|Z |} d↔max{max(n){Z},−min(n){Z}}
d
=max{max(n){Z}, max(n){Z}}
d
=max(2n){Z} .

Now, given the distribution of X − Y or |X − Y |, we can apply the asymptotic
theory described by Galambos [80] to determine the limiting distribution for
D∞,n =max(n){|X − Y |}; and if it exists, it will be in one of the three forms stated
in Theorem 2.3. We can then integrate to find the expectation and variance, and
standard results give acceptable choices for the norming constants an and bn,
giving the following theorem.

Theorem 2.5
For random vectors with the L∞ metric, when Theorem 2.3 applies to
max(n){|X −Y |} and the first two moments (or mean and variance) of |X −Y |
are defined and finite, then the intrinsic dimensionality ρ obeys:

ρ→

�

an+ bnΓ
�

1− 1/α
��2

2b2
n

�

Γ
�

1− 2/α
�

−Γ2 �1− 1/α
�� for G1(x;α); (2.8)

ρ→

�

an+ bnΓ
�

1+ 1/α
��2

2b2
n

�

Γ
�

1+ 2/α
�

−Γ2 �1+ 1/α
�� for G2(x;α); and (2.9)

ρ→
3(an+ bnγ)2

b2
nπ

2 for G3(x); (2.10)

where γ= 0.5772156649 015 . . ., the Euler-Mascheroni constant.

Proof It is required to find the mean and variance of each of the three possible
limiting distributions. These distributions are well-known, but they are often
presented without details of how to derive their means and variances [13, 80,
116]. We give detailed derivations here.

2.1. ASYMPTOTIC ρ WITH ALL COMPONENTS IID 49

The cases of (2.8) and (2.9). The first two cases, where the cumulative distri-
bution function of W is as shown in (2.5) and (2.6), are almost identical and we
will consider them together. The limiting cumulative distribution function F of
D∞,n is as shown below, taking the upper signs for (2.5) and the lower signs for
(2.6).

F(x) =







exp
�

−
�

± x−an
bn

�∓α�

for (±x)> (±an),

0 or 1 otherwise.

We can differentiate it to find the probability density function, f :

f (x) =
d

d x
F(x)

=







± α
x−an

�

± x−an
bn

�∓α
exp
�

−
�

± x−an
bn

�∓α�

for (±x)> (±an),

0 otherwise.

The existence of the first two moments of |X − Y | implies, by a result of
Pickands, that the the first two moments of the maximum D∞,n converge to the
first two moments of the limiting distribution W [108]. We integrate, using the
substitution y = ±(x − an)/bn in both integrals. The substitution replaces x with
±(y bn+ aN) and d x with ±bn d y, and the lower limit of integration becomes 0.
Then we can apply the formula

∫∞
0

yn y−α exp(−y−α) d x = 1/αΓ(1+ (n+ 1)/α),
which follows from the definition of the gamma function:

E[D∞,n]→±
∫ ±∞

±an

x f (x) d x

= α

∫ ∞

0

(y bn+ an)y
∓α−1 exp(−y∓α) d y

= bnΓ
�

1∓ 1/α
�

+ an

E[D2
∞,n]→±

∫ ±∞

±an

x2 f (x) d x

= α

∫ ∞

0

(y2 b2
n + 2an bn y + a2

n)y
∓α−1 exp(−y∓α) d y

= b2
nΓ
�

1∓ 2/α
�

+ 2an bnΓ
�

1∓ 1/α
�

+ a2
n .

Substituting those expectations into the formula for intrinsic dimensionality
gives (2.11), which covers both (2.8) and (2.9):

V[D∞,n] = E[D2
∞,n]− E2[D∞,n]

50 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

→ b2
nΓ
�

1∓ 2/α
�

+ 2an bnΓ
�

1∓ 1/α
�

+ a2
n −
�

bnΓ
�

1∓ 1/α
�

+ an

�2

= b2
n

�

Γ
�

1∓ 2/α
�

−Γ2
�

1∓ 1/α
��

ρ =
E2[D∞,n]

2 V[D∞,n]

→

�

an+ bnΓ
�

1∓ 1/α
��2

2b2
n

�

Γ
�

1∓ 2/α
�

−Γ2
�

1∓ 1
α

�� . (2.11)

The case of (2.10). The third case proceeds similarly. Where the cumulative
distribution function of W is exp(−e−x) as in (2.7), then we find the cumulative
distribution function F and probability density function f of D∞,n as follows:

F(x) = exp
�

−exp
�

−
x − an

bn

��

f (x) =
d

d x
F(x)

=
1

bn
exp
�

−
x − an

bn

�

exp
�

−exp
�

−
x − an

bn

��

.

As in the other case, the existence of the first two moments of |X − Y | implies
moment convergence of order two for the maximum, so we can find the moments
by examining those of W . We express the expectations as integrals and apply
the substitution y = exp(−(x − an)/bn). Then x = an − bn log y, d x = −bn/y d y,
and we get integrals of the form

∫∞
0

logk xe−x d x . That formula is trivially
equal to 1 for k = 0; for higher k it is more difficult, but standard references
give

∫∞
0

log xe−x d x = γ and
∫∞

0
log2 xe−x d x = 1/6π

2 + γ2, where γ is the Euler-
Mascheroni constant [87, 4.331(1.) and 4.335(1.), page 567]. Then we can
compute the variance, and the intrinsic dimensionality follows.

E[D∞,n]→
∫ ∞

−∞
x f (x) d x

=

∫ ∞

−∞
x

1

bn
exp
�

−
x − an

bn

�

exp
�

−exp
�

−
x − an

bn

��

=

∫ ∞

0

(an− bn log y)e−y d y

= an+ bnγ

E[D2
∞,n]→

∫ ∞

−∞
x2 f (x) d x

=

∫ ∞

−∞
x2 1

bn
exp
�

−
x − an

bn

�

exp
�

−exp
�

−
x − an

bn

��

2.1. ASYMPTOTIC ρ WITH ALL COMPONENTS IID 51

=

∫ ∞

0

(a2
n − 2an bn log y + b2)e−y d y

= a2
n + 2an bnγ+

b2
nπ

2

6
+ b2

nγ
2

V[D∞,n] = E[D2
∞,n]− E2[D∞,n] =

π2

6
b2

n

ρ =
E2[D∞,n]

2 V[D∞,n]
→

3(an+ bnγ)2

b2
nπ

2 .

Note 2.2
The intrinsic dimensionality ρ is not necessarily Θ(n). For instance, in
Theorem 2.9, ρ is Θ(log2 n).

2.1.2 Uniform components

Chávez and Navarro used random vectors with each component chosen uni-
formly from the interval [0,1) for their experiment, as a typical example of the
kind of distribution used for testing metric space data structures [40]. For this
distribution, Theorem 2.1 applies easily.

Theorem 2.6
For the space of n-component real vectors with each component uniform in
the range [0,1) and the Lp metric for finite p, the intrinsic dimensionality ρ
obeys

ρ→
�

4p+ 2

p+ 5

�

n , (2.12)

and this is an equality for p = 1.

Proof This is a simple application of Theorem 2.1. When X and Y are uniform
real random variates with the range [0, 1), then the probability density function
of |X − Y | is given by

f (x) =

(

2− 2x for 0≤ x < 1,

0 otherwise;
(2.13)

and we can find the raw moments by integration and substitute them into the
formula as follows:

µ′p =

∫ 1

0

x p(2− 2x) =
2

(p+ 1)(p+ 2)

52 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

µ′2p =

∫ 1

0

x2p(2− 2x) =
1

(2p+ 1)(p+ 1)

ρ→





p2(µ′p)
2

2(µ′2p − (µ
′
p)

2)



n=
�

4p+ 2

p+ 5

�

n .

By Corollary 2.2, this is an equality for all n, not just a limit for large n, in the
case of the L1 metric.

For Lp metrics with large p, the slope of the line in Theorem 2.6 approaches
4. From there it would be natural to assume that the L∞ metric should produce a
line with a slope of exactly 4. It does produce a line; but with a much shallower
slope. The phenomenon of L∞ behaving differently from Lp for large finite p
is not so strange as it may seem: what is actually happening here is that we
are taking two limits, the limit for large n and the limit for large p. Usually,
we can take two limits in either order and get the same result, but this is one
of the rare cases that introductory calculus texts warn us about: in this case it
matters which order we take the limits and we get different results depending
on that choice. We prove it by integrating the probability density function to
find the cumulative distribution function F(x) = 2x − x2. Then standard results
on extreme order statistics give the limiting distribution of max(n){|X − Y |} and
Theorem 2.5 applies.

Theorem 2.7
For the space of n-component real vectors with each component uniform in
the range [0, 1) and the L∞ metric, the intrinsic dimensionality ρ obeys

ρ→
�

1

2− π/2

�

n . (2.14)

This is the same line approached for the L p̃ metric where p̃ = (1+π)/(7−
2π) = 5.7777731051 9

Proof Integration of the probability density function of |X − Y | given by (2.13)
above results in the cumulative distribution function of the per-component abso-
lute differences F(x):

F(x) =

∫ x

−∞
2− 2t d t =







2x − x2 0≤ x ≤ 1,

0 x < 0,

1 x > 1.

2.1. ASYMPTOTIC ρ WITH ALL COMPONENTS IID 53

Now, F−1(1) = 1, and we can compute the following limit, which turns out to
be a positive constant power of x:

lim
ε→0+

1− F(F−1(1)− εx)
1− F(F−1(1)− ε)

= lim
ε→0+

1− 2(1− εx) + (1− εx)2

1− 2(1− ε) + (1− ε)2

= lim
ε→0+

ε2 x2

ε2

= x2 .

Then as described by Arnold, Balakrishnan, and Nagaraja, the cumulative
distribution function of the limiting distribution of a maximum of these per-
component absolute differences is of the form shown in (2.6); and the norming
constants an and bn so that (max(n){|X−Y |}−an)/nb

d→W are given by an = F−1(1),
bn = F−1(1)− F−1(1− n−1) [13, Theorems 8.3.2(ii), 8.3.4(ii)]. In our case, that
gives an = 1, bn = 1/

p
n; and the cumulative distribution function of W is

G2(x;α) for α= 2. Then we can apply (2.9) from Theorem 2.5 as follows:

ρ→

�

an+ bnΓ
�

1+ 1/α
��2

2b2
n

�

Γ
�

1+ 2/α
�

−Γ2 �1+ 1/α
��

=

�

1+Γ
�

3/2
�

/
p

n
�2

21/n
�

Γ(2)−Γ2 �3/2
��

=







�

1+ 1/2
p

π/n
�2

2− π/2






n

→
�

1

2− π/2

�

n .

Substituting that slope value into (2.12) from Theorem 2.6 gives an equivalent
p-value for an Lp metric with the same asymptotic behaviour as L∞: the L p̃ metric
for p̃ = (1+π)/(7− 2π).

This result may seem especially surprising because the expression (2.12)
seems simple and well-behaved; in particular, it is monotonic in both p and
n. So it is strange that (2.14) should not agree with (2.12) for large p. Note,
however, that (2.12) is already the result of taking one limit for n in the proof
of Theorem 2.6. We are not claiming that (2.14) is the limit of (2.12), but that
they are each limits (in different directions) of ρ. Also, the limiting process
in the proof of Theorem 2.6 depends on a convergence assumption (existence
of moments) which seems likely to break down for infinite p; it would require
infinite-order moments. So we are not even taking a different limit of the same

54 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

well-behaved formula, but in some sense looking at a different formula for the L∞
case. Theorem 2.7 and its disagreement with Theorem 2.6 are solidly supported
by the experimental evidence in Section 2.3. It seems clear that these results are
true, however strange.

It is striking that p̃’s decimal expansion starts with 5.77777 . . ., suggesting
52/9 = 5.7777777777 . . ., but it does not keep up the pattern past the fifth decimal
place. Substituting the value 52/9 and then solving for π reveals the reason for
the suggestive pattern: if p̃ were exactly equal to 52/9, that would make π exactly
equal to the well-known rational approximation 355/113, which is attributed to the
5th Century mathematician Zǔ Chōngzh̄ı3 [157].

2.1.3 Normal components

The standard normal distribution is another reasonable choice for the distribution
of vector components. For finite-p Lp metrics it produces straightforward linear
behaviour; in fact, for the Euclidean metric the limiting slope is conveniently
equal to 1. However, for L∞ we find more complicated behaviour, illuminating a
fundamental difference between L∞ and merely Lp for large p. For the case p = 2
the distance has a well-known distribution (see note below) for which mean
and variance (implying coefficient of variation and so intrinsic dimensionality)
are already known. The use of general p, however, seems to require an original
proof.

Note 2.3
The proofs of Theorems 2.8 and 2.10 make use of properties of the chi
distribution, also known as the generalised Rayleigh distribution. The
chi distribution is distinct from the more commonly-seen chi-squared dis-
tribution, although they are related by the fact that the square root of a
chi-squared random variable will have a chi distribution. Both distribu-
tions are described in detail by Johnson, Kotz, and Balakrishnan [115,
Chapter 18].

Theorem 2.8
For the space of n-component real vectors with each component standard
normal and the Lp metric for finite p, the intrinsic dimensionality ρ obeys

ρ→





p2Γ2
� p+1

2

�

2
�p
πΓ
�

p+ 1/2
�

−Γ2
� p+1

2

��



n , (2.15)

3Pinyin Romanisation. Tsu Chhung-Chih in the modified Wade-Giles system used by the
reference [157].

2.1. ASYMPTOTIC ρ WITH ALL COMPONENTS IID 55

and this is an equality for p = 1.

Proof When X and Y are standard normal, then the difference X − Y is a normal
random variate with mean equal to zero and variance two. The absolute differ-
ence |X − Y | has a half-normal distribution (the same as a chi distribution with
one degree of freedom) and its probability density function is given by

f (x) =







1
p
π

exp

�

−
x2

4

�

x ≥ 0,

0 x < 0.

Note that the variance of X − Y is two, because it is the difference of two
standard normal variates, and so the given density function incorporates the
appropriate scaling.

We can find its raw moments as follows:

µ′k =

∫ ∞

−∞
xk f (x) d x

=

∫ ∞

0

xk 1
p
π

exp

�

−
x2

4

�

d x

=
2

k/2

p
π

∫ ∞

0

y(k−1)/2e−y d y substituting y =
x2

4

=
2

k/2

p
π
Γ
�

k+ 1

2

�

. (2.16)

Then we can apply Theorem 2.1 to find the intrinsic dimensionality:

ρ→





p2(µ′p)
2

2(µ′2p − (µ
′
p)

2)



n

=





p2π−12pΓ2
� p−1

2

�

2
�

π−
1/22pΓ

�

p− 1/2
�

−π−12pΓ2
� p−1

2

��



n

=





p2Γ2
� p+1

2

�

2
�p
πΓ
�

p+ 1/2
�

−Γ2
� p+1

2

��



n .

As in the uniform case, Corollary 2.2 makes this an equality for all n, when
p = 1.

56 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

Unlike the uniform case, the slope of the asymptotic line does not increase
monotonically with p. It increases from 1/(π−2)≈ 0.87597 for L1 to unity for L2,
which is the maximum, but then it decreases rapidly with increasing p, reaching
zero in the limit of large p. For the L∞ metric, ρ is sublinear: Θ(log2 n). The
argument for linear behaviour from Yianilos [218, Proposition 2] only applies
to finite p. However, this result does at least seem more intuitive than what
happens with the uniform distribution. With the normal distribution ρ is linear
for finite p with a slope that decreases towards zero, then it becomes sublinear
for L∞. Recall that with the uniform distribution it is linear in all cases, but the
L∞ case appears somewhere in the middle of the finite-p cases, not at the limit
for large p.

Theorem 2.9
For the space of n-component real vectors with each component standard
normal and the L∞ metric, the intrinsic dimensionality ρ obeys

ρ→
3

4π2

�

4 log n− log log 2n+ log 4/π+ 2γ
�2

(2.17)

where γ is the Euler-Mascheroni constant.

Proof The distance between two random points in this space is max(n){|X −
Y |}, with X and Y being standard normal. By Lemma 2.4, that approaches
max(2n){X − Y }. Then each X − Y variable is normally distributed with mean
zero and variance two. It is well known that with suitable constants a2n and b2n,
then (max(2n){X − Y } − a2n)/b2n

d→W where W has the cumulative distribution
function described in (2.7) [13, 80, 98]. Arnold, Balakrishnan, and Nagaraja
give these values for an and bn for a standard normal distribution:

an =
p

2 log n−
1

2
·

log(4π log n)
p

2 log n

bn =
1

p

2 log n
.

Because our variables are not standard normal but have variance two, we
must include an additional factor of

p
2 to scale the variables to standard normal,

and our use of Lemma 2.4 to remove the absolute value function has the effect of

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 57

doubling n, so the actual an and bn such that (max(n){|X − Y |} − an)/bn
d→W are

an = 2
p

log 2n−
log(4π log2n)

2
p

log2n

bn =
1

2
p

log2n
.

Substituting them into (2.10) and applying Theorem 2.5 gives the intrinsic
dimensionality:

ρ→
3(a2n+ b2nγ)2

b2
nπ

2

=
3

π2 (2
p

log 2n)2


2
p

log 2n−
log(4π log 2n)

2
p

log2n
+

γ

2
p

log2n





2

=
3

4π2

�

4 log n− log log 2n+ log 4/π+ 2γ
�2

.

Note 2.4
Although the limiting distribution of the maximum is unique, the sequences
of norming constants leading to that distribution are not. We use the
constants given by Arnold, Balakrishnan, and Nagaraja, because they
lead to a relatively simple form for the intrinsic dimensionality [13].
The constants suggested by Hall for faster convergence also work, and
produce the same most-significant term for intrinsic dimensionality, but
they give more complicated lower-order terms [98]. Readers of those two
sources should be warned that they use opposite notational conventions:
Arnold, Balakrishnan, and Nagaraja use a for additive constants and b
for multiplicative constants, as does Galambos, and we follow them; but
Hall uses a and α for multiplicative constants and b and β for additive
constants [13, 80, 98].

These results describe behaviour for large n. As discussed in Section 2.3,
the convergence of intrinsic dimensionality to these asymptotic values may be
slow. In the case of the L2 metric, it is possible to do better, and find better
approximations or even exact results for finite n. That is the subject of the next
section.

2.2 Normal components, Euclidean distance, and finite n

Random vectors with all components normally distributed are common in statis-
tics. Especially in Euclidean space, such vectors have special properties that make

58 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

their intrinsic dimensionality easy to compute. We consider a few cases here.

2.2.1 All components with the same variance

If the variance is the same in every component, or zero in some components and
the same among all the others, then the question is easy: the difference between
two random vectors is normal in every nonzero component, with the same
variance in each one, so we can scale it to be standard normal in every nonzero
components. Then each squared difference is a chi-squared random variable
with one degree of freedom, the sum of squared differences is also a chi-squared
random variable with as many degrees of freedom as there are nonconstant
components, the distance is a chi (as opposed to chi-squared) random variable,
and its properties are well-known. The details are in the following proof.

Theorem 2.10
The space of vectors of reals where n components have independent and
identical normal distributions with variance σX and any remaining compo-
nents are constant, with the Euclidean distance, has intrinsic dimensionality

ρ =
1

2
·

Γ2 ((n+ 1)/2)
Γ(n/2)Γ ((n+ 2)/2)−Γ2 ((n+ 1)/2)

. (2.18)

Proof Let X = Y be normal random variates with variance σ2
X . Their difference

X − Y is normal with mean zero and variance 2σ2
X ; and (X − Y)/(

p
2σX) is

standard normal. So if x and y are random vectors in which n components are
independent and identical normal random variables with variance σ2

X , and the
remaining components constant, then each |X − Y |2/(2σ2

X) has a chi-squared
distribution with one degree of freedom, and the sum of n of those has a chi-
squared distribution with n degrees of freedom. Where D is the distance between
x and y, D/(

p
2σX) has a chi (as opposed to chi-squared) distribution with n

degrees of freedom. Johnson, Kotz, and Balakrishnan describe the chi distribution
in detail [115, Chapter 18]. From the results given there, the mean µD and
variance σD (not to be confused with σX) of the distance are:

µD = σXΓ((n+ 1)/2)/Γ(n/2) (2.19)

σ2
D = σ

2
X

�

Γ(n/2)Γ ((n+ 2)/2)−Γ2 ((n+ 1)/2)
�

/Γ2(n/2) (2.20)

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 59

Substituting into the definition ρ = µ2
D/(2σ

2
D), the variance cancels and we

are left with the result (2.18).

In Subsection 2.1.3 we derive an expression for the asymptotic intrinsic
dimensionality of a similar space of normally-distributed vectors; those results
are more general in that they cover arbitrary Lp metrics, but also narrower in
that they cover only the limit as n approaches infinity. The following result shows
that Theorems 2.8 and 2.10 agree in the case where they both apply.

Corollary 2.11
For the space of vectors of reals where n components are independent and
identical normal random variables with variance σX and any remaining
components are constant, with the Euclidean distance, ρ = n− 1/2+ o(1).

Proof We make use of the following properties of the gamma function; (2.21),
which is not trivial because it applies for non-integer z, is given by Davis [57,
6.1.15, page 256], and (2.22) is given by Graham, Knuth, and Patashnik [88,
page 602]. (That reference uses the notation z1/2 for Γ(z+1/2)/Γ(z) [88, page x].)

Γ(z+ 1)/Γ(z) = z (2.21)

Γ(z+ 1/2)/Γ(z) =
p

z(1− 1/(8z) + o(z−1)) . (2.22)

With the substitution k = n/2 we can express (2.18) in terms of Γ(k) and
cancel to find the limit:

ρ =
1

2
·

Γ((n+ 1)/2)
Γ(n/2)Γ ((n+ 2)/2)−Γ2 ((n+ 1)/2)

=
1

2
·

Γ2(k)k
�

1− 1/(4k) + o(k−1)
�

Γ2(k)k−Γ2(k)k
�

1− 1/(4k) + o(k−1)
�

=
1

2
·

1− 1/(4k) + o(k−1)
1/(4k) + o(k−1)

= n− 1/2+ o(1) .

2.2.2 Exact result for n= 2 and distinct variances

Real-life data often approximates a multivariate normal distribution with almost
all the variance confined to a few dimensions. That is the model, for instance,

60 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

typically contemplated by principal component analysis [21]. Theorem 2.10
describes the situation where the variation in the data is divided equally among
an integer number of dimensions; for instance, approximately 0.87597 when
n= 1 and 1.82990 when n= 2. We may ask how ρ evolves as we move from one
of those to the other; that is the case analysed in this section. The result and its
proof are complicated and it is not clear that they can be pushed beyond two
dimensions; however, we give some useful approximations.

Theorem 2.12
For two-component vectors with the components chosen independently
from normal distributions with variances σ2

1,σ2
2, the intrinsic dimensionality

ρ is given by

ρ =
�

8

π

�

(1+τ)(1−τ) 2F1

�

3/4, 5/4; 1;τ2
��−2

− 2
�−1

(2.23)

where τ= (σ2
1 −σ

2
2)/(σ

2
1 +σ

2
2).

Proof Suppose X1 = Y1, X2 = Y2 are normal with variances σ2
1,σ2

2. Then (X1 −
Y1), (X2 − Y2) are normal with mean 0 and variances

p
2σ2

1,
p

2σ2
2. Then (X1 −

Y1)2, (X2 − Y2)2 have the two-parameter gamma distribution, as described by
Johnson, Kotz, and Balakrishnan [115, Chapter 17], with shape parameter 1/2
and scale parameters σ2

1,σ2
2, and each has the probability density function

f (x) =
e−x/σ2

σ
p

xπ
.

These distributions are the same as scaled chi-squared distributions of one degree
of freedom [115, Chapter 18].

Where D is the distance between x and y, the probability density function of
D2 is given by the following, where I0(x) is the modified Bessel function of the
first kind of order 0. We use a formula from Gradshteyn and Ryzhik to do the
integration [87, 3.364(1.), page 341].

f (x) =

∫ x

0

e−t/σ2
1

σ1
p
πt
·

e−(x−t)/σ2
2

σ2

p

π(x − t)
d t

=
1

σ1σ2π

∫ x

0

exp
�

−t/σ2
1 − (x − t)/σ2

2

�

p

t(x − t)
d t

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 61

=
1

σ1σ2
exp

�

−x
σ2

1 +σ
2
2

2σ2
1σ

2
2

�

I0

�

x
σ2

1 −σ
2
2

2σ2
1σ

2
2

�

.

We could find E[D2] by integrating x f (x), but it is easier to use the known
mean of the gamma distribution, which gives E[D2] = (σ2

1 +σ
2
2)/2. For E[D],

however, we must integrate. We begin by expanding the modified Bessel function
into its power series about 0 [161, 9.6.12, page 375].

E[D] =

∫ ∞

0

p
x f (x) d x

=

∫ ∞

0

p
x

σ1σ2
exp

�

−x
σ2

1 +σ
2
2

2σ2
1σ

2
2

�

I0

�

x
σ2

1 −σ
2
2

2σ2
1σ

2
2

�

=

∫ ∞

0

p
x

σ1σ2
exp

�

−x
σ2

1 +σ
2
2

2σ2
1σ

2
2

� ∞
∑

k=0

x2k

(k!2k)2

�

σ2
1 −σ

2
2

2σ2
1σ

2
2

�2k

.

Then we re-arrange the expression, cancelling where possible. The terms that
do not depend on x are moved outside the integral.

E[D] =
∞
∑

k=0

(σ1σ2)
−(4k+1)(σ2

1 −σ
2
2)

2k2−4k(k!)−2

·
∫ ∞

0

exp

�

−x
σ2

1 +σ
2
2

2σ2
1σ

2
2

�

x2k+1/2 d x .

That puts the integral into the form
∫

exp(−xa)x b d x with a and b constant
in relation to x [87, 3.381(4.), page 342]. On integration it produces the gamma
function:

E[D] =
∞
∑

k=0

σ2
1σ

2
2

�

σ2
1 −σ

2
2

2σ2
1σ

2
2

�2k

·(σ2
1 +σ

2
2)
−3/22−2k23/2(k!)−2Γ

�

2k+ 3/2
�

.

Recall that !! denotes the double factorial from Definition 1.13, given by double factorial

n!!=







1·3·5· · · · ·n odd n> 0,

2·4·6· · · · ·n even n> 0,

1 n ∈ {−1,0} .

(2.24)

We move the terms that do not depend on k out of the summation to make
the infinite sum as simple as possible, and replace the gamma function with the
formula given by Davis for its value at half-integer arguments, which uses double
factorial [57, 6.1.12, page 255].

E[D] = σ2
1σ

2
2

�

2

σ2
1 +σ

2
2

�3/2

·
∞
∑

k=0

�

σ2
1 −σ

2
2

σ2
1 +σ

2
2

�2k

· 1

(k!2k)2
Γ
�

(2k+ 1) + 1/2
�

62 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

= σ2
1σ

2
2

�

2

σ2
1 +σ

2
2

�3/2

·
∞
∑

k=0

�

σ2
1 −σ

2
2

σ2
1 +σ

2
2

�2k

· 1

(k!2k)2
·1·3·5· · · · ·(4k+ 1)

22k+1

p
π

= σ2
1σ

2
2

�

2

σ2
1 +σ

2
2

�3/2

·
p
π

2

∞
∑

k=0

�

σ2
1 −σ

2
2

σ2
1 +σ

2
2

�2k

·(4k+ 1)!!

24k(k!)2
.

If we let τ = (σ2
1 −σ

2
2)/(σ

2
1 +σ

2
2) and let ck be the coefficient of τ2k in the

infinite sum, we can compute the ratio of successive coefficients ck+1/ck and find
that it is a rational function of k. That makes the infinite sum a hypergeometric
function of τ2. It also proves that the series converges for |τ| < 1, because the
limit of the rational function turns out to be 1, so the ratio of successive terms is
less than one for τ2 < 1; and with positive σ2

1 and σ2
2 6= σ

2
1, |τ|< 1 always holds

so the series always converges.

ck+1

ck
=
(4(k+ 1) + 1)!!

24(k+1) ((k+ 1)!)2

�

(4k+ 1)!!

24k(k!)2

=

�

k+ 3/4
��

k+ 5/4
�

(k+ 1)2
∞
∑

k=0

ckτ
2k = 2F1

�

3/4, 5/4; 1;τ2
�

.

From the definition of τ it also follows that

(σ2
1 +σ

2
2)

2

σ2
1σ

2
2

=
4

(1+τ)(1−τ)
.

Then we can calculate the intrinsic dimensionality ρ as follows:

ρ =
E2[D]

2(E[D2]− E2[D])

=

�

2E[D2]

E2[D]
− 2

�−1

=

(σ2
1 +σ

2
2)

4

2πσ4
1σ

4
2

�

2F1
�3/4, 5/4; 1;τ2��2 − 2

!−1

=
�

8

π

�

(1+τ)(1−τ) 2F1

�

3/4, 5/4; 1;τ2
��−2

− 2
�−1

.

Scaling the original random vectors by a constant will not affect the value
of τ and so the intrinsic dimensionality is unchanged by scaling. A plot of this
function as a function of τ is shown in Figure 2.2; however, it may be difficult

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 63

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

-1 -0.5 0 0.5 1

in
tr

in
s
ic

 d
im

e
n

s
io

n
a

lit
y
 ρ

variance difference/sum ratio τ

Bivariate normal distribution

Exact
Quadratic approximation

Figure 2.2: Intrinsic dimensionality for the bivariate normal distribution as a
function of τ.

to interpret because the substituted variable τ has little intuitive significance; it
was chosen to make the algebra easier. In Figure 2.3, the function values are
plotted against σ2

2/σ
2
1 (we have τ= (1−σ2

2/σ
2
1)/(1+σ

2
2/σ

2
1)), so it shows what

happens if a random variable in one dimension has a second component added
whose variance grows to match and surpass that of the first component.

As can be seen in Figure 2.2, the value of ρ is reasonably approximated by
a quadratic function of τ. The approximation shown, obtained by numerical
curve-fitting, is

ρ̂ = 1.81971− 0.927058τ2 .

This approximation offers some hope that a simple formula could provide ade-
quate results for higher-dimensional distributions, avoiding the need for an exact
analysis.

2.2.3 Approximation for larger n

Consider the more general case, where the components of the vectors are chosen
independently from normal distributions with variances not necessarily equal.
So far we have exact results for the special cases where there are any number

64 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 0.5 1 1.5 2

in
tr

in
s
ic

 d
im

e
n

s
io

n
a

lit
y
 ρ

variance ratio σ2
2
/σ1

2

Bivariate normal distribution

Exact
Quadratic approximation

Figure 2.3: Intrinsic dimensionality for the bivariate normal distribution as a
function of σ2

2/σ
2
1.

of normal components but they all have the same variance (Theorem 2.10) and
where there are exactly two components with variances not necessarily equal
(Theorem 2.12). In all cases we are interested in the distribution of a sum of
gamma-distributed random variables. For a large number of random variables
(that is, a large number of vector components) the sum approaches a normal
distribution, which is also the limit of a gamma distribution for large shape
parameter. In the special case of adding two with the same scale parameter the
distribution of the sum of two gamma variables is also gamma.

So we might approximate the sum as always having a gamma distribution.
Given the variances of the components in the vectors, we can calculate exactly
what the mean and variance of the sum should be. If we choose the unique
gamma distribution with that mean and variance, we have a distribution that
approximates the true distribution of the sum. That is the approach used in this
section. The approximation is exact if all variances happen to be the same, and
even if they do not, it improves as the number of components increases, because
by the Central Limit Theorem, the sum approaches a normal distribution, as does
the gamma approximation.

Suppose each component of x and y is chosen from a normal distribution,
independent but not necessarily identically distributed, with per-component vari-

2.2. NORMAL COMPONENTS, EUCLIDEAN DISTANCE, AND FINITE N 65

ances σ2
1,σ2

2, . . . ,σ2
n. The random variables (X i − Yi)2 for integer i ∈ {1,2, . . . , n}

are gamma distributed, all with shape parameter 1/2 and with scale parameters
σ2

1,σ2
2, . . . ,σ2

n. The mean and variance of their sum D2 are just the sums of the
means and variances of the individual variables:

E[D2] = 1/2(σ
2
1 +σ

2
2 + · · ·+σ

2
n)

V[D2] = 1/2(σ
4
1 +σ

4
2 + · · ·+σ

4
n) .

If we approximate the distribution of D2 with a gamma distribution with some
parameters α (shape) and β (scale), then we have E[D2] = αβ and V[D2] = αβ2.
Then α is given by

α=
(σ2

1 +σ
2
2 + · · ·+σ

2
n)

2

2(σ4
1 +σ

4
2 + · · ·+σ

4
n)

. (2.25)

Note the resemblance between (2.25) and the definition of ρ. We do not need to
find β explicitly (although it would be easy to do so) because it will cancel out
later.

The probability density function of the gamma distribution for D2 is

f (x) =
xα−1e−x/β

βαΓ(α)
.

So the assumption that D2 has a gamma distribution allows us to approximate
E[D] by integrating

p
x f (x), as in Theorem 2.12:

E[D]≈
∫ ∞

0

p
x f (x) d x . (2.26)

Gradshteyn and Ryzhik give a formula for the integral [87, 3.381(4.), page 342]:
∫ ∞

0

p
x f (x) d x =

1

βαΓ(α)

∫ ∞

0

x (α+
1/2)−1e−(

1/β)x d x

=
1

βαΓ(α)
·
Γ(α+ 1/2)

(1/β)α+
1/2

=
p

β
Γ(α+ 1/2)
Γ(α)

. (2.27)

Substituting E[D2] = αβ and (2.27) into the intrinsic dimensionality formula,
β cancels and we can multiply through by Γ2(α) to simplify the expression.

ρ =
E2[D]

2(E[D2]− E2[D])

66 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

≈ β
�

Γ(α+ 1/2)
Γ(α)

�2,

2



αβ − β
�

Γ(α+ 1/2)
Γ(α)

�2




=
1

2
·

Γ2(α+ 1/2)
αΓ2(α)−Γ2(α+ 1/2)

.

Finally, we apply αΓ(α) = Γ(α+ 1) to get

ρ ≈
1

2
·

Γ2(α+ 1/2)
Γ(α)Γ(α+ 1)−Γ2(α+ 1/2)

. (2.28)

Note 2.5
The approximation sign ≈ is used here in an informal sense, distinct from
the formal approximation up to lower-order terms denoted by→ and de-
fined in Definition 1.16. The approximations (2.26)–(2.28) represent the
values E[D] and ρ would have if D2 had a gamma distribution. In general,
it does not have a gamma distribution; but it does, and the approximations
are exact, for the special case of all variances equal (by Theorem 2.10),
and in the limit for high dimensions (by the Central Limit Theorem, noting
that the normal distibution is the limit of a gamma distribution). We
discuss below the question of how good the approximation may be for
other cases.

The formula for ρ in (2.28) is the same as (2.18) with the substitution α= n/2.
That is the value of α when all the n variances are equal, so the approximation is
exact in the case of equal variances.

The value α from (2.25) seems to serve as a proxy for the number of di-
mensions: in the unequal-variances case, it is the number of equal-variance
dimensions that would produce an equivalent distribution for D2, defined by
mean and variance. That might make α a contender as a dimensionality measure
itself. For any distribution of vectors we could compute α based on the com-
ponentwise distributions and attempt to claim that the vector distribution has
similar properties to the distribution of vectors with α number of independent
and identical standard normal components. An advantage of α is that it takes
on the intuitive value of n in the case of n normal components, whereas ρ only
does so asymptotically. A disadvantage is that α seems to be specific not only to
vectors, but to normally distributed vectors with independent components and
the L2 metric. Whether this number would be useful when applied to other cases
is not clear.

How good an approximation is (2.28)? When the variance is distributed
equally among the n vector components, it is exact. If the variance is distributed
unequally between two components, we have an exact value from Theorem 2.12

2.3. EXPERIMENTAL RESULTS WITH DISCUSSION 67

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

-1 -0.5 0 0.5 1

in
tr

in
s
ic

 d
im

e
n

s
io

n
a

lit
y
 ρ

variance difference/sum ratio τ

Bivariate normal distribution

Exact
Approximation

Figure 2.4: Comparison of exact ρ for bivariate normal with its approximation
from (2.28).

to compare against, and Figure 2.4 shows both values plotted against the variable
τ used earlier. (α = 1/(τ2 + 1).) In this comparison, (2.28) does not look
particularly impressive; the difference between the two is plotted in Figure 2.5,
and is as large as 0.16 in the worst case. However, this the worst case for the
approximation: with only two components contributing to the sum, the result
will be as far from gamma-distributed as it can be. When the correct intrinsic
dimensionality is larger, we should expect the gamma approximation to be better.
In Subsection 2.3.2 we present some experimental results for cases that may be
more realistic.

2.3 Experimental results with discussion

Most of the results of this chapter are in the form of asymptotic approximations,
suggesting the question of how well the approximations hold in practical cases.
We present some experimental results on that question here.

68 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

-1 -0.5 0 0.5 1

e
rr

o
r

in
 i
n

tr
in

s
ic

 d
im

e
n

s
io

n
a

lit
y
 ρ

variance difference/sum ratio τ

Bivariate normal distribution

Figure 2.5: Error in the (2.28) approximation.

2.3.1 All components independent and identically distributed

Chávez and Navarro describe an experiment in which, for L1, L2, and L∞ and
numbers of components between two and twenty, they chose one million pairs
of points in each space and measured the distances to compute the intrinsic
dimensionality. They report that the intrinsic dimensionality values fell on
lines, as expected [40, Fig. 3]. However, the slopes they reported were much
shallower than predicted by our theory in Theorems 2.6 and 2.7. We repeated
the experiment and extended it to other distributions, metrics, and vector lengths.
These results appeared in SPIRE’05 [190].

Results for vectors of up to 20 components with uniformly-distributed compo-
nents are shown in Figure 2.6. Note that except for L1 (for which ρ is exactly
a linear function of n by Corollary 2.2), the experimental values do not fall
on their asymptotic lines. The L2 points are close, but the L256 and L∞ points,
which appear to coincide, are far from their lines. In Figure 2.7 we see the same
experiment extended to vectors of up to 220 (a little over a million) components.
Note that that plot has logarithmic axes to accommodate the large dynamic range
of both n and ρ. The points for all the metrics are seen to converge on their
respective theoretical lines, but the ones for L256 do so very slowly. As predicted,
L∞ and L5.778 approach the same line and each other, a line quite different from

2.3. EXPERIMENTAL RESULTS WITH DISCUSSION 69

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16 18 20

in
tr

in
s
ic

 d
im

e
n

s
io

n
a

lit
y

vector components

Uniformly distributed small vectors

L1 exp.
L1 asymp.

L2 exp.
L2 asymp.
L256 exp.

L256 asymp.
L

∞
 exp.

L
∞

 asymp.

Figure 2.6: Experimental results: short vectors, uniform components.

the one for L256.
A similar set of results for vectors with standard normal components is shown

in Figures 2.8 and 2.9. For vectors with up to 20 components, the L1 and L2

points seem close enough to their predicted lines, but the L4 and L8 points go off
in other directions. The L16 points seem very close to the L∞ points. Note that
we did not even plot the asymptotic line for L16 in Figure 2.8 because with its
slope of 143/52176 ≈ 0.0027407 it would be lost in the lower border of the plot. In
Figure 2.9 we see that for larger vectors the points do approach their respective
limiting functions, but L16 takes a long time to converge. It is still quite far above
the line even with over a million components. In that range L∞ remains visually
slightly off its curve too, possibly because of the negative log · log log term in
(2.17), which is next after log2 in the expansion and still large enough at n= 220

to have a noticeable effect. The maximum of a collection of normal random
variables, which essentially describes the L∞ metric here, is notorious for slow
convergence [98].

From these results one can see that normal distributions have smaller values
of intrinsic dimensionality than uniform distributions for vectors of the same
length; in the case of L∞ asymptotically so, but even for finite p, the constants are
smaller for normal distributions. So the question arises, are normal distributions
really easier to index, or is this just a sign that ρ is an unreliable measure? Our

70 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000

in
tr

in
s
ic

 d
im

e
n

s
io

n
a

lit
y

vector components

Uniformly distributed large vectors

L1 exp.
L1 asymp.

L2 exp.
L2 asymp.
L5.778 exp.

L256 exp.
L256 asymp.

L
∞

 exp.
L

∞
 asymp.

Figure 2.7: Experimental results: long vectors, uniform components.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12 14 16 18 20

in
tr

in
s
ic

 d
im

e
n

s
io

n
a

lit
y

vector components

Normally distributed small vectors

L1 exp.
L1 asymp.

L2 exp.
L2 asymp.

L4 exp.
L4 asymp.

L8 exp.
L8 asymp.

L16 exp.
L

∞
 exp.

L
∞

 asymp.

Figure 2.8: Experimental results: short vectors, normal components.

2.3. EXPERIMENTAL RESULTS WITH DISCUSSION 71

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

in
tr

in
s
ic

 d
im

e
n

s
io

n
a

lit
y

vector components

Normally distributed large vectors

L1 exp.
L1 asymp.

L2 exp.
L2 asymp.

L4 exp.
L4 asymp.

L8 exp.
L8 asymp.

L16 exp.
L16 asymp.

L
∞

 exp.
L

∞
 asymp.

Figure 2.9: Experimental results: long vectors, normal components.

suggestion is that “normal distributions really are easier to index.” [190]
In a high-dimensional normal distribution, it will tend to be the case that

most components will have small magnitudes, and there will be a few outliers
of much larger magnitude. That is what we expect to see whenever we sample
from a normal distribution. In that case, when we measure the distance between
two vectors (and especially if we use Lp for large p, let alone L∞) the distance
will be dominated by the largest-magnitude components. In fact we could make
a reasonable guess at the distance between two vectors by only looking at their
largest-magnitude components. That is the insight behind the pyramid-tree
technique of Berchtold, Böhm, and Kriegel [27]. They organise vectors by
greatest-magnitude components, using brute-force search after that, and the
resulting data structure works especially well with high-dimensional normal
distributions, because with those, most of the story about a point is told by its
greatest-magnitude component.

On the other hand, in a high-dimensional uniform distribution, the distribu-
tion of componentwise differences is triangular, with much heavier tails than a
normal distribution. There will be many components of magnitude comparable
to the largest one. The tendency for one component to dominate in the distance
calculation is much less strong. Then approximating a vector by one or a few of
its components does not work so well; and therefore searching for vectors is a

72 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

more difficult task. A measure of dimensionality should rate such a distribution
more difficult, as ρ does.

2.3.2 Components independent and normal but not identically distributed

Evaluation of the quality of approximation described in Subsection 2.2.3 is
hampered by the fact that we have no general exact result to compare against.
However, it is easy to generate random vectors and measure their intrinsic
dimensionality experimentally. In Table 2.1 we show the results of such an
experiment, designed to simulate the kinds of distributions modelled by principal
component analysis. These distributions are generally multivariate normal with
one or a small number of components containing most of the variance and much
smaller variance in the remaining components.

For each set of variances σ2
1 ≥ σ

2
2 ≥ σ

2
3 ≥ 0 with σ2

1 + σ
2
2 + σ

2
3 = 1, σ2

1 a
multiple of 0.1, and σ2

2 a multiple of 0.05, we generated 107 pairs of points and
measured the resulting intrinsic dimensionality. We repeated each experiment 20
times, and the table shows the mean ρ̄ and sample standard deviation s of the
resulting ρ, along with the approximate value ρ̂ predicted by (2.28) and, where
applicable, the exact value from Theorem 2.10. The approximation is worst in
the case of σ2

1 = 0.6, σ2
2 = σ

2
3 = 0.2, with an error of almost 21%. It generally

improves as the intrinsic dimensionality increases.
To model a similar case but with higher dimensionality, we used vectors

with ten components, normal distribution in each component, and the variance
distributed exponentially: σ2

i = (σ
2
1)

i, for different values of σ2
1. As in the

previous experiment, we used 107 pairs of points for each distribution and
repeated each experiment 20 times. The results are shown in Table 2.2. As
expected, the approximation improves as the intrinsic dimensionality increases.

For large enough intrinsic dimensionality it seems clear that (2.28) gives a
number close enough to be useful, but real-life data sets often seem to have low
dimensionality and the error may be too great for the approximation to be useful
there. Further improvement goes beyond the planned scope of the present work,
but one approach that might be fruitful would be to seek a better approximation
of the sum of chi-squared variables. For instance, the same approach used in
Subsection 2.2.3 of fitting the sum with a two-parameter gamma distribution
could be used to fit a Gram-Charlier expansion, or a similar one based on
the gamma distribution, with the hope of getting a more accurate estimate of
E[D] [115, pages 25–33 and 343].

2.3. EXPERIMENTAL RESULTS WITH DISCUSSION 73

σ2
1 σ2

2 σ2
3 Thm. 2.10 ρ (2.28) ρ̂ Expt. ρ̄ Expt. s

1.00 0.00 0.00 0.87597 0.87597 0.87611 0.00043
0.90 0.10 0.00 1.22836 1.08182 1.22841 0.00055
0.90 0.05 0.05 1.08888 1.28921 0.00061
0.80 0.20 0.00 1.47599 1.32020 1.47626 0.00095
0.80 0.15 0.05 1.35188 1.60854 0.00080
0.80 0.10 0.10 1.36278 1.64567 0.00081
0.70 0.30 0.00 1.66582 1.56332 1.66559 0.00064
0.70 0.25 0.05 1.63818 1.86062 0.00066
0.70 0.20 0.10 1.68650 1.96347 0.00099
0.70 0.15 0.15 1.70323 1.99707 0.00117
0.60 0.40 0.00 1.78769 1.75538 1.78795 0.00106
0.60 0.35 0.05 1.88991 2.03645 0.00114
0.60 0.30 0.10 1.99882 2.19730 0.00100
0.60 0.25 0.15 2.07016 2.29422 0.00103
0.60 0.20 0.20 2.09505 2.32665 0.00134
0.50 0.50 0.00 1.82990 1.82990 1.82991 0.00089
0.50 0.45 0.05 2.02207 2.11547 0.00074
0.50 0.40 0.10 2.20063 2.32352 0.00089
0.50 0.35 0.15 2.34792 2.47522 0.00131
0.50 0.30 0.20 2.44577 2.56780 0.00104
0.50 0.25 0.25 2.48015 2.59963 0.00108
0.40 0.40 0.20 2.58912 2.65400 0.00098
0.40 0.35 0.25 2.70772 2.74209 0.00120
0.40 0.30 0.30 2.74962 2.77156 0.00140

Table 2.1: Comparison of Theorem 2.10 and the approximation from (2.28) with
experimental results.

74 CHAPTER 2. REAL VECTORS, LP METRICS, AND DIMENSIONALITY

σ2
1 (2.28) ρ̂ Expt. ρ̄ Expt. s

0.05 0.97434 1.08528 0.00048
0.10 1.08438 1.25468 0.00057
0.15 1.20817 1.42499 0.00047
0.20 1.34829 1.60404 0.00072
0.25 1.50803 1.79869 0.00093
0.30 1.69159 2.01355 0.00064
0.35 1.90443 2.25524 0.00124
0.40 2.15367 2.53193 0.00157
0.45 2.44870 2.85278 0.00117
0.50 2.80170 3.22979 0.00152
0.55 3.22820 3.67560 0.00144
0.60 3.74694 4.20965 0.00186
0.65 4.37829 4.84617 0.00220
0.70 5.13930 5.59344 0.00250
0.75 6.03296 6.44938 0.00381
0.80 7.03008 7.37458 0.00345
0.85 8.04826 8.28791 0.00382
0.86 8.24279 8.45981 0.00380
0.87 8.43123 8.62514 0.00364
0.88 8.61216 8.78238 0.00421
0.89 8.78420 8.93185 0.00371
0.90 8.94595 9.06999 0.00482
0.91 9.09608 9.20014 0.00409
0.92 9.23335 9.31748 0.00392
0.93 9.35664 9.42141 0.00369
0.94 9.46496 9.51274 0.00508
0.95 9.55749 9.59158 0.00446
0.96 9.63361 9.65407 0.00514
0.97 9.69288 9.70540 0.00296
0.98 9.73511 9.74003 0.00469
0.99 9.76027 9.76178 0.00453

Table 2.2: Comparison of the approximation from (2.28) with experimental
results.

Chapter 3

Real vectors: distance permutations

Vectors of real numbers are typical candidates for indexing by distance permu-
tations: by reducing each point in a database to a small identifying code, we
can hope to save both time and space in indexing and searching the database.
The hope is that similar objects will have similar distance permutations, so by
examining the distance permutations we can quickly rule database points out of
a query without having to calculate a possibly expensive metric on the database
points.

Recall that the distance permutation of a point y with respect to k points distance
permutationx1, x2, . . . , xk called the sites is the permutation that sorts the site indices into
siteincreasing order of distance from y, breaking ties by placing the lower-index site

first (Definition 1.25). If the distance permutation is denoted by Πy , we have for
any indices 1 ≤ i < j ≤ k, d(xΠy (i), y) < d(xΠy (j), y) or d(xΠy (i), y) = d(xΠy (j), y)
and Πy(i)< Πy(j).

In this chapter we discuss the question of how many distinct values the
distance permutation may have over the points in a real vector space. The
maximum number of values determines how much space the index needs to
store each permutation. We describe the connection between this problem and
work on Voronoi diagrams and oriented matroids, and discuss the difficulties
encountered in non-Euclidean spaces, particularly L4. We also give an exact
analysis for Euclidean space and an asymptotic upper bound for L1 and L∞
spaces, improving on the previous best known storage space bound for a distance
permutation index. The results for L1, L2, and L∞ appeared, without the detailed
proofs we give here, in SISAP’08 [191]. We begin by defining a notation for the
number of distance permutations.

Definition 3.1
Let Nn,p(k) represent the maximum number of distinct distance permuta- Nn,p(k)

tions generated by any choice of k sites in the space of n-dimensional real

75

76 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

vectors with the Lp metric. Where S is the space and Πy is the distance
permutation as defined above,

Nn,p(k) = max
x1,x2,...,xk∈S

�

�{Πy|y ∈ S}
�

� . (3.1)

3.1 Achieving all permutations

If there are enough dimensions, it is possible to achieve all k! permutations of k
sites; and it turns out that k− 1 dimensions are sufficient. The following result
establishes that for all Lp metrics. The concept is intuitive: in (k−1)-dimensional
space, we can place k points equidistant from the origin and then all distance
permutations will occur in the neighbourhood of the origin. The actual proof is
more involved (an epsilon-delta induction) because the boundary cases L1 and
L∞ cause problems if the points are exactly equidistant from the origin. Instead,
we place them at slightly different distances for each dimension to force the
inequalities to be strict.

Theorem 3.1
In n-dimensional real vector space with any Lp metric, k sites can be chosen
such that all k! distinct distance permutations exist, for any k ≤ n+ 1. That
is, Nn,p(k) = k! for n≥ k− 1 and p ≥ 1.

Proof For k = 1 the question is trivial: zero-dimensional space has only one point,
we choose it as the site, and it has the single distance permutation consisting
of itself. For k ≥ 2 we prove a somewhat stronger statement by induction on k,
namely that for any integer k ≥ 2 and real ε > 0, there exist k sites x1,x2, . . . ,xk

in (k− 1)-dimensional Lp space such that for any permutation π : {1,2, . . . , k} →
{1,2, . . . , k}, there is a point yπ such that

Πyπ = π (3.2)

d(0,yπ)< ε (3.3)

|1− d(xi ,yπ)|< ε (3.4)

d(xi ,yπ) 6= d(x j ,yπ) if xi 6= x j . (3.5)

In other words, with k− 1 dimensions we can achieve all k! permutations (3.2)
with points that are near the origin (3.3), almost exactly unit distance from all
the sites (3.4), and not equidistant from any two sites (3.5).

3.1. ACHIEVING ALL PERMUTATIONS 77

Basis case. For k = 2, let x1 = 〈−1〉, x2 = 〈1〉. Then where the two permutations
are denoted by 12 and 21, we have y12 = 〈−ε/2〉 and y21 = 〈ε/2〉. These points are
easily seen to meet the conditions (3.2)–(3.5).
Inductive step. For k > 2 and some ε > 0, assume that there exist k − 1
sites x′1,x′2, . . . ,x′k−1 in (k− 2)-dimensional space such that for any permutation
π′ : {1, 2, . . . , k − 1} → {1, 2, . . . , k − 1}, there is a point y′

π′
such that Πy′

π′
= π′

(3.2) and |1− d(xi ,yπ)|< ε/4 (3.4).
Let x1,x2, . . . ,xk−1 be the sites x′1,x′2, . . . ,x′k−1 extended to one more dimension

by appending a zero component to each, and let xk = 〈0, 0, . . . , 0, 1− ε/2〉; that is,
we are adding one dimension and placing a new site on the newly-introduced
coordinate axis at distance 1− ε/2.

Let π be an arbitrary permutation of the k site indices and π′ be π with k
removed; for instance, if k = 5 and π= 12543 then π′ would be 1243. Let y rep-
resent y′

π′
augmented with one more component (to make it (k−1)-dimensional)

and let z represent the value of the last component of y. Consider the distance
permutation of y as we vary the value of z from 1− ε/2 to 1+ 3ε/4. In all cases the
distance permutation of y with respect to the first k−1 sites will be π′, because the
distance permutation is determined by inequalities of the form d(xi ,y) ≤ d(x j ,y),
each distance is the 1/p power of a sum of p-th powers of per-component dif-
ferences, and we are changing one of those per-component differences that is
added equally to all the distances. All the functions involved are monotonic, so
the inequalities continue to hold as we vary z.

Note 3.2
In the case of the L∞ metric we depend on the fact that the per-component
difference for the last component is smaller than any of the distances from
y to sites and so does not enter into the maximum that defines the metric.
We can ensure this by assuming ε less than 1/2, so that 1− ε > ε; we are
free to do that because the statement we are proving always holds for
larger ε if it holds for small ε.

The distance d(xk,y) < 1 − ε/4 when z = 1 − ε/2 by the triangle inequality,
using the distances d(xk,0) = z = 1− ε/2 by definition, and d(0,y)< ε/4 from the
inductive assumption. But the distance from y to any other site than xk must be
greater than 1− ε/4, again by the inductive assumption. Therefore at z = 1− ε/2,
the distance permutation of y with respect to the k sites x1,x2, . . . ,xk begins with
k.

However, when z = 1+ 3ε/4, then the distance d(xk,y) ≥ 1+ ε/4 because the
per-component difference between xk and y in the last component is 1+ ε/4, and
the overall distance cannot be any less. By the inductive assumption, the distance
from y to any other site than xk must be less than 1− ε/4. Therefore at z = 1+ 3ε/4,

78 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

the distance permutation of y with respect to the k sites x1,x2, . . . ,xk ends with k.
By choosing a value of z between those two extremes, we can find a value of

y where k appears in any position in the distance permutation; and since this
holds for any permutation π′ of the first k − 1 sites, we can find a yπ for any
permutation π of the k sites, giving (3.2), a point for every permutation. By doing
this we are perturbing each y′ by at most 3ε/4 from its original position which
was within ε/4 of the origin, so each y remains within ε distance of the origin
(3.3); similarly, the distance from each y to each site must be in the interval 1± ε
(3.4); and by our choices of z, all the distances to sites are distinct at each y (3.5).
Therefore the theorem holds for k sites.

By induction, the theorem holds for all values of k.

3.2 Voronoi diagrams and distance permutations

Voronoi diagrams are, as the title of Aurenhammer’s survey of the subject sug-
gests, “a fundamental geometric data structure” [15]. The concept has been
independently reinvented many times and its origins go back centuries. Voronoï-
gave a general n-dimensional definition in 1908 [207], and the popular name
“Voronoi diagram” refers to him. Lejeune Dirichlet used the diagrams, limited to
two and three dimensions, in his study of quadratic forms in 1850 [135], and
the name “Dirichlet tesselation” is also used for them.

The classic Voronoi diagram starts with a set of points called sites and divides
the Euclidean plane into regions called cells according to which of the sites iscell

closest, as shown in Figure 3.1. In the figure, the points in the cell at left are
those points that are closer to A than the B, C , or D.

There are many ways to generalise Voronoi diagrams, including the use of
more dimensions, distance functions other than the Euclidean metric, definitions
of the sites as things other than isolated points, and changes to how points are
divided into cells. Aurenhammer’s 1991 survey describes many of the varia-
tions [15]. One of particular interest for our work is the m-th order Voronoim-th order

Voronoi diagram diagram, in which the cells correspond to the set of m nearest neighbours among
the k sites rather than just the one nearest neighbour. An example for m= 2 is
shown in Figure 3.2. Note that the same sites from Figure 3.1 are used in this
diagram. Each cell corresponds to a set of two sites; for instance, the small cell
in the middle of the diagram contains points for which the closest two sites are B
and D, in either order.

The cells of m-th order Voronoi diagrams represent classes of distance per-
mutations, by definition. For instance, in Figure 3.1 the cell at left contains all
points whose distance permutations start with A, and in Figure 3.2 the cell in the
middle contains all points whose distance permutations start with B, D or D, B.

3.2. VORONOI DIAGRAMS AND DISTANCE PERMUTATIONS 79

D

A

B

C

Figure 3.1: A first-order Euclidean Voronoi diagram.

{A,D}

A

{A,B}
B

{B,C}

C

{C,D}

D

{B,D}

Figure 3.2: A second-order Euclidean Voronoi diagram.

80 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

A

B

C

B|D

C|D

A|BA|C

D

B|C

A|D

Figure 3.3: Bisectors of four points in Euclidean space.

Suppose we construct a diagram in which each permutation has its own cell.
We could do that by taking the union of all the cell boundaries from all the
m-th order Voronoi diagrams. Figure 3.3 shows such a diagram. The boundaries
shown are exactly the six (that is,

�4
2

�

) lines that bisect pairs of sites. We can
uniquely identify the distance permutation of a point by stating, for each of the
six pairs of sites, which one is closer; and in Euclidean space, each of those
statements divides the space along a flat hyperplane of dimension one less than
the space (a line, in the plane). The sets that divide the space are useful in other
spaces too, so we define a general name and notation for them:

Definition 3.3
The bisector of two points x and y, denoted by x |y, is the set of all pointsbisector

z such that d(x , z) = d(y, z). The bisector system of a set of sites is thebisector system

collection of all their pairwise bisectors.

However, answering the “which side?” question for six bisectors in Figure 3.3
suggests that there should be 26 = 64 sets of answers and so 64 cells, evidently
impossible when there are only 4!= 24 permutations of the four sites. Moreover,
there are only 18 cells in the arrangement shown. The fact that all the bisectors
are straight lines limits the number of cells, and so does the fact that they are the
pairwise bisectors of four sites, not just any six lines in arbitrary position relative
to each other.

3.2. VORONOI DIAGRAMS AND DISTANCE PERMUTATIONS 81

Arrangements of hyperplanes, which include bisector systems in Euclidean
space, create combinatorial objects called oriented matroids, and those are well-
studied [29]. Although we obtain the count by other methods in the next section,
it appears that such methods could be applied to count distance permutations in
Euclidean space. Unfortunately, most of the relevant results are inapplicable to
bisectors in more general spaces.

Many authors, including Grünbaum [92] and Mandel [145], have applied
oriented matroids to generalised hyperplanes that are not necessarily flat, calling
them pseudolines and pseudospheres respectively. Grünbaum’s pseudolines are
defined in two dimensions with the requirement that any two must intersect
in exactly one point, using the projective plane if necessary to force parallel
lines to intersect at infinity. Mandel’s pseudospheres have an analogous higher-
dimensional requirement for well-behaved intersections: every intersection must
be topologically equivalent to a sphere. The bisector system shown in Figure 3.4
fails to meet those criteria because of the bisectors A|B and C |D, whose intersec-
tion consists of two points. Oriented matroids can also be described in terms of
sign vectors, representing whether a point in the space is on one side, on the
other side, or exactly on each bisector; and the sign vectors associated with Fig-
ure 3.4 fail to obey the properties defining an oriented matroid. (That sign-vector
definition of an oriented matroid is complicated, and omitted here; Björner and
others describe it in detail [29].)

So the obvious transformation from a bisector system to an oriented matroid
appears unworkable. There may be other ways to apply oriented matroid tech-
niques to bisector systems in non-Euclidean spaces. Santos successfully generates
a Delaunay oriented matroid from a point arrangement in non-Euclidean space
by considering the triangulation of the points instead of their bisectors, but his
main result is specific to two dimensions, and the connection to our question
about bisectors is not clear [181]. The Delaunay oriented matroid is defined in
terms of spheres passing through subsets of the points in the arrangement.

Lê studies the question of how many spheres can pass through a set of n+ 1
points in n-dimensional space with various Lp metrics, particularly the case of
p equal to an even integer [134]. That bears on the complexity of an ordinary
closest-point Voronoi diagram because it is the number of vertices in the diagram
for n+ 1 points. Icking, Klein, Lê, and Ma then continue this line of research
to describe in detail the number of spheres that can pass through four points
in 3-space with various convex distance functions [107]. Whereas in Euclidean
3-space, four points in general position define exactly one sphere passing through
all of them, they show that other smooth convex metrics allow for arbitrarily large
finite numbers of spheres. In particular, with the L4 metric, they show that there
exists a set of four points that can be perturbed independently in 3-dimensional

82 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

B

A

A|D B|C

D

A|C

C|D

A|B

B|D

C

Figure 3.4: Bisectors of four points in L1 space.

neighbourhoods (that is, the points are in general position) and through which
pass exactly three spheres. They display such a set of points. However, they
do not give the three spheres, only a proof of the spheres’ existence and some
intervals for their radii [107]. For their work, the startling result is that such
spheres exist at all. The four points are:

X Y Z
0 0 0
1 1/2 −2
−1 −3/2

1/3
−3 −4 −1/2

. (3.6)

The three-sphere result is significant for distance permutations because it
suggests that a larger number of distance permutations might exist in non-
Euclidean metrics. If four sites lie on the surface of a sphere, then by a simple
epsilon-delta argument all 24 distance permutations of those sites occur in the
neighbourhood of the sphere’s centre. If we add a fifth site, we will show in
Theorem 3.2 that only 96 of the 120 imaginable distance permutations can
actually occur in three-dimensional Euclidean space. Part of the reason seems
to be that the sphere centre with 24 permutations clustered around it can only
occur in one place relative to the new site. If more than one sphere could pass

3.2. VORONOI DIAGRAMS AND DISTANCE PERMUTATIONS 83

through the first four sites, then we would have a cluster of 24 permutations at
the centre of each sphere, and placing the fifth site carefully relative to those
clusters might allow us to give it a different relationship to each centre (inside
some sphere and outside another), and achieve more than the Euclidean limit of
96 distance permutations.

Hoping to gain a better understanding of why L4 space is so strange, we
used simulated annealing to develop approximations for the three spheres whose
intersection is given by (3.6), with this result:

centre X centre Y centre Z radius
−16.969316 12.531628 −13.989112 19.5433
−0.4230825 −0.042524706 −4.0244665 4.47108
−0.5513786 −2.2194826 −2.4523801 2.78927

. (3.7)

A POV-Ray visualisation [167] of (3.6) and (3.7) is shown in Figure 3.5, and
it provides some intuition of what is going on. The four intersection points lie
approximately on a plane, and moreover on an arc of an ordinary Euclidean
circle. If it were Euclidean space, then four points exactly on an arc would be
a degenerate case, defining an infinite number of spheres that all shared the
circle containing the points. Cutting a sphere with a plane in Euclidean space
always creates a circle, so we can freely choose the size of the sphere (as long as
its radius is no smaller than that of the circle itself) and still find a centre for it
which will allow it to contain the specified circle. The Euclidean case is like a
child catching a bubble on a circular bubble wand: the same circular loop can
catch any sufficiently large bubble.

In the L4 space, a sphere’s intersection with a plane is not a perfect circle, and
our four points are only approximately on a plane to begin with. The L4 sphere
has just enough bumpiness that between scaling, moving the centre, and the fact
that there are only four points (not a whole circle) to match, we can place a sphere
to intersect the four points and still have enough freedom left over to choose one
of three centres and deal with the points being in general position. Note that each
of the spheres is cut in a qualitatively different way by the approximate plane
of the four points. Figure 3.6 shows schematically the least-squares plane and
its relationship to each of the three bounding cubes for the L4 spheres. For the
largest L4 sphere the plane cuts off one corner, approximately passing through
the other. For the middle-sized sphere the plane cuts off two corners. For the
smallest sphere, it cuts through the centre, separating three corners from the
other five. Thus the three spheres are to some extent independent of each other,
and we can keep them all fitted to the points while moving the points within
small neighbourhoods.

The same authors with Santos investigate the behaviour of bisectors with

84 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

Figure 3.5: Visualisation of the four-point L4 system.

3.3. EUCLIDEAN SPACE 85

Figure 3.6: How the least-squares plane cuts the bounding cubes.

convex distance functions in two and three dimensions, generalised to sets
equidistant from more than two sites [106]. They survey problematic results
obtained by other authors and by subsets of their own group, and show further
surprising results; in particular, that the combinatorial structure around the
one-dimensional bisector of three points can be different for different connected
components of the bisector. Note that the fact there can be more than one
connected component of the bisector in the first place is already a significant
departure from the Euclidean behaviour. As they describe it:

One of the reasons for the lack of results on Voronoi diagrams
for higher dimensions under arbitrary convex distance functions
is the surprising, really abnormal, structure of the bisectors which
behave totally different[ly] from what is known for the Euclidean
distance. [106]

3.3 Euclidean space

Gardner illustrates his concept of “aha! insight” with the classical problem of
cutting a circular cheese into eight slices with three cuts of a straight knife and
no rearrangement of the pieces between cuts [82]. The solution is shown in
Figure 3.7; the necessary “aha!” is that the cheese is three-dimensional. Attempts
to solve the puzzle while treating the cheese as a two-dimensional object cut
by straight lines will fail because with those restrictions, only seven slices are
possible.

Suppose we generalise the question to cutting an object in n-dimensional Eu-
clidean space with m flat cuts, each of which is an (n−1)-dimensional hyperplane.
If we assume the object is convex and has nonzero measure, we can ignore its
exact shape and simply consider the number of cells into which the hyperplanes

86 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

Figure 3.7: Cutting a cheese into eight pieces with three cuts.

divide the entire space, because we can always scale the hyperplane arrangement
to put all the bounded cells inside a neighbourhood entirely contained in the
object, and get as many slices from the object as we would from the entire space.
Let Sn(m) represent the maximum number of cells into which m cuts can divide
n-dimensional Euclidean space. Some example values for n = 2 (the “pancake
problem”) are shown in Figure 3.8.

Price gives a straightforward analysis of the general problem, finding that
Sn(0) = S0(m) = 1, and Sn(m) = Sn(m− 1) + Sn−1(m− 1) for n, m > 0 [171]. He
uses an induction that follows the structure of the recurrence relation: when
the m-th hyperplane is added to an arrangement that already contains Sn(m− 1)
pieces, then the new hyperplane is itself a (n−1)-dimensional space cut up by the
m− 1 existing hyperplanes into Sn−1(m− 1) pieces, and each of those partitions
off a new piece in the original n-dimensional space, proving the recurrence. Then
it follows easily that Sn(m) = Θ(mn) [171].

As described in the previous section, the distance permutations for a set of
sites correspond to cells in the bisector system of the sites; and since bisectors in
Euclidean space are simply hyperplanes, we can apply the result on cells formed
by hyperplanes to count the distance permutations. There are

�k
2

�

bisectors
between k sites; so if the bisectors were in general position, we would have
Sn

�

�k
2

�

�

distance permutations.

However, the bisectors are not in general position, and the actual number
of distance permutations is less. Note that for n = 2, k = 3, there are

�3
2

�

= 3
bisectors, which suggest S2(3) = 7 cells as shown in Figure 3.8, but there can
be only 3!= 6 distance permutations. However, Price’s result for hyperplanes in
general position remains an upper bound: Nn,2(k) = O(k2n) because

�k
2

�

is Θ(k2)
and Sn(m) is Θ(mn). With a more detailed argument we can get an exact count.

3.3. EUCLIDEAN SPACE 87

m=1

S2(m)=2

m=2

S2(m)=4

S2(m)=7

m=4

S2(m)=11

m=3

Figure 3.8: Cutting a pancake.

88 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

We emphasize that this bound is nearly always achieved: like Price’s result [171],
it does not depend on the arrangement of sites except that they are in general
position. In this respect Theorem 3.2 differs from other similar results we will
prove for other spaces, where sites matching the bound may be harder to find.

Theorem 3.2
In n-dimensional Euclidean (L2) space, we have

N0,2(k) = Nn,2(1) = 1 (3.8)

Nn,2(k) = Nn,2(k− 1) + (k− 1)Nn−1,2(k− 1) . (3.9)

Moreover, the upper bound Nn,2(k) is always achieved by sites in general
position.

Proof Zero-dimensional space contains only one point and so can only contain
one piece, and with only one site, there are no bisectors and the space remains
undivided. Therefore N0,2(k) = Nn,2(1) = 1.

For the general case we extend the line of reasoning used by Price [171].
Consider the space with n dimensions that already contains k − 1 sites, their
bisectors, and the resulting pieces. It contains, by definition, Nn,2(k− 1) pieces.
Adding one more site adds a group of k − 1 bisectors. The first of those is a
(n− 1)-dimensional space cut by the existing bisectors of k − 1 sites into (by
definition) Nn−1,2(k− 1) pieces, and each of those pieces creates a new piece in
the n-dimensional space as well.

The second of the k−1 new bisectors appears to be cut by the existing bisectors
and also the one we just added. However, the intersection of the first new bisector
and the second new bisector is exactly the same set as the intersection of the
second new bisector with some other bisector that already existed. Let a and b
be sites added earlier and x be the new site, then we have a|x ∩ b|x = a|b ∩ b|x
by the transitivity of equality. So intersections between bisectors in the same
group need not be counted; they are always equal to the intersections already
counted between bisectors in the new group and bisectors in earlier groups.

Therefore each of the k− 1 new bisectors in the new group, not just the first,
adds exactly Nn−1,2(k− 1) pieces. There are also by definition Nn,2(k− 1) pieces
that existed before we added the latest site. Therefore we have the recurrence
relation (3.9).

Bounds on Nn,2(k) follow from Theorem 3.2 by induction:

3.3. EUCLIDEAN SPACE 89

Corollary 3.3
The function Nn,2(k) satisfies:

Nn,2(k)≤ k2n (3.10)

Nn,2(k) =
k2n

2nn!
+ o(k2n) . (3.11)

Therefore, the distance permutation in Euclidean space can be stored in
2n lg k bits with an appropriate encoding.

Proof The proof for (3.10) is by induction on k. The result holds trivially for
k = 1. Then we have:

Nn,2(k) = Nn,2(k− 1) + (k− 1)Nn−1,2(k− 1)

≤ (k− 1)2n+ (k− 1)(k− 1)2n−2

= k(k− 1)2n−1

≤ k2n .

The space to store a distance permutation is lg Nn,2(k) bits, so 2n lg k is an upper
bound.

For (3.11) we use induction on n. It holds trivially for n = 0. Let an and bn

represent the leading two coefficients of the polynomial in k that defines Nn,2(k);
then we have:

Nn,2(k) = ank2n+ bnk2n−1+ o(k2n−1)

= an(k− 1)2n+ bn(k− 1)2n−1+ (k− 1)an−1(k− 1)2n−2+ o(k2n−1)

= ank2n− 2nank2n−1+ bnk2n−1+ an−1k2n−1+ o(k2n−1) .

The sum of the coefficients for the k2n−1 term must be bn by definition, so (with
a0 = 1 from the basis case) we can find an:

bn =−2nan+ bn+ an−1

an =
1

2n
an−1

=
1

2nn!
.

Numerical values of Nd,2(k) are shown in Table 3.1. Note that the lower
triangle contains factorials corresponding to Theorem 3.1.

90 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

k:
2 3 4 5 6 7 8 9 10

n: 1 2 4 7 11 16 22 29 37 46
2 2 6 18 46 101 197 351 583 916
3 2 6 24 96 326 932 2311 5119 10366
4 2 6 24 120 600 2556 9080 27568 73639
5 2 6 24 120 720 4320 22212 94852 342964
6 2 6 24 120 720 5040 35280 212976 1066644
7 2 6 24 120 720 5040 40320 322560 2239344
8 2 6 24 120 720 5040 40320 362880 3265920
9 2 6 24 120 720 5040 40320 362880 3628800

Table 3.1: Number of Euclidean distance permutations Nn,2(k).

Corollary 3.3 implies an asymptotic improvement in the bound on storage
space for a distance permutation index, because a general permutation of k sites
would require Θ(k log k) bits. This means that adding sites costs very little in
terms of index space, once the number of sites is significant compared to the
number of dimensions. On the other hand, additional sites only have a small
effect on the number of possible index values, so it may also suggest that there
is little value in adding more sites once we have about twice as many sites as
dimensions.

3.4 The L1 and L∞ metrics

Other metrics than L2 make the question of counting distance permutations
significantly more complicated. For instance, in the Euclidean plane, a bisector
is a line. Two bisectors in general position intersect at exactly one point. In
degenerate cases, they either coincide or fail to intersect at all. But in the two-
dimensional L1 space shown in Figure 3.4, a bisector is in general an orthogonal
line with a diagonal kink in the middle. Two bisectors in general position may
intersect in one point, like A|B and B|C; or two distinct points, like A|B and C |D;
or they may fail to intersect, like A|D and B|C; and there are many degenerate
intersections possible, such as two disjoint rays, or a ray with a line segment
attached. In higher dimensions the number of possibilities grows rapidly.

The technique used in Theorem 3.2 of treating each intersection as a space of
the same type and one fewer dimension, which makes it amenable to induction,
fails for non-Euclidean metrics. As discussed earlier, oriented matroid theory
provides some tools for studying objects like these bisector systems, but current

3.4. THE L1 AND L∞ METRICS 91

results do not solve the problem of counting distance permutations.
However, the greatest difficulties come from considering Lp metrics for gen-

eral p. The special cases of L1 and L∞ share one of the useful properties of
L2: their bisectors are piecewise linear. Each bisector is the union of subsets
of hyperplanes, with the number of hyperplanes a function of the number of
dimensions. Then from elementary results we can obtain bounds on the number
of distance permutations; perhaps loose bounds, but tight enough to improve the
best previous storage space bounds for a permutation-based index.

Theorem 3.4
The function Nn,p(k) satisfies:

Nn,1(k) = O
�

22n2
k2n
�

(3.12)

Nn,2(k) = O
�

k2n
�

(3.13)

Nn,∞(k) = O
�

22nn2nk2n
�

. (3.14)

All three of these are O
�

k2n
�

with respect to k, so the distance permutation
in L1, L2, or L∞ space can be stored in O(n log k) bits with an appropriate
encoding.

Proof The case of the L2 metric is already covered by Corollary 3.3. For the
other two, consider a pair of sites x and y, and let z be on their bisector; then
d(x,z) = d(y,z). We will show that for each value of p ∈ {1,2,∞}, the bisector
is a subset of the union of some flat hyperplanes, with an upper bound on
the number of hyperplanes determined only by the number of dimensions n.
Subscripts denote individual components of the vectors.
For the L1 metric, we have

d(x,z) = |x1− z1|+ |x2− z2|+ · · ·+ |xn− zn|
=±(x1− z1)± (x2− z2)± · · · ± (xn− zn)

for some choice of the signs (dependent on the component values). Thus d(x,z)
is equal to one of 2n linear functions of x and z. Similarly, d(y,z) is equal to one
of 2n linear functions of y and z. The set of points at which d(x,z) = d(y,z) is
thus a subset of the set of points at which at least one of the functions for d(x,z)
equals at least one of the functions for d(y,z); therefore it must be a subset of
the union of 22n hyperplanes.

92 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

For the L∞ metric, we have

d(x,z) =max{|x1− z1|, |x2− z2|, . . . , |xn− zn|}
=±(x i − zi)

for some choice of the sign and the index i (dependent on the component values).
So, similarly to the L1 case, d(x,z) is equal to one of 2n linear functions of x and
z, and d(y,z) is equal to one of 2n linear functions of y and z. The bisector is a
subset of the union of 4n2 hyperplanes.

Since each bisector is a subset of the union of some hyperplanes, we can
only increase the number of cells in an arrangement of bisectors if we expand
each bisector to be the entire union instead of a proper subset. In the cake
analogy, that is like extending a cut to slice all the way through the cake instead
of only through the first layer. Assuming the hyperplanes to be in general position
can also only increase the number of cells. With k sites, there are

�k
2

�

= Θ(k2)
bisectors, and by Price’s result the number of cells for m hyperplanes in general
position in n dimensions is Θ(mn) [171]. Combining those with the upper bound
on number of hyperplanes per bisector given above, the theorem follows.

It seems intuitive that in L1 and L∞ space, there should be more distance
permutations possible than in Euclidean space. Consider the bisectors A|B and
C |D in Figure 3.4. They define five pieces between them, whereas two Euclidean
bisectors could define at most four. The function of n in the upper bounds of
Theorem 3.4 is superexponential for L1 and L∞, but for L2, Corollary 3.3 gives a
leading term coefficient of (2nn!)−1. So it seems non-Euclidean Lp metrics should
give many more distance permutations.

But there are only 18 pieces in Figure 3.4, the same as in Figure 3.3. The
Euclidean result of 18 applies in all non-degenerate cases; but in L1 space, even
achieving that many is not easy. We made some informal experiments with
interactive computer graphics and found that choosing four sites without careful
thought often produces fewer than 18 cells. We found no examples where it gave
more than 18.

It appears that for every pair of bisectors like A|B and C |D, there must be a pair
like A|D and B|C; the first pair creates extra pieces, the second pair removes them,
and the total never seems to exceed the Euclidean limit of given by Theorem 3.2.
That raises the question of whether the Euclidean bound may actually apply to
all Lp spaces. Does Nn,p(k) = Nn,2(k) for all p? As described in the next section,
the answer is “no.”

3.5. EXPERIMENTAL RESULTS ON LP DISTANCE PERMUTATIONS 93

3.5 Experimental results on Lp distance permutations

Our main investigation of distance permutations concerns the maximum possible
number of them over all choices of sites and assuming a database in which every
permutation that can occur, does occur, with uniform probability. That is the worst
case for index storage space, because it maximises the number of bits necessary
to store a distance permutation. It is also the best case for database search
time, because it maximises the amount of information in a distance permutation.
However, in a practical implementation, the sites may be chosen at random, and
some distance permutations may occur much less often than others, or not at all
even though they could, and so the actual number of distance permutations in the
database may be significantly less than the theoretical maximum. In this section
we present some experimental results on the number of distance permutations
actually occurring in randomly-generated vector databases. These experiments
were conducted for a paper in SISAP’08 [191], although space considerations
limited the presentation in that paper to a summary of the detailed results given
here.

We implemented distance permutation counting by extending the SISAP C-
language metric space library of Figueroa, Navarro and Chávez [71] to include a
new index type called distperm, as a minor modification of the library’s pivots
index type. Our index-generation program, while generating an index file which
is discarded, produces a line of ASCII for each point in the input describing its
distance permutation with respect to the pivots. The ASCII lines can be processed
with standard Unix utilities (sort | uniq | wc) to find the number of distinct
permutations. Site selection, inherited from the original library, simply chooses
the first k points from the database; since the database points are generated
independently and identically at random, this choice is equivalent to choosing
sites uniformly at random.

This implementation approach was chosen because of the workshop require-
ment to support theoretical results with experiments on the SISAP library. The
library’s variable names and internal documentation are sparse, and mostly writ-
ten in Spanish, and its conceptual design (in particular, the focus on testing
index data structure time performance, and the limitation of Lp spaces to L1,
L2, and L∞) is not well-suited to some of our work. In the process of doing
these experiments we found bugs in the library, which were reported to and
acknowledged by one of the library’s authors [69]. However, we found no bugs
that would be expected to materially affect the experimental results, and the
most theoretically significant results, the counterexamples to Nn,p(k) = Nn,2(k),
have been carefully double-checked with our own independent Perl code.

For each vector length n from 1 to 10, number of sites k from 2 to 12, and

94 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

metric from {L1, L2, L∞}, we did 20 trials of generating a random database of
106 points chosen uniformly from the unit hypercube, choosing k of them as
sites, and counting how many distinct distance permutations occurred among
the database points. Note that this count represents only a lower bound on the
number of distance permutations generated by the random sites. There could
well be some very small generalised-Voronoi regions which happen not to contain
any database points. So the results of this kind of experiment differ from the
Nn,p values described earlier by two maximisations: Nn,p is the maximum for any
choice of sites, but also the maximum for any choice of database points.

The sample mean permutations counted over 20 trials are shown in Tables 3.2
and 3.3. The column for k = 2 is omitted; it consists entirely of the value 2.00.
One observation from these tables is that the mean distance permutations seem
to decrease from L1 to L2 and from L2 to L∞. The pattern is not consistent,
however; there seems to be substantial variation from one sample to the next,
so that 20 trials may not really be enough to get an accurate picture of how the
system behaves. Except for the lowest dimensions and numbers of sites, the
mean numbers of distance permutations for all three metrics seem to fall far short
of the Euclidean theoretical bound from Table 3.1. Note that for the Euclidean
metric, that bound is always achieved except in degenerate cases, so it is apparent
that very many of the generalised-Voronoi cells, which must exist by the theory,
are being missed by the database points. The fact that database points occur
only in the unit cube may be relevant, if some significant number of distance
permutations would only be possible for points outside the cube.

For the same sample of 20 random databases we also recorded the maximum
number of distance permutations observed, in order to test the hypothesis that
Nn,p(k) = Nn,2(k). Those results are shown in Table 3.4. The columns for k < 5
are omitted; in those columns, all three metrics simply achieved the Euclidean
bounds from Table 3.1.

These results indicate the existence of counterexamples to Nn,p(k) = Nn,2(k)
for several cases of n, p, and k. The initial experiment did not allow for isolating
and reproducing such cases because the SISAP library as supplied took its random
number seeds from the system clock without saving or reporting them. Since
each trial overwrote the multi-megabyte database from the previous one, there
was no practical way to go back to an earlier trial for more detailed examination.
We have since extended the library to use reproducible seeds, and suggested that
feature to the authors. In a new experiment which simply ran trials repeatedly
until it found some with sufficiently large permutation counts, we were able to
find new counterexamples for each of the labelled cases from Table 3.4, and save
the complete database for each one. In all but one of the four cases, our new
counterexamples actually surpass the permutation counts from Table 3.4. We

3.5. EXPERIMENTAL RESULTS ON LP DISTANCE PERMUTATIONS 95

k
n 3 4 5 6 7 8

L1 1 4.00 7.00 11.00 16.00 22.00 29.00
2 5.10 14.65 34.75 78.70 149.00 268.45
3 5.90 20.85 71.45 251.40 591.25 1405.20
4 6.00 23.95 107.50 440.55 1538.25 4705.35
5 6.00 24.00 117.40 584.40 2699.25 10390.85
6 6.00 24.00 119.50 672.85 3697.85 16073.50
7 6.00 24.00 119.20 700.50 4188.10 20811.65
8 6.00 24.00 120.00 719.40 4574.75 26999.10
9 6.00 24.00 120.00 718.50 4755.90 30309.60

10 6.00 24.00 120.00 719.90 4887.05 30715.55

L2 1 4.00 7.00 11.00 16.00 22.00 28.95
2 5.60 15.25 38.65 77.35 155.45 268.05
3 5.90 19.60 72.75 205.20 577.00 1332.75
4 6.00 22.70 99.40 380.00 1385.25 4214.20
5 6.00 23.90 109.60 535.00 2043.25 7515.05
6 6.00 23.75 115.35 610.80 3210.90 13824.25
7 6.00 23.95 116.65 655.30 3443.85 17349.30
8 6.00 23.95 115.95 647.50 4137.95 20244.80
9 6.00 24.00 119.60 704.90 4258.60 21936.45

10 6.00 24.00 119.50 697.15 4575.65 25562.25

L∞ 1 4.00 7.00 11.00 16.00 22.00 29.00
2 5.30 13.15 34.10 69.75 136.85 233.15
3 5.70 18.05 68.30 206.40 537.70 1219.75
4 5.80 23.50 84.30 358.95 1263.95 3664.60
5 6.00 22.80 93.60 459.70 2138.85 6488.30
6 6.00 23.35 110.00 571.60 2642.25 11314.00
7 6.00 23.70 115.45 626.20 3133.55 14384.65
8 6.00 24.00 109.15 585.55 3542.75 15433.55
9 6.00 24.00 118.50 627.30 3779.65 18494.20

10 6.00 24.00 118.50 709.00 4084.80 22415.00

Table 3.2: Mean distance permutations in Lp experiment.

96 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

k
n 9 10 11 12

L1 1 37.00 46.00 56.00 67.00
2 428.20 671.65 1021.85 1398.20
3 2924.30 5886.80 9880.55 16143.70
4 11078.20 24077.90 48544.80 82253.85
5 30851.45 66953.80 126826.65 220231.20
6 50826.35 123731.65 249919.70 394466.85
7 76755.45 204455.05 377575.30 569807.35
8 109849.55 275752.35 518661.45 728040.20
9 122789.75 326614.40 617099.95 809393.30

10 146384.95 386111.90 688443.85 884013.40

L2 1 37.00 46.00 56.00 67.00
2 443.05 686.90 1026.65 1440.15
3 2773.30 5133.30 8853.50 14584.20
4 9912.40 21230.50 38047.15 67179.40
5 19816.05 51259.90 99545.40 182253.50
6 36326.25 97967.25 210376.30 348609.25
7 58430.65 161071.90 306082.00 502957.40
8 74664.80 233592.90 434457.00 657013.80
9 102166.35 260769.85 513928.05 730146.10

10 117556.60 325272.35 621300.75 815217.05

L∞ 1 37.00 46.00 56.00 67.00
2 400.20 602.75 929.15 1314.10
3 2529.90 5064.90 8094.35 13152.25
4 8457.70 18137.00 33338.65 54838.10
5 19071.75 44301.15 87522.55 150360.55
6 31869.30 87133.05 145385.35 265706.25
7 49852.35 132839.80 243956.95 357331.00
8 61401.00 153040.30 293299.55 496952.75
9 80897.80 212181.70 385720.85 569572.75

10 95076.85 226682.85 436309.55 648613.15

Table 3.3: Mean distance permutations in Lp experiment (continued).

3.5. EXPERIMENTAL RESULTS ON LP DISTANCE PERMUTATIONS 97

k
n 5 6 7 8 9 10 11 12

L1 1 11 16 22 29 37 46 56 67
2 43 92 168 290 462 772 1080 1532
3 †98 †354 838 1804 3769 7250 11747 18239
4 120 †658 2030 5663 16592 30430 57171 94537
5 120 697 3505 13573 35769 75298 151101 258874
6 120 720 4904 20234 65759 155220 290896 471375
7 120 720 4952 27824 97932 257603 435901 653015
8 120 720 5035 33637 132672 334432 625364 770929
9 120 720 5039 37198 169753 395440 659222 845181

10 120 720 5038 35698 191743 492404 757208 917237

L2 1 11 16 22 29 37 46 56 67
2 45 94 180 298 527 735 1095 1539
3 92 273 706 1568 3145 5859 9906 15929
4 120 537 1845 5079 11754 24075 45396 75850
5 120 711 3336 10471 27063 71921 129003 208301
6 120 720 4814 18693 62457 143879 270655 402685
7 120 720 4875 23944 91908 208659 393085 613857
8 120 720 4973 34866 118958 304725 568608 796775
9 120 720 5004 28635 135767 351849 637530 851775

10 120 720 5040 33097 148751 473234 732197 905490

L∞ 1 11 16 22 29 37 46 56 67
2 39 87 163 278 492 780 1076 1485
3 †100 271 823 1712 3676 6677 11331 16162
4 119 544 1802 4912 12610 24745 40919 70354
5 120 712 3266 12566 29275 71306 122876 213951
6 120 711 4485 17837 50834 128718 200456 352150
7 120 720 4650 23983 74802 192155 314927 466484
8 120 720 4446 26906 82902 226039 408183 610841
9 120 720 5002 27160 124835 328629 484824 714881

10 120 720 5008 34281 129445 284997 532539 770769
† indicates counterexamples to Nn,p(k) = Nn,2(k).

Table 3.4: Maximum distance permutations in Lp experiment.

98 CHAPTER 3. REAL VECTORS: DISTANCE PERMUTATIONS

also verified each one with a new and separate implementation.
First, for R3, L1, and k = 5, these sites give at least 108 permutations:

x1 = 〈0.205281, 0.621547,0.332507〉,
x2 = 〈0.053421, 0.344351,0.260859〉,
x3 = 〈0.418166, 0.207143,0.119789〉,
x4 = 〈0.735218, 0.653301,0.650154〉,
x5 = 〈0.527133, 0.814207,0.704307〉 .

(3.15)

For R3, L1, and k = 6, these sites give at least 369 permutations:

x1 = 〈0.723033, 0.528501,0.114338〉,
x2 = 〈0.537893, 0.456652,0.887229〉,
x3 = 〈0.933624,0.852988, 0.287647〉,
x4 = 〈0.989538,0.902709, 0.683371〉,
x5 = 〈0.271674,0.328448, 0.779628〉,
x6 = 〈0.644903,0.690669, 0.969264〉 .

(3.16)

For R4, L1, and k = 6, these sites give at least 665 permutations:

x1 = 〈0.594251,0.972026, 0.340673,0.046086〉,
x2 = 〈0.995420,0.894291, 0.679227,0.073585〉,
x3 = 〈0.609278,0.466341, 0.729449,0.924971〉,
x4 = 〈0.330296,0.724184, 0.379641,0.275436〉,
x5 = 〈0.378577,0.690847, 0.570682,0.657335〉,
x6 = 〈0.928232,0.417448, 0.127706,0.183649〉 .

(3.17)

Finally, for R3, L∞, and k = 5, these sites give at least 100 permutations:

x1 = 〈0.902333,0.530606, 0.513334〉,
x2 = 〈0.202670,0.267084, 0.123475〉,
x3 = 〈0.364960,0.539546, 0.615330〉,
x4 = 〈0.063169,0.494804, 0.465638〉,
x5 = 〈0.080624,0.338353, 0.681813〉 .

(3.18)

These counterexamples prove that Nn,p(k) = Nn,2(k) is not true in general. It
appears that the counterexamples must also hold for values of p slightly more
than 1, or finite but sufficiently large, because those metrics could be chosen
to have values sufficiently close to the values of L1 and L∞ for the generalised-
Voronoi cells to remain nonempty. Many questions remain open on how far the
limits actually extend.

Chapter 4

Tree metrics

Tree metric spaces are of interest for several reasons. They have a simple
definition and allow easy demonstration of our techniques. They also have
applications in approximating other metrics, and in software obfuscation.

Definition 4.1
A tree metric space is a set S and distance function d such that there is a tree metric space

tree T with S as its vertex set, and for any x , y ∈ S, d is the number of
edges in the unique path from x to y in T . Then d is called a tree metric. tree metric

If T is instead a weighted tree, with a positive real weight associated with
each edge, and d(x , y) is the sum of the edge weights on the path from
x to y, then d is a weighted tree metric. Note that by setting all weights weighted tree

metricequal to 1, every tree metric is a weighted tree metric.

Example 4.2
Figure 4.1 shows the flights offered by an airline, with their values in
frequent flyer points. A passenger wishing to travel between two cities
for which there is no direct flight must make connections in one or both
of the hub cities of Thunder Bay and Waterloo. For instance, a trip
between Armstrong and Ottawa would route through both hubs and earn
441+1203+391= 2035 frequent flyer points. Because the route map is a
weighted tree, the number of frequent flyer points earned between two
cities is a weighted tree metric on the set of cities.

Terminology used to describe tree metrics varies, and many authors assume
the definition [4, 144]. Gupta does not define “tree metric” as such, but refers
implicitly to the distance in weighted trees [93], while Indyk and Matoušek
define tree metrics as a special case of graph metrics, and always weighted [109,
pages 183–184]. Applications of tree metrics, such as to numerical taxonomy
in biology, often assume that the metric applies to a finite number of points [3].

99

100 CHAPTER 4. TREE METRICS

Port Frances Thunder Bay

Armstrong

Red Lake

Fort Severn

Owen Sound

Waterloo

London

Toronto

Ottawa1203

35

68 85

391

1420

960
441

777

Figure 4.1: Route map for a small airline.

101

However, to include such metrics as the prefix distance of Definition 4.5, we
permit infinite trees.

It is easy to verify that tree metrics as defined above do have the properties
required by Definition 1.1. Strong statements can be made about tree metrics
that might not apply to more general classes of metrics. For instance, with a tree
metric, the triangle inequality d(x , z) ≤ d(x , y) + d(y, z) holds as an equality if
and only if y is on the unique path between x and z. Tree metrics also have the
following property.

Definition 4.3
A metric space 〈S, d〉 satisfies the four-point condition if for every set of four-point

conditionfour distinct points {x , y, z, t} ⊆ S, we have [34]

d(x , y) + d(z, t)≤max

(

d(x , z) + d(y, t)

d(x , t) + d(y, z)
. (4.1)

Some authors use the four-point condition as the definition of tree metrics,
calling any metric space a tree metric space if it obeys Definition 4.3 [64, 149].
However, the four-point condition applies to metric spaces that lack trees or
paths, such as discrete spaces (including finite ones) and the following infinite
example.

Example 4.4
Let S be the set of rational numbers in the closed interval [0,1], with
the metric d(x , y) = |x − y|. This space obeys Definition 4.3 but does
not correspond to distances among the vertices of any tree; no point is
adjacent to any other point.

We reserve the term tree metric space for the spaces satisfying Definition 4.1,
which requires that the points are exactly the vertices of some tree. There we
follow Lynn, Prabhakaran, and Sahai, whose work on obfuscated neighbourhoods
(robust hashes) does not define tree metrics rigorously but assumes the ability to
traverse a tree metric one edge at a time finding a point at each step [144]. As
Buneman shows, any finite metric space satisfying the four-point condition must
also be a subset of a tree metric space satisfying Definition 4.1 [34].

The prefix metric gives an especially convenient tree metric space; it names
points with strings, and the distance is easy to calculate from the strings. Here is
the formal definition:

Definition 4.5
The prefix distance between two strings x and y is the minimal number prefix distance

of edits to transform one string into the other, where an edit consists of
adding or removing a letter at the right-hand end of the string.

102 CHAPTER 4. TREE METRICS

The distance between two strings in the prefix metric is the sum of their
lengths, minus twice the length of their longest common prefix. It can be thought
of as measuring the distance between two items organised in an hierarchical
structure labelled with strings, such as books in a library; longer common prefix
of LC or Dewey decimal call numbers implies more closely related content.

Because tree metrics are simple and strong statements can be made about
them, they are frequently used as approximations of less convenient metrics,
often in a randomised context. Alon and others displayed a randomised embed-
ding of an arbitrary finite metric space into a set of tree metrics, such that the
distortion from the original metric to a randomly selected one of the tree met-
rics was at most exp

�

O(
p

log n log log n)
�

[4]. Their main application was the
k-server problem, an online problem in which k servers move from point to point
serving requests and attempting to keep the total distance moved as small as
possible. Bartal improved the distortion bound first to O(log2 n) [19] and then to
O(log n log log n) [20], with the introduction of additional points to the space, and
described multiple applications. Applications of these approximate embeddings
include that by Peleg and Reshef to the distributed directory problem [166]; by
Kleinberg and Tardos to classification [125]; and by Laoutaris, Zissimopoulos,
and Stavrakakis to allocating Internet bandwidth and storage [132, page 412].

Tree metrics are also of interest for software obfuscation. Many security
applications require disclosure of a piece of software that computes a function
without directly disclosing some secret parameter of the function. We considered
algorithms for blind substring search, in which a program to search for a substringblind substring

search is published without publishing the substring, in 1998 [189]; and we cryptanal-
ysed a similar system used by a commercial Internet content filtering package, in
2000 joint work with Eddy Jansson [112].

Barak and others showed in 2001 that obfuscation is, in general, impossi-
ble [18]. However, users still demand it; and Lynn, Prabhakaran, and Sahai
give some very limited positive results for obfuscation. In particular, they show
that neighbourhood testing in a tree metric can be obfuscated [144]. As they
describe, some security functions of practical interest for access control can then
be obfuscated despite the general impossibility results.

4.1 Intrinsic dimensionality

Recall that the intrinsic dimensionality ρ of a space is defined as the square of
the mean, divided by twice the variance, of the distance between two random
points selected from the native distribution of the space (Definition 1.23). For
tree metric spaces this value depends on both the shape of the tree and the native

4.1. INTRINSIC DIMENSIONALITY 103

Figure 4.2: A star graph.

distribution for choosing points, and in general it may be difficult to calculate.
However, we solve a few simple examples here.

First of all, consider an unweighted tree metric space with a finite number
of points and a uniform distribution among them. If the tree is a path, ρ → 1.
That case can be analysed as approaching a one-component real vector with
the L1 metric and the lone component uniformly distributed in [0, 1], at which
point Corollary 2.2 applies. That seems to be the minimum possible value if the
distribution is uniform. If the distribution can be non-uniform, we can achieve ρ
arbitrarily small with a distribution that chooses one point with almost certain
probability, and applying Theorem 1.1.

As for an upper limit, if the tree is a star graph with n vertices, as shown in
Figure 4.2, then in the limit for large n with a uniform distribution, the chance
of choosing the middle vertex is negligible, the space approximates a discrete
space, and ρ→ n/2, which is the maximum for any finite metric space with any
distribution by Corollary 1.2, and thus maximal for any finite tree metric space
(including weighted ones).

For strings of length n with prefix distance, the intrinsic dimensionality is
quadratic. Note that this result does not contradict the previous claim that linear
intrinsic dimensionality is the maximum, because the value of n in this case is
the length of the strings, not the number of points in the space; the number of
points in this space of strings is exponential in n.

104 CHAPTER 4. TREE METRICS

Theorem 4.1
For the space of strings of length n chosen uniformly at random with the
prefix distance, the intrinsic dimensionality ρ obeys

ρ→
(2n+ 1− |Σ|)2

|Σ|(|Σ| − 1)
(4.2)

where Σ is the alphabet.

Proof The length of the longest common prefix between two infinite strings has
a geometric distribution [114] with parameter p = 1/|Σ|. Our finite strings differ
only in that the longest common prefix is limited to n letters; but if n is large
in comparison to log |Σ|, the chance of the prefix being as long as the strings
becomes negligible, so we can approximate with the infinite case.

The mean and variance of a geometric distribution are (1−p)/p and (1−p)/p2

respectively. Then the prefix distance (equal to the total length of the two strings
minus twice the length of the longest common prefix) has mean 2(np+ p− 1)/p
and variance 4(1− p)/p2. The result follows by substitution into the intrinsic
dimensionality definition ρ = E2[D]/2 V[D] (Definition 1.23):

ρ→
4(np+ p− 1)2p2

p24(1− p)

=
(2n+ 1− |Σ|)2

|Σ|(|Σ| − 1)
.

4.2 Distance permutations

Recall from Definition 1.25 that given k points x1, x2, . . . , xk called the sites,site

the distance permutation for a point y is the unique permutation that sorts thedistance
permutation site indices into order of increasing distance from y, using order of increasing

index to break ties. Depending on the space and the choice of the k sites, some
permutations might not occur. That is, there may be some permutation π such
that there is no point y with π as its permutation.

If we store distance permutations as part of a database index, then the number
of bits required depends on how many distinct values really do occur; so we
consider the question of how many distinct distance permutations can occur. We
are interested in a worst-case maximum and so assume that the k sites are chosen

4.2. DISTANCE PERMUTATIONS 105

to maximise the number of distinct distance permutations. It turns out that the
maximum is quadratic in k. This result appeared, with a sketch of the proof, in
SISAP’08 [191].

Theorem 4.2
With k sites in a space with a (possibly weighted) tree metric, there can be
at most

�k
2

�

+ 1 distinct distance permutations.

Proof Let d be the tree metric. For any three vertices x , y, and z with x 6= y,
consider whether d(x , z)≤ d(y, z). There is exactly one edge, and it happens to
be on the path between x and y, where the statement is true at one endpoint and
not the other. Removing that edge splits the tree into two connected components,
one containing all vertices z where the statement is true and one containing all
vertices where it is false. Repeat that procedure setting x and y to every pair
chosen from the k sites. The resulting components correspond to the distinct
distance permutations that can occur. There are at most

�k
2

�

+ 1 of them.

Furthermore, the bound of Theorem 4.2 is easily achievable in spaces like the
prefix distance space, where long paths are abundant.

Corollary 4.3
The bound of

�k
2

�

+ 1 distinct distance permutations is achievable in a tree
metric space that contains a path of 2k−1 edges with the same weight.

Proof Label the vertices along the path sequentially from one end with the inte-
gers 0 to 2k−1. Let the sites, in order, be the vertices labelled 0 and 2,4, . . . , 2k−1.
Now the midpoint of the vertices 0 and 2i for any i ≥ 1 will fall on the vertex
labelled 2i−1; and the midpoint of the vertices labelled 2i and 2 j will fall on the
vertex labelled 2i−1+ 2 j−1. All those

�k
2

�

midpoint vertices are distinct, and the
edges from them to their higher-numbered neighbours are the distinct splitting
edges of Theorem 4.2. Removing those edges separates the tree into

�k
2

�

+ 1

connected components corresponding to the
�k

2

�

+ 1 distinct distance permuta-
tions. Note that the midpoint vertices follow their lower-numbered neighbours
in the division because of the tiebreaking rule in Definition 1.25, which considers
lower-indexed sites, which are the lower-labelled sites by our choice, to be closer
in case of ties.

106 CHAPTER 4. TREE METRICS

4.3 Reverse similarity search

The VPREVERSE and GHREVERSE problems (Definitions 1.27 and 1.29 on
page 37) are constraint satisfaction problems originating from distance-based
binary tree data structures. Recall that a VPREVERSE instance consists of ordered
triples of a point which serves as centre, a real radius, and a bit specifying inside
or outside. The solution point must be inside or outside each of the spheres
as directed by the bits; that is, a point z such that for all triples (x , r, b) in the
instance, d(x , z) ≤ r if and only if b = 1. A GHREVERSE instance specifies the
constraints as pairs of points; the solution z must be a point such that for all pairs
(x , y) in the instance, d(z, x)≤ d(z, y).

Note 4.6
As mentioned in Note 1.11, tree metric spaces are completely different
from distance-based tree data structures even though the data structures
could be used to index points that happen to be in a tree metric space. The
tree metric spaces discussed in this section, on which we do VPREVERSE
and GHREVERSE, are not V P- or GH-trees.

It is obvious that in a finite tree metric space, with the tree given explicitly in
the input, VPREVERSE and GHREVERSE are polynomial-time problems. A naive
algorithm for either of them in an n-point space might consist of finding all the
pairwise distances among points in O(n2) time by doing n depth-first searches,
then testing each of the n points against all the constraints, finding all solutions
in quadratic time overall. But in the case of VPREVERSE, it is possible to solve
the problem faster.

Theorem 4.4
There exists an algorithm to decide VPREVERSE on a weighted finite tree
metric space in time Θ(n+m) where n is the number of points in the space
and m is the number of spheres in the instance.

Proof First, we split vertices as necessary to reduce the maximum degree of the
tree to three, giving each new edge a weight of zero and recording for each new
vertex which original vertex it came from. Note that each new vertex created
by a split is a solution to the original instance if and only if the original vertex
was a solution. With the tree expressed by an array of vertices each having a
doubly-linked list of outgoing edges and each directed edge linked to its partner
in the other direction, we can do this splitting in linear time. Each directed edge

4.3. REVERSE SIMILARITY SEARCH 107

in the tree will be labelled with an interval of distances, initialised to [0,∞),
as well as its weight. The interval on an outgoing edge represents the range
of distances from the vertex within which any solution must lie if it is on that
branch of the tree; the initial values signify no restriction on where solutions
could be.

For each sphere of the form (x , r, 0), which requires solutions to be more than
distance r from the centre x , we set all the intervals on edges leading out of x to
their intersection with the interval (r,∞). Similarly, for each sphere of the form
(x , r, 1), requiring solutions to be at most distance r from x , we intersect all the
intervals on edges leading out of x with the interval [0, r]. Now the intervals
contain all the information from the input about which points can and cannot be
solutions; it remains only to propagate that information around the tree until we
have tested all the points.

We choose an arbitrary vertex to be the root and do two depth-first searches
starting from it. Each time we visit a vertex we intersect the intervals on its
incoming edges, adjusted for edge weight, with the intervals on its outgoing
edges to propagate the constraints. For instance, if (a, b] is the interval on an
edge from x to y with weight w when we visit y, then we set the intervals on all
outgoing edges of y, except the one leading back to x , to their intersections with
(a−w, b−w].

After doing our two depth-first searches, any vertex is a solution if and only if
all its incoming edges are labelled with intervals containing their weights and all
its outgoing edges are labelled with intervals containing the value zero. We can
test that for all vertices in linear time.

To establish correctness of the algorithm, note that a vertex y is a solution
to the instance if and only if there is no vertex x which is the centre of a sphere
such that the distance from x to y violates the constraint given by the sphere.
So if we test all paths for all pairs of x and y, against all spheres centred on x ,
we can establish whether y is a solution. Each y must receive the information
from each x as to whether it is at an acceptable radius. That information starts
at each sphere centre when we initialise the intervals and the propagates to all
neighbours each time we visit a vertex.

The path from x to y may be monotonic downward if x is an ancestor of y,
monotonic upward if x is a descendant of y, or bitonic, proceeding first from
x up to its common ancestor with y and then down to y. The first depth-first
search propagates all constraints from ancestors down to descendants on the way
down, and from descendants back up to ancestors on the way up. That handles
all monotonic paths. It might handle some bitonic paths as well if they happen
to run left to right in the tree, but they might not. However, the first search
propagates the information at least up to the common ancestor in a bitonic path,

108 CHAPTER 4. TREE METRICS

and then the second depth-first search propagates it the rest of the way. The
requirement for outgoing edges from a solution to include zero in their intervals
handles the case x = y, where a vertex can be excluded because it is the centre
of a sphere even without a path to any other distinct vertex.

The reason we cannot immediately use a similar algorithm for GHREVERSE
is that the information to be propagated along each edge is more complicated for
GHREVERSE. There could be an edge with one point from every input pair on
one side of the edge and the other point on the other side. Instead of labelling
each directed edge with an interval of allowable distances for paths containing
that edge, we would have to store the identities and distances of all the vantage
points on that side. It is not clear that we can process that much information for
every edge fast enough to improve on the quadratic algorithm.

Some tree metric spaces, notably strings with the prefix metric, have too
many points for examination of all points to be a useful strategy. Examining
all points is especially difficult in spaces where there are an infinite number of
points. Nonetheless it remains possible to solve these problems in many typical
large spaces, provided that it is reasonably easy to find paths among points. We
express this requirement by defining an operation which algorithms can use to
find points and relations between them in the space.

Definition 4.7
For any distinct points x and y in a tree metric space, the function
PATH(x , y) returns the path with weights from x to y. That is a listPATH(x , y)

of distinct points starting with x and ending with y, in which any two
consecutive points are adjacent to each other in the tree; and for each pair
of consecutive points, the distance between them, which is the weight of
the edge.

Given PATH(x , y) it is easy to compute distances, or test adjacency, between
points. For our main results on reverse similarity search in tree metric spaces,
we require that PATH(x , y) can be executed in time polynomial to its input. Note
that also implies a limit on the number of edges in the path between x and y,
because it must have time to write its output. This requirement is not particularly
onerous, and we expect it to be satisfied by any space one might use in practice;
it exists to exclude obscure special cases where spaces might be defined to have
very long paths among points with short names.

For spaces on which PATH is polynomial-time, GHREVERSE is a polynomial-
time problem. VPREVERSE places additional requirements on the space in order
to be polynomial-time, but we still expect it to be polynomial-time in all practical
cases. These results were presented (with the proofs given as sketches) in
SISAP’08 [192]. First we give the proof for GHREVERSE.

4.3. REVERSE SIMILARITY SEARCH 109

Figure 4.3: The central subtree.

Theorem 4.5
If S is a space with a (possibly weighted) tree metric, and PATH(x , y) runs in
polynomial time for this space, then GHREVERSE on S is a polynomial-time
problem.

Proof Since finding the path between two points is polynomial-time, the length
(number of edges) of the path must also be polynomial. Choosing one of the
points in a GHREVERSE instance, say x1, we find the path from it to all the
other points x i and yi in the instance. The union of all those paths, which we
call the central subtree, is the minimum spanning tree of the points, and it is of central subtree

polynomial size. See Figure 4.3. In polynomial time we can check all the vertices
of the central subtree tree as possible solutions to the GHREVERSE instance.

Now consider a point u that is not in the central subtree. Because all the points
in the space form a tree, there must be some point v in the central subtree such
that all paths from u to points in the central subtree pass through v, including
all paths from u to any x i or yi. Then for any x i, d(u, x i) = d(u, v) + d(v, x i). The
same holds for any yi. All the inequalities that define whether v is a solution to

110 CHAPTER 4. TREE METRICS

the GHREVERSE instance also apply to u with the addition of d(u, v) on both
sides. So u is a solution to the instance if and only if v is; testing every v also
gives us the answer for all u.

Therefore we can solve an instance of GHREVERSE on this space in polynomial
time, and the problem is in P.

For VPREVERSE, even subtler distinctions can be made among spaces, and to
resolve them we introduce the following simplified VPREVERSE problem which
can be used as a bellwether for a space’s difficulty.

Definition 4.8 (The Simplified VPREVERSE (SVPREV) Problem)
Given a point x in some tree metric space, a subset Y of points adjacent to
x in the tree, and an interval of reals I (which may be unbounded), accept
if and only if there exists a point z such that d(x , z) ∈ I and the path from
x to z does not pass through any element of Y .

Theorem 4.6
If S is a space with a (possibly weighted) tree metric, and PATH(x , y) runs
in polynomial time for this space, then VPREVERSE on S is polynomial-time
reducible to SVPREV.

Proof As in Theorem 4.5, we begin by finding all paths between points men-
tioned in the VPREVERSE instance to form the central subtree (Figure 4.3). In
polynomial time we can test all the points in the central subtree as possible
solutions to the instance.

However, unlike the GHREVERSE case where points outside the central
subtree each had the same status as some point in the central subtree, with
VPREVERSE there could be some satisfying points outside the central subtree
without any in it. We detect such points by invoking SVPREV.

For each point y in the central subtree and each point x outside it but
joined through y (that is, all the paths from x to points in the central subtree
pass through y), then whether x satisfies the instance can be determined by
examining its distance to y and the status of y. The distance d(x , y) is added to
d(y, z) to get d(x , z) for all z in the central subtree, and d(x , y) does not change
for different z. So for each y in the central subtree, we construct an SVPREV
instance centred on y. Let Y (the excluded neighbours) be all the neighbours
of y that are in the central subtree, because we wish to consider only points
outside the central subtree and joined to it through y. Determine the interval of
d(x , y) values which would allow a point joined through y to be a solution to

4.4. BADLY-BEHAVED TREE METRICS 111

the VPREVERSE instance and let I be that interval. Evaluating this instance for
each y in the central subtree allows us to find any remaining solutions for the
VPREVERSE instance.

The restriction to spaces where PATH(x , y) runs in polynomial time serves to
limit the problem to cases where it is reasonable to do computations on paths at
all. Theorems 4.5 and 4.6 should apply to any practical tree space not designed
specifically to fall outside the criterion; see Example 4.12 for a carefully-designed
space in which Theorem 4.5 may fail.

Given a space where computing paths is easy and Theorem 4.5 applies, the
SVPREV problem still may or may not be hard, which is why we separate it out
into a defined problem. We would normally expect it to be easy in any practical
space, such as the prefix-metric space. But a carefully-designed space can make
it non-trivial, as in the following example. The reduction in Theorem 4.6 may
not always go in the other direction because of the difficulty in some spaces of
expressing the “no path through Y ” constraint in terms of spheres, so hardness of
SVPREV does not necessarily prove hardness of VPREVERSE; but in the example,
the VPREVERSE problem is NP-hard anyway.

Example 4.9
For an arbitrary instance of 3SAT with variables v1, v2, . . . , vn, construct a
space where the points are all binary strings b1 b2 . . . bk where 0 ≤ k ≤ n
such that no constraints are violated by assigning each vi for 1≤ i ≤ k to
true if and only if bi is 1. Note that the empty string λ is always included.
Use the prefix metric of Definition 4.5, which is equivalent to building a
trie of the strings and using unit weights.

It is trivial to test whether any given string is included in the space,
and to find the distance and path between any two strings if they are
included in the space. The GHREVERSE problem in this space is easy
by Theorem 4.5. However, the question of whether there exists a point
at distance at least n from λ is the question of whether there exists a
satisfying assignment for the original 3SAT instance. That is an instance
both of VPREVERSE (with just one sphere) and SVPREV (with the set Y
empty), so those problems in this space are as hard as 3SAT.

4.4 Badly-behaved tree metrics

Tree metrics may seem so simple as to render our results on them trivial. That
appearance is misleading. Tree metrics can in fact be defined in devious ways
that render them hard to handle. We already mentioned Example 4.4, which

112 CHAPTER 4. TREE METRICS

is not a tree metric under our definition but meets the definition used by some
other authors. In this section we present some of the other difficult cases hinted
at by the limitations in the theorem statements of previous sections.

Theorem 4.2 gives the maximum number of distance permutations that can
occur in any tree metric space, but Corollary 4.3 only gives sufficient, not nec-
essary, conditions for that many permutations to actually occur. Any ordinary
infinite space, such as the prefix metric space of Definition 4.5, would be expected
to contain the maximum number of permutations for some choice of sites; if edge
weights are not all the same we can still find

�k
2

�

distinct cuts by using a longer
path, provided the weights are reasonably close to uniform.

In a finite space we might expect to find fewer than
�k

2

�

+ 1 distance permuta-
tions. Since the number of permutations can never exceed the number of points
in the space, but the upper bound grows quadratically with the number of sites,
and there may be as many sites as there are points, then it is clear that the bound
cannot always be achieved in a finite space: we could run out of points to label
with distinct distance permutations. Note that our proof in Corollary 4.3 that
the bound can ever be achieved at all, relies on a number of points exponentially
larger than the number of sites.

The question remains of whether Theorem 4.2 could fail in some more
interesting way, with fewer than

�k
2

�

+ 1 permutations even though the space is
infinite. We give two examples of ways it can fail in infinite tree metric spaces.
Both are illustrated by Figure 4.4. The upper bound can be achieved in spaces
with long paths having reasonably uniform weights; it fails if there are no long
paths, or if the weights are not reasonably uniform, and we give one example
of each. Note that in each example there are k distance permutations; that is a
trivial lower bound because each of the sites must have a distance permutation
starting with itself, so with k distinct sites there must be at least k distinct distance
permutations for the entire space.

Example 4.10 (No long paths)
Let the points be the nonnegative integers, and let there be an edge (with
weight 1) from zero to each of the others. Note that this is distinct from
the star graph space of Section 4.1 because that was a finite space and this
one is countably infinite. Now if k points are chosen as sites, each of them
has its own distance permutation; the zero point has the same distance
permutation as the lowest-indexed site (if zero is not a site itself); and all
other points have the same distance permutation as zero. So there are k
distinct distance permutations.

Example 4.11 (Unreasonable weights)
Build a tree by starting with one vertex and adding vertices one at a time,
each with an edge to one existing vertex called its parent. Let the weight

4.4. BADLY-BEHAVED TREE METRICS 113

(a) No long paths

16

1

2

4

32

64

128

256

512

8

(b) Unreasonable weights

Figure 4.4: Infinite tree spaces with only k distance permutations.

of each new edge be greater than the total weight of all previously-existing
edges, which could be accomplished by giving them power-of-two weights
in order (1, 2,4, . . .). Note that any tree with only finite-degree vertices can
be given an ordering and edge weights like this, by a breadth-first search.

The midpoint between any two vertices x and y, where y was added
after x , must cut the tree on the edge from y to its parent, because that
edge must be on the path, the other edges must have been added earlier,
and the sum of all earlier-added edges is still less than the weight of
the edge from y to its parent. Therefore among any k sites, every pair’s
midpoint must fall on the edge from the later-added site to its parent. One
of the sites is the earliest-added; each of the remaining k− 1 sites has an
associated edge that cuts the tree; and so the tree is cut into k components
corresponding to k distinct distance permutations.

The statements of Theorems 4.5 and 4.6 also have a subtle condition: they
are limited to tree metric spaces where it is a polynomial-time problem to find
the path, with weights, between two points. That raises the question of how
common such spaces are. Are they easy to find? Yes—we expect all practical
spaces to be of this type.

However, the theorems need this limitation because it may be possible to
deliberately construct a very badly-behaved space in which they could fail. Our
example encodes a problem from UP into a tree space in such a way that distances
are easy to calculate but paths depend on solving the problem; if P 6= UP, then
we can choose a problem to make path-finding non-polynomial. This example

114 CHAPTER 4. TREE METRICS

other string
beginning with 0

yes−instance
prefixed by 1 prefixed by 0

yes−instance
prefixed by 1

certificate
prefixed by 0

certificate

λ

1

1

1

1

2

1

other string
beginning with 1

Figure 4.5: A space with easy distances and hard paths.

appeared in SISAP’08 [192]. The class UP is the class of decision problems inUP

which yes-instances have unique polynomial-time certificates. It is known that
P 6= UP if and only if worst-case one-way functions exist, which is a necessary
condition for security of cryptographic hashes [90].

Example 4.12
For any given problem in UP, create a weighted tree metric space where
the points are the set of all binary strings and the edges are defined as
follows.

Let there be an edge with weight 1 from every string that begins with
0 to the empty string λ. For every string of the form 1x , let there be an
edge from 1x to λ with weight 2 if x is not the encoding of a yes-instance
for the problem. If x is the encoding of a yes-instance for the problem,
let there be an edge with weight 1 from 1x to 0x1z0x−1 where z is the
unique certificate for x and x−1 is x with the order of bits reversed. See
Figure 4.5.

In this space, the distance between any two given strings is easy to
compute. For strings x and y with x 6= y, we have

d(λ, 0x) = 1

d(λ, 0x) = 2

d(0x , 0y) = 2

d(1x , 1y) = 4 .

If z is the unique certificate for x , which we can test in polynomial time
by examining 0x1z0x−1, then d(0x1z0x−1, 1x) = 1. For any other cases,
d(0x , 1y) = 3.

However, finding the path between 1x and λ where x is the encoding
of an instance of the problem in UP, requires solving the problem in order

4.4. BADLY-BEHAVED TREE METRICS 115

to write out the certificate that might be on the path; and that may not be
polynomial-time if P 6= UP.

Chapter 5

Hamming distance

An edit distance is a distance function that counts the minimum number of edits edit distance

made on one object to turn it into another object. Provided that the individual
edits are symmetric—that is, making and reversing any given edit count the same
toward the distance—edit distances are always metrics. The Hamming distance
considered in this chapter is a simple metric on strings and an example of an edit
distance.

Definition 5.1
Where x and y are strings with the same length, the Hamming distance Hamming

distanced(x , y) is the number of locations at which they differ. That is, if x1 x2 . . . xn

and y1 y2 . . . yn are the letters in x and y, then

d(x , y) = |{i ∈ {1,2, . . . , n}|x i 6= yi}| . (5.1)

The Hamming distance is usually applied to binary strings, and that is the
case we primarily consider here, but it can be applied to strings on any alphabet,
and even to vectors of reals or more general elements.

The space of n-bit binary strings with Hamming distance is central to the field
of coding theory, and widely studied as a result [169]. Movement through this
space provides a model of what happens to a signal subjected to bit errors, so
many problems in communications are stated in terms of Hamming distance.
For instance, Hamming codes, which are basic to coding theory, are described
in terms of their minimum distance: the smallest Hamming distance between minimum

distanceany two code words, which determines how many errors the code can guarantee
to correct. These codes, like the metric, are named for Richard V. Hamming, a
pioneer in the field.

Many computer architectures provide an instruction, generally named “pop-
ulation count,” for computing the Hamming weight of a machine word, which Hamming weight

is the same as the number of 1 bits in the word or its Hamming distance from

117

118 CHAPTER 5. HAMMING DISTANCE

the all-zero word. Used with a bitwise exclusive-or instruction, population count
can measure Hamming distance between any two words. Popular legend among
computer programmers holds that population count must be included in comput-
ers sold to the US National Security Agency, as a contractual requirement. For
that reason, the population count instruction is often called the “NSA instruc-
tion” [184, pages 379–380]. Warren comments that “No one (outside of NSA)
seems to know just what they use it for.” [212, page 160]

Indexing systems may attempt to reduce a high-dimensional database to some-
thing more computationally tractable by describing each object with the answers
to a list of yes-or-no questions. The Nilsimsa spam filter is one example of such a
system, in which email messages are reduced to 256-bit digests representing the
answers to 256 questions about their content [53, 159]. The questions express
whether individual hash buckets (filled with hashed trigram counts) have more
or less than the median count. Testing two messages for similarity then means
examining the Hamming distance between their digests. This kind of match
counting applies any time that objects are described in terms of a fixed list of
features that may or may not be present; thus, Hamming distance on binary
strings can become relevant to indexing objects even when the objects themselves
are more naturally thought of as existing in some other space.

An attempt to solve our VPREVERSE and GHREVERSE problems (Defini-
tions 1.27 and 1.29) approximately instead of exactly would also implicate
Hamming distance: the constraints in an instance form a list of bits describing
a point by its answers to yes-or-no questions, much like a Nilsimsa digest. A
point that almost, but not necessarily exactly, solves the instance would be a
point whose digest is within a small Hamming distance of that specified by the
instance.

5.1 Intrinsic dimensionality

The difficulty of indexing strings with Hamming distance can be measured by the
intrinsic dimensionality ρ of the space, defined as the square of the mean dividedintrinsic

dimensionality by twice the variance of the distance D between two random points drawn from
the native distribution (Definition 1.23). Where µ′1 and µ′2 are the first two raw
moments of the distance, intrinsic dimensionality is given by

ρ =
E2[D]
2 V[D]

=
µ′21

2(µ′2−µ
′2
1)

. (5.2)

In this section we consider the intrinsic dimensionality of binary strings with
Hamming distance. The first result (on Bernoulli-distributed bits) appeared
previously in SPIRE’05 [190].

5.1. INTRINSIC DIMENSIONALITY 119

The most obvious native distribution for n-bit binary strings is a simple
uniform choice from the 2n possible strings. Consider a slightly more general
case: let the bits be independent and identically distributed Bernoulli random
variables, equal to 1 with probability q and 0 otherwise. We use q for the
probability to avoid conflict with p from Lp distance. If we treat these strings as
vectors, their Hamming distance is equal to their L1 distance (the sum of per-
component differences, Definition 2.1) and then by Corollary 2.2, the intrinsic
dimensionality is given by ρ = nq(1− q)/(1− 2q+ 2q2). By simple calculus, the
maximum intrinsic dimensionality of n/2 is achieved with q = 1/2, which is the
uniform-distribution case.

As a more complicated example, consider a ball of radius r in Hamming-
distance space with the uniform distribution. In other words, the native distri-
bution is, for some centre string c and radius r, to select a string x such that
d(x , c) ≤ r uniformly from the set of all such strings. The string length n is
assumed to grow large in comparison to the radius r. In that case, the intrinsic
dimensionality is linear in n with a constant that depends on r and increases
with r to a limit of 1/2, agreeing with the previous result.

Theorem 5.1
In the space of n-bit binary binary strings chosen uniformly from a ball of
constant radius r, the intrinsic dimensionality ρ obeys

ρ→
r

2r + 1
n . (5.3)

Proof Consider how many ways we could choose i of the n bits, then j of the
remaining n− i bits, then k of the remaining n− i − j bits. This number is given
by the multinomial coefficient [85, 88, page 168] multinomial

coefficient
�

n

i, j, k, n− i− j− k

�

=
n!

i! j!k!(n− i− j− k)!
. (5.4)

We can find the first two terms of the expansion of (5.4) into powers of n as
follows:

�

n

i, j, k, n− i− j− k

�

=
1

i! j!k!

�

(n)(n− 1)(n− 2) · · · (n− i− j− k+ 1)
�

120 CHAPTER 5. HAMMING DISTANCE

=
ni+ j+k

i! j!k!



1−





i+ j+k−1
∑

s=0

s



n−1+ o
�

n−1
�





=
ni+ j+k

i! j!k!

�

1−
1

2
(i+ j+ k)(i+ j+ k− 1)n−1+ o

�

n−1
�

�

.

If we choose two strings x and y from the ball, let i be the number of bit
positions where x is different from c and y is equal, let j be the number of bit
positions where y is different from c and x is equal, and then let k (which must
be from zero to r −max{i, j}) be the number of bit positions where x and y are
both different from c and thus equal to each other. We can count the number of
ways to choose these two strings as

N =
r
∑

i=0

r
∑

j=0

r−max{i, j}
∑

k=0

�

n

i, j, k, n− i− j− k

�

=
�

n

r, r, 0, n− 2k

�

+
�

n

r − 1, r − 1, 1, n− 2r + 1

�

+
�

n

r − 1, r, 0, n− 2r + 1

�

+
�

n

r, r − 1, 0, n− 2r + 1

�

+ o
�

n2r−1
�

=
1

r!2 n2r +
�

1

(r − 1)!2 +
2

r!(r − 1)!
−

2r − 1

r!2

�

n2r−1+ o
�

n2r−1
�

=
n2r

r!(r − 1)!

�

1

r
− (r − 3)n−1+ o

�

n−1
�

�

. (5.5)

To compute the first two raw moments of the distance between two strings
chosen uniformly from the ball, we note that that distance is i + j and so its
expected value can be computed in the same way:

µ′1 =
1

N

r
∑

i=0

r
∑

j=0

r−max{i, j}
∑

k=0

(i+ j)
�

n

i, j, k, n− i− j− k

�

=
1

N

�

2r
�

n

r, r, 0, n− 2r

�

+ 2(2r − 1)
�

n

r, r − 1, 0, n− 2r + 1

�

+(2r − 2)
�

n

r − 1, r − 1,1, n− 2r + 1

�

+ o
�

n2r−1
�

�

=
1

N
2n2r−1

�

r

r!2 n+
−r2(2r − 1)

r!2 +
2r − 1

r!(r − 1)!
+

r − 1

(r − 1)!2 + o(1)

�

=
1

N
·

2n2r

r!(r − 1)!

�

1− (r − 1)2n−1+ o
�

n−1
��

. (5.6)

When we substitute the value of N from (5.5) into (5.6), the n2r/r!(r − 1)!

5.1. INTRINSIC DIMENSIONALITY 121

factors cancel out, and we can find µ′1 by long division:

2r − 2r(r + 1)n−1 + o
�

n−1
�

1
r
− (r − 3)n−1+ o

�

n−1
�

�

2 − 2(r − 1)2n−1 + o
�

n−1
�

2 − 2r(r − 3)n−1 + o
�

n−1
�

− 2(r + 1)n−1 + o
�

n−1
�

− 2(r + 1)n−1 + o
�

n−1
�

. . .

µ′1 = 2r − 2r(r + 1)n−1+ o(n−1) . (5.7)

Note 5.2
There is an intuition for why this should be the value of µ′1, at least as far as
the leading term. As discussed in Section 1.3, points in high-dimensional
spaces tend to all be equally distant from each other, at the maximum
possible distance, and most (in the limit, all) of the volume of an object
tends to be on its surface. Applying those heuristics to two points chosen
uniformly from a ball of radius r, we should expect the points to be on
the surface of the ball (at distance r from the centre). We should also
expect k to go to zero, because the chance of choosing r bits for one string
to collide with the r bits from the other, will decrease with increasing n;
thus all 2r differing bits will tend to count. Sure enough, µ′1 → 2r: the
expected distance approaches 2r for large n.

Since the intrinsic dimensionality formula (5.2) uses the square of µ′1, we
take the opportunity to calculate it:

µ′21 =
�

2r − 2r(r + 1)n−1+ o
�

n−1
��2
= 4r2− 8r2(r + 1)n−1+ o

�

n−1
�

(5.8)

For the second raw moment, we put (i+ j)2 inside the summation and find
the first two terms of its expansion:

µ′2 =
1

N

r
∑

i=0

r
∑

j=0

r−max{i, j}
∑

k=0

(i+ j)2
�

n

i, j, k, n− i− j− k

�

=
1

N

�

4r2
�

n

r, r, 0, n− 2r

�

+ 2(2r − 1)2
�

n

r, r − 1,0, n− 2r + 1

�

+4(r − 1)2
�

n

r − 1, r − 1, 1, n− 2r + 1

�

+ o
�

n2r−1
�

�

=
1

N
2n2r−1

�

2r2

r!2 n+
−2r2(2r − 1)

r!(r − 1)!
+
(2r − 1)2

r!(r − 1)!
+

2(r − 1)2

(r − 1)!2 + o(1)

�

122 CHAPTER 5. HAMMING DISTANCE

=
1

N
·

2n2r−1

r!(r − 1)!

�

2rn− 4r3+ 2r2+ 4r2− 4r + 1+ 2r3− 4r2+ 2r + o(1)
�

=
1

N
·

2n2r

r!(r − 1)!

�

2r − (2r3− 2r2+ 2r − 1)n−1+ o
�

n−1
��

(5.9)

Substituting (5.5) into (5.9), the n2r/r!(r − 1)! factors again cancel out, and
µ′2 follows:

4r2 − 2r(4r2+ 2r − 1)n−1 + o
�

n−1
�

1
r
− (r − 3)n−1+ o

�

n−1
�

�

4r − (4r3− 4r2+ 4r − 2)n−1 + o
�

n−1
�

4r − (4r3− 12r2)n−1 + o
�

n−1
�

− (8r2+ 4r − 2)n−1 + o
�

n−1
�

− (8r2+ 4r − 2)n−1 + o
�

n−1
�

. . .

µ′2 = 4r2− 2r(4r2+ 2r − 1)n−1+ o
�

n−1
�

. (5.10)

The we can use (5.8) and (5.10) to evaluate the intrinsic dimensionality
formula (5.2) and get (5.3).

ρ =
1

2
·

µ′21

µ′2−µ
′2
1

=
1

2
·

4r2− 8r2(r + 1)n−1+ o
�

n−1
�

4r2− 2r(4r2+ 2r − 1)n−1− 4r2+ 8r2(r + 1)n−1+ o
�

n−1�

=
r − 2r(r + 1)n−1+ o

�

n−1
�

(2r + 1)n−1+ o
�

n−1�

→
r

2r + 1
n

5.2 Distance permutations

Suppose that given k fixed strings x1, x2, . . . , xk, called the sites, for any stringsite

y we find the closest site to y, the second-closest site to y, and so on, to form
a permutation of the sites. If two sites are equidistant from y we choose the
lowest-index one first, to make the permutation unique. Such a permutation is
called the distance permutation of y (Definition 1.25). On strings with Hammingdistance

permutation distance, it represents a generalisation of the nearest-neighbour decoding concept
from coding theory [169, page 19].

5.2. DISTANCE PERMUTATIONS 123

We are interested in how many distinct distance permutations can occur
among the 2n binary strings of length n, if the k sites are chosen to maximise
the number of distinct distance permutations. Let Nn,H(k) represent that number.
The H for “Hamming” in the subscript is to distinguish this from the similar
notation used in Chapter 3 for the maximum count of distance permutations in
Lp space. An exact solution for this question seems difficult, partly because of the
complexity introduced by tiebreaking among equally distant sites, but we offer
some bounds.

Trivial bounds on Nn,H(k) follow naturally from the definitions:

Nn,H(k)≤ 2n (5.11)

Nn,H(k)≤ k! (5.12)

Nn,H(k)≥ k . (5.13)

Because there are only 2n points in the space and each one has only one distance
permutation, there cannot be more than 2n distance permutations (5.11). Simi-
larly, with k sites there cannot be more than k! permutations of any description,
so there can be at most k! distance permutations (5.12). An even stronger state-
ment than (5.13) can actually be made: as described in Section 4.4, there are
always at least as many distinct distance permutations as there are distinct sites
(not just in the maximum case implied by Nn,H(k)).

A less-obvious bound follows from the work on vectors with Lp metrics in
Chapter 3. Consider each n-bit binary string as an n-component vector all of
whose components happen to be equal to 0 or 1; that is, a zero-one vector. Then zero-one vector

the Hamming distance between two strings is just the L1 distance between the
corresponding vectors. Restricting vectors to be of this form cannot create any
additional distance permutations over the ones that would exist for the same
number of unrestricted vectors, so where Nn,p(k) is the maximum number of
distance permutations of k sites for n-component vectors with the Lp metric, we
have Nn,H(k)≤ Nn,1(k).

Furthermore, the Lp distance between two zero-one vectors for any finite p
is a strictly increasing function of the Hamming distance, and so the distance
permutation of a given point with a given list of sites will be the same regardless of
which finite-p Lp metric we use. Thus Nn,H(k)≤ Nn,p(k) for all finite p. Combining
that statement with Theorem 3.4 in the case p = 2 gives an asymptotic bound on
the maximum number of distance permutations:

Nn,H(k)≤ Nn,2(k) = O
�

k2n
�

. (5.14)

Note 5.3
This argument does not apply to the L∞ metric because it is not a strictly
increasing function of Hamming distance. All unequal zero-one vectors

124 CHAPTER 5. HAMMING DISTANCE

have L∞ distance exactly 1. (It degenerates to the equality metric of
Example 1.3.) This breakdown of strict increase is discussed at length in
Chapter 8, where it necessitates different proof techniques for L∞ from
the other Lp metrics.

It is natural to ask under what circumstances we might be able to have a
distinct distance permutation for each of the 2n points. As the following theorem
shows, that can be achieved with n+ 1 sites, and nearly achieved with n sites.

Theorem 5.2
In the space of n-bit binary strings with Hamming distance, the maximum
number of distance permutations for k sites Nn,H(k) obeys

Nn,H(n+ 1) = 2n , (5.15)

Nn,H(n)≥ 2n− n . (5.16)

Proof Let ui be the n-bit string consisting entirely of zero bits except for a one
bit in bit position i counted from 1; that is,

ui = 0i−110n−i . (5.17)

Consider (5.15). The sites used are u1, u2, . . . , un, 0n in that order. For any
arbitrary n-bit binary string y, let h be its Hamming weight (the number of 1 bits
in the string). The distance from y to ui is h+ 1 if y contains a 0 in bit position i,
and h− 1 if y contains a 1 in bit position i. The distance from y to 0n is always h.

Then from any string y, the distance permutation will consist of the indices
of all the bit positions where it contains 1, in order of increasing index; then
n (the index of the all-zero site); then the indices of all remaining sites, which
correspond to the bit positions where y contains 0. Furthermore, given any
permutation of that form, we can find a unique y to generate that distance
permutation by placing 1 in all the positions whose indices appear before n and 0
in all the positions whose indices appear after n. For instance, with n= 6, k = 7,
the permutation 〈2, 4,5, 7,1, 3,6〉 corresponds to the bit string 010110. Therefore,
there is a bijection between distance permutations and points in the space, and
(5.15) holds.
Consider (5.16). The sites are the same except without the all-zero string:
u1, u2, . . . , un. As in the previous case, the distance permutation of a string y
will consist of all the indices of its 1 bits in ascending order followed by all the

5.2. DISTANCE PERMUTATIONS 125

indices of its 0 bits in ascending order. Each pair of successive indices will be
increasing except the pair representing the last 1 and first 0. If the first 0 bit
comes before the first 1 bit, that pair will be decreasing, so we can decode such
a permutation unambiguously to find the value of y by searching for the one
decreasing pair of indices. Indices before that correspond to 1 bits and indices
after that correspond to 0 bits. For example, with k = n = 6, the permutation
〈1,4, 2,3, 5,6〉 corresponds to the bit string 100100.

However, if it happens that all 1 bits (if any) appear before all 0 bits (if any),
then the distance permutation of y will be the identity permutation, and there
may be many such bit strings. For instance, with k = n= 6, the strings 100000 and
111100 both give the distance permutation 〈1,2, 3,4, 5,6〉. All strings with this
property must be of the form 1i0n−i for some integer 0≤ i ≤ n. There are n+ 1
strings, together they share one distance permutation, and among the 2n points
in the space these are the only ones with non-unique distance permutations.
Therefore the total number of distinct distance permutations is 2n− n, and that
is a lower bound on Nn,H(n) (5.16).

The bound given by (5.16) is not perfectly tight, as shown by the following
example.

Example 5.4
Let k = n= 6 and let the sites be 〈000000, 000011, 001101, 011110, 110100,
111001〉. Then each point in the space has a unique distance permutation
except for these three pairs of points, each of which describes two points
with the same distance permutation:

000010 000110 〈1, 2,4, 3,5,6〉
010001 100001 〈1, 2,6, 3,5,4〉
011110 101110 〈4, 3,5,1, 2,6〉

.

That makes a total of 61 distance permutations, where the lower bound
is only 58.

From the other direction, we can ask how many dimensions are necessary to
provide a point for each of the k! distance permutations. The following result
gives a loose upper bound on the answer.

Theorem 5.3
We can choose k binary strings of length k(k−1) such that for each of the k!
permutations of sites there is a string having that as its distance permutation.

126 CHAPTER 5. HAMMING DISTANCE

That is,
Nk(k−1),H(k) = k! . (5.18)

Proof We divide each string into k blocks of k− 1 bits each. The sites x i are the
strings with one block consisting of all ones and all other blocks zero:

x i = 0(i−1)·(k−1)1k−10(n−i)·(k−1) for integers 1≤ i ≤ n .

Then where π : {1, 2, . . . , n} → {1,2, . . . , n} is the distance permutation, con-
sider this string:

y = 1k−π(1)0π(1)−11k−π(2)0π(2)−1 . . . 1k−π(k)0π(k)−1 .

The number of ones in y is π(1)− 1+π(2)− 1+ · · ·+π(k)− 1, which is a
constant relative to k because π is a permutation. Call this number h. (It happens
to be equal to k(k − 1)/2.) Now the distance from y to a site x i is h, because
ones in y generally differ from zeros in x i; minus the number of ones in the
i-th block of y, because within that block they match; plus the number of zeros
in the i-th block, which differ from the ones in x i. Therefore the distance is
h− k − 1+ 2π(i). That is a strictly increasing function of π(i), so the closest
site is x i where π(i) = 1, the second-closest site is x i where π(i) = 2, and so
on; the distance permutation is exactly π. We can find such a y for any π, so
Nk(k−1),H(k) = k!.

The encoding used in Theorem 5.3 is more powerful than necessary in that it
allows all the inequalities defining the distance permutations to be strict, for all
k! permutations. The space includes many points from which two or more sites
are equidistant, and none of those are used by the construction. Making use of
the tiebreaking rule in the definition of distance permutations can allow for all
k! permutations with fewer dimensions. For instance, with n= 4 and k = 3, we
have all k!= 6 permutations with the sites 〈0001, 0010, 1100〉.

5.3 Reverse similarity search

The difficulty of reverse similarity search on binary strings with Hamming dis-
tance follows from work by Frances and Litman on two closely-related prob-
lems: the “minimum radius” (MR) and “maximum covering radius” (MCR)
problems [76]. These results were presented, with the proofs given as sketches,
at SISAP’08 [192].

5.3. REVERSE SIMILARITY SEARCH 127

The formal definitions we give below are generalised to all metric spaces, and
written in a way that emphasises their similarity. We mention numeric precision
for cases where it may be important, but since we only use the case of binary
strings with Hamming distance, where distances must be integers, the issue
vanishes.

Definition 5.5 (The MR Problem)
In some metric space (S, d), given a set C ⊆ S and real r given to some
precision, accept if and only if there exists a point z ∈ S such that d(x , z)≤
r for all x ∈ C .

Definition 5.6 (The MCR Problem)
In some metric space (S, d), given a set C ⊆ S and real r given to some
precision, accept if and only if there exists a point z ∈ S such that d(x , z)≥
r for all x ∈ C .

The MR problem asks whether there exists a sphere of a given radius such that
all the points in a set are inside the sphere, and the MCR problem asks whether,
for a list of spheres, there exists a point anywhere in the space that is outside all
of them. Recall that VPREVERSE is a constraint satisfaction problem in which
we list spheres, specify inside or outside for each one, and seek a point meeting
all the constraints (Definition 1.27). Then MCR is a special case of VPREVERSE
where the spheres all have the same radius and the solution must be outside all
of them.

Frances and Litman briefly present an argument due to Karpovsky that the
MR and MCR problems are equivalent [76, 118]. The underlying insight is
simple: in the space of binary strings with Hamming distance, every string x
has a complement x̄ formed by inverting all its bits and the total distance from complement

anywhere to x and x̄ must always be n, the length of the strings. If flipping some
bits gives one string, flipping all the others must give the complementary string.
Then the complement of a ball around one centre c must be another ball centred
on c̄. A point within a radius of all the points on a list (which would solve MR)
must be the complement of a point outside a radius of all the points on the list
(thus a solution to MCR). Solving either problem then also solves the other.

Then they proceed to show the NP-completeness of MCR by a reduction from
3SAT [76]. Each variable is represented by a pair of bits, 00 for false and 11 for
true. One additional pair is used as a slack variable, so the total length of the
strings is 2(n+ 1) for n variables. It is possible to place constraints on subsets
of the variables by using 01 as a don’t care value; it is equidistant from 00 and
11. Clauses from 3SAT are translated into statements about whether the solution
is or is not within distance n+ 1 of a string consisting mostly of repetitions of
01, with other values in the pairs corresponding to the literals in the clause. The

128 CHAPTER 5. HAMMING DISTANCE

result is an instance of MR satisfiable if and only if the original 3SAT instance
was satisfiable. Then MCR is NP-complete also, because the two problems are
equivalent, and since an MCR instance in this space is also a VPREVERSE instance,
we have NP-completeness of VPREVERSE.

Theorem 5.4
In the space of binary strings with Hamming distance, VPREVERSE is NP-
complete, even when the spheres are constrained to all have the same
radius.

Proof As described above, the MCR problem (Definition 5.6) on this space
was shown NP-complete by Frances and Litman [76]. An instance of MCR
is an instance of VPREVERSE, so the existence of hard MCR instances implies
the existence of hard VPREVERSE instances, and VPREVERSE on this space is
NP-hard. Moreover, all the spheres in the hard instances happen to have the
same radius of n+ 1 where n is the number of variables in the corresponding
3SAT instance. The VPREVERSE problem is also in NP because we can test in
polynomial time that the solution string does meet the constraints.

Recall from Definition 1.29 that GHREVERSE is a constraint satisfaction
problem where the constraints are pairs of points (x , y); the solution z must
satisfy d(z, x) ≤ d(z, y) for every constraint in the problem. Imagine what
happens if the two points in a pair are complementary, y = x̄ . Then the constraint
is that the distance to x must be less than or equal to half the number of bits in
the strings. That is exactly the same as a sphere constraint from a VPREVERSE
instance, with the radius equal to half the number of bits. The hard instances of
VPREVERSE proved to exist in Theorem 5.4 have only spheres of that radius, so
they can be easily converted to GHREVERSE instances.

Corollary 5.5
In the space of binary strings with Hamming distance, GHREVERSE is
NP-complete.

Proof The hard instances of MR proved to exist by Frances and Litman happen
to involve strings of length 2(n+1) and the constraint that a point must be within
radius n+ 1 of all the points in the input set [76]. The equivalent MCR instances

5.3. REVERSE SIMILARITY SEARCH 129

require the solution to be outside that radius. Either type of constraint can be
rewritten as a constraint that the solution z must be closer to some point x than
to x̄ . Those points are the sphere centre and its complement. The resulting list of
constraints forms a GHREVERSE instance, so GHREVERSE is NP-hard; and it is
NP-complete because the solution string is a polynomial-time certificate.

Chapter 6

Levenshtein edit distance

The previous chapter described the Hamming distance as an edit distance where
edits consist of substituting letters in a fixed-length string. If we also allow
insertions or deletions, which change the length of the string, the resulting edit
distance is one called the Levenshtein distance, described in 1965 by its namesake
Vladimir Levenshtein [138]. The term “edit distance” without qualification is
often assumed to refer to Levenshtein distance, though we avoid that usage in
this work because we also discuss several other kinds of edit distance.

Definition 6.1
The Levenshtein distance between two strings is the minimal number of Levenshtein

distanceedits required to transform one into the other, where each edit consists of
inserting, deleting, or substituting a letter.

Example 6.2
The Levenshtein distance from DEFENDER to BEFRIEND is 5. A minimal
sequence of edits is to delete the two letters ER to give DEFEND, substitute
one letter B for D to give BEFEND, and insert the two letters RI to give
BEFRIEND.

Note that the Levenshtein distance is bounded below by the difference in
length between the two strings, because that many edits must be used just to
change the lengths regardless of the content of the strings, and bounded above
by the sum of the lengths, because we could just delete all of one string and then
insert all of the other. For equal-length strings, the Hamming distance is also an
upper bound on the Levenshtein distance.

Levenshtein considered this metric in the context of coding theory, but it has
since become popular in biological applications because it models mutations in
DNA or other sequences. Common types of DNA mutations substitute one base
for another, insert a base between two existing ones, or delete an existing base.

131

132 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

Rawn describes the chemistry behind these processes [173]. The metric can
be generalised further by assigning different weights to the different types of
edits. Sequence comparison techniques used in bioinformatics may attempt to
choose weights that accurately model the probabilities of each mutation. Then
the distance between two sequences expressed as strings can be taken as a
measure of how far apart the sequences are in evolutionary terms, and used to
infer phylogeny. The details of how bioinformatics applications generalise edit
distance, attempt to approximate it with tractable algorithms, and apply it to
multiple strings at once to form structures called alignments, are beyond the
scope of the present work. Lesk gives a practical overview [137] while Dardel
and Képès give more theoretical detail [55]. The alignment algorithms used in
bioinformatics generally trace back to the work of Needleman and Wunsch on
global alignments [158] and Smith and Waterman [193] on local alignments.

It is easy to compute Levenshtein distance exactly for two strings in Θ(n2)
time by a dynamic programming algorithm essentially the same as the one for
longest common subsequence [208]. Masek and Paterson give a O(n2/ log n)
algorithm [148] based on what has become known as the Four Russians tech-
nique [12]. Ukkonen gives a O(dn) algorithm, where d is the distance; it can also
test whether the distance is less than k in O(kn) time [206]. Many of the results
for longest common subsequence discussed in Section 6.1 are also applicable to
computing Levenshtein distance.

But although computing Levenshtein distance between two strings is easy
in the sense that it is in P, many related problems remain too difficult to be
practical. Edit distance questions involving more than two strings tend to be
NP-complete and hard to approximate [113], and quadratic time is too slow for
strings the size of genome databases, necessitating approximate and compromise
techniques like the ubiquitous BLAST [5].

In this chapter, we first consider the intrinsic dimensionality of strings with
Levenshtein distance. It appears to be somewhere between linear and quadratic
in string length. We characterise the number of neighbours of a string with
Levenshtein distance; this is the first space considered in which number of
neighbours is not trivial. Finally, we analyse the reverse similarity search problems
VPREVERSE and GHREVERSE in this space, showing that both are NP-complete.

6.1 Intrinsic dimensionality

Let x and y be two n-bit binary strings selected independently and uniformly
at random. What is the distribution of the Levenshtein distance between them?
Previous work on this question has primarily focused on the closely-connected
question of the length of the longest common subsequence. If we disallow

6.1. INTRINSIC DIMENSIONALITY 133

substitutions, or make them cost at least twice as much as additions or deletions,
then the resulting edit distance between two n-letter strings will be 2(n − l)
where l is the length of the longest common subsequence. Most of the work
relevant to this topic is aimed at that length l. However, the distribution of l is
difficult to evaluate, even approximately. For instance, Dančík spends most of a
PhD thesis making a small improvement in the bounds on the mean value [54].
In this section we discuss known results and their implications for the intrinsic
dimensionality of strings with Levenshtein distance.

Finding the longest common subsequence given two strings is a classic ex-
ample in teaching dynamic programming [50]. The usual Θ(n2) algorithm for
it has been independently rediscovered many times, but is often credited to
Wagner and Fischer [208]. Many other algorithms for the exact problem have
been proposed. Dančík surveys them through the early 1990s [54, pages 10–14].
Batu, Ergun, and Sahinalp in 2006 give a Õ(n)-time (that is, O(n) up to loga-
rithmic factors) algorithm to approximate the edit distance d within a factor of
min{n1/3+o(1), d1/2+o(1)}, by means of a low-distortion embedding into a space
of strings with larger alphabet and shorter length [22]. For the mutual longest
common subsequence of a variable number of strings, the problem is NP-hard;
Jiang and Li give approximations and non-approximability results [113].

Chvátal and Sankoff introduce the problem of the mean length of the longest
common subsequence between two random strings [45]. They give exact for-
mulas for constant string length n up to five, and prove that in the limit for
large n, the length of the longest common subsequence is linear in n with a
constant of proportionality ck determined by the alphabet size k. Notation for
the constant used by various authors includes ac [30], ck [45], and γk [54]. The
most popular one seems to be γk, but we follow Chvátal and Sankoff in using ck,
to avoid confusion with γ (the Euler-Mascheroni constant) and Γ (the generalised
factorial) used elsewhere in this work.

The constants ck are not known. For large alphabets, Kiwi, Loebl, and
Matoušek show that limk→∞ ck = 2/

p
k, which prove a conjecture given by

Sankoff and Mainville [124, 180]. For c2, the one relevant to binary strings,
Chvátal and Sankoff show that 0.727273 ≤ c2 ≤ 0.866595 [45]. Deken im-
proves the bounds to 0.7615 ≤ c2 ≤ 0.8665 [60, 61]. Dančík further improves
them to 0.77391 ≤ c2 ≤ 0.837623 [54]. The current best bounds we know are
0.788071≤ c2 ≤ 0.826280 from Lueker in 2003, which rule out the conjecture of
Arratia (reported by Steele) that c2 = 2/(1+

p
2)≈ 0.828427 [143, 199].

An intuitive reason for the difficulty of computing the distribution is that
the optimal sequence of edits between two strings must be evaluated globally.
The best sequence of edits could include deleting an arbitrarily large perfectly-
matched segment of the string if that allows a larger segment to be shifted to

134 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

match elsewhere. So there are many dependencies among the random variables
involved in the solution.

To derive intrinsic dimensionality we need not only the mean of the distance
but also its variance. Less work has been done on the variance than on the mean.
Chvátal and Sankoff conjecture (apparently from their experimental results) that
the variance is o(n2/3) [45]. Steele gives an upper bound of (1− 1/k)n for the
variance, where k is the alphabet size, so this is n/2 for binary strings [199].
Booth and others mention higher moments as a topic for future work in their
paper of 2004 on longest common subsequence [30]; unfortunately, Booth is now
deceased, and our reference seems to be the last publication from her group on
this subject. Lember and Matzinger show, in a 2006 preprint, that for sufficiently
biased binary strings the variance is Θ(n), but their result does not apply to the
uniform case [136]. The variance question for the uniform binary case, let alone
characterisation of the distribution beyond mean and variance, remains open.

All those results are for longest common subsequence. An edit distance
allowing only insertions and deletions on n-bit strings has an obvious relation to
longest common subsequence in that that edit distance must be 2(n− l) where l is
the length of the longest common subsequence. Levenshtein actually considered
such a distance in his 1965 paper, along with the distance we now call Levenshtein
distance, which permits substitutions [138]. If we permit substitutions, it is
not obvious how much of the work on longest common subsequence can still
be applied. Navarro discusses this issue briefly, and shows that for a k-letter
alphabet the Levenshtein distance between two random strings of length n is at
least n(1− e/

p
k), but for k < 8 (for instance, the binary-alphabet case) that is a

negative number, and not useful [156].
We conjecture that even if the constants change, the same asymptotic be-

haviour known for the longest common subsequence between two random strings
should also apply to Levenshtein edit distance, for three reasons. None of these
are proofs, but they suggest intuitions for how future work on the problem could
proceed.

First of all, much of the theory already cited for longest common subsequence
can also be applied to the case where substitutions are permitted; for instance,
the automata used by Dančík for lower bounds could be modified to count sub-
stitutions as cheaper than the equivalent insertion-deletion pairs, and although
a new computation would be needed, and other complications would no doubt
arise, the technique still appears workable [54].

Second, Arratia and Waterman prove phase transition behaviour for this
problem depending on the values of two penalty parameters that express the
cost of insertions, deletions, and substitutions [14]. The topography of the phase
space is only partly established, but for the case of a binary alphabet with only

6.1. INTRINSIC DIMENSIONALITY 135

1 0 0 1 1 1 0 1 1 0 0 0 0 1 01 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1

0 01 1 1 1 0 0 1 0 0 01 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 10 0 1 1 10 0 0 10...

... ...

...

S

I II

S S

DD

S

I

S

Figure 6.1: Edits between two long strings.

insertions and deletions permitted, the behaviour is already clearly into the linear
phase. Permitting substitutions at the same cost as insertions or deletions only
drives the problem further away from the phase boundary.

Third, consider Figure 6.1, which shows two 40-bit substrings from some-
where in the middle of two long random strings, with the edits between them
marked. As can be seen, most of the bits match well, even though the substrings
for the figure were chosen randomly. That should be no surprise, since we know
about 4/5 of bits should match, that being the approximate value of c2. The
important consequence is that non-matching bits are relatively rare, and tend
to occur in small clusters (of size roughly exponentially distributed). Despite
the fact that there may be arbitrarily large gaps in the optimal matching, those
occur in highly unlikely strings, and for random strings, things tend to happen
locally. The important consequence is that if we take an optimal edit sequence
permitting only insertions and deletions, and then say that substitutions will be
permitted too, very little will really change. Any pairs of consecutive insertions
and deletions will be switched to the cheaper substitutions, and there may be
local rearrangement where two bits that formerly paired will no longer pair in
the optimal matching, but we will not see large segments of the string changing
allegiance to dramatically different locations. The optimal matching will be
substantially the same with either metric. As a result, we should expect that
the constant of proportionality may change, but the general asymptotic linear
behaviour, and even the order of magnitude of the variance, should not change.

Now we can make a reasonable guess about intrinsic dimensionality in the
Levenshtein space. Recall that considering the distance between two randomly
chosen points from the native distribution of the space, the intrinsic dimensionality intrinsic

dimensionalityof the space is defined to be the mean squared divided by twice the variance
(Definition 1.23). We denote intrinsic dimensionality by ρ. Assuming the mean
of Levenshtein distance to be linear (as it is known to be for longest common
subsequence), then the conjecture of Chvátal and Sankoff for longest common
subsequence [45] implies that

ρ =ω(n4/3) . (6.1)

136 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

The little-omega notation is standard, but infrequently used; recall that f (n) =
ω(g(n)), read “ f (n) is little-omega g(n),” if f (n) is greater than any constant
multiple of g(n) for sufficiently large n, making ω a strict version of Ω. As a
mnemonic: ω is to Ω as o is to O.

To test this conjecture, we ran an experiment on the Levenshtein distance
between randomly chosen binary strings for each power-of-two string length up
to 218. For lengths 1 through 16, the spaces are small enough that we could
exhaustively test all pairs of strings and compute a population mean µ and
standard deviation σ, allowing the calculation of the intrinsic dimensionality as
ρ = µ2/2σ2. For longer strings, we used random sampling of point pairs, starting
with 107 pairs for length 32 and decreasing the sample size for longer strings
as the computation load increased, to determine the sample mean Levenshtein
distance d̄, the sample standard deviation s, and the sample intrinsic dimension-
ality ρ = d̄2/2s2. Note that because the distribution of distances becomes tightly
concentrated around its mean as the length of the strings increases, large sample
sizes are less necessary for long strings anyway. The results are given numerically
in Table 6.1.

The sample mean and standard deviation are plotted in Figure 6.2 along with
these functions, found by least-squares fitting a linear function of log n to the
logarithm of the data:

d̂ = 0.448945n0.953767

ŝ = 0.517177n0.370306

ρ̂ = d̂2/2ŝ2 =Θ(n1.166923) .

(6.2)

These curves seem to match the data well. However, the curve for mean distance
is o(n) where theory predicted it should be Θ(n), and the curve for ρ is consider-
ably shallower than the ω(n4/3) of (6.1) though still definitely steeper than Θ(n).

The short strings may be hiding the true asymptotic behaviour (much as
short vectors gave misleading results in Chapter 2). Note that the data points
for distance and intrinsic dimensionality in Figures 6.2 and 6.3 both seem to be
concave upward, suggesting that their true asymptotes should be steeper than
the fit lines. If we restrict the curve fitting to exclude the shortest strings, say
by considering only the results for n≥ 512, we get a best-fit exponent of 0.993,
supporting the hypothesised linear model.

If we assume that mean distance is linear and fit new curves to the distance
and standard deviation using only the experimental data for n ≥ 512, we get

6.1. INTRINSIC DIMENSIONALITY 137

length pairs µ σ ρ

1 22 0.500000 0.500000 0.500000
2 24 1.000000 0.707107 1.000000
4 28 1.898438 0.908638 2.182635
8 216 3.433899 1.136159 4.567375

16 232 6.212229 1.443025 9.266537

length sample d̄ s ρ

32 1× 107 11.449 1.863 18.890
64 1× 107 21.482 2.401 40.015

128 1× 107 40.945 3.081 88.304
256 1× 107 79.090 3.952 200.217
512 2× 106 154.383 5.073 463.119

1024 5× 105 303.672 6.518 1085.293
2048 2× 105 600.602 8.392 2560.960
4096 5× 104 1192.340 10.938 5941.517
8192 1× 104 2373.177 14.236 13895.427

16384 2000 4731.293 18.750 31836.957
32768 500 9443.710 24.002 77405.880
65536 100 18859.490 32.309 170369.744

131072 50 37694.720 42.722 389245.933
262144 50 75349.540 54.272 963787.869

Table 6.1: Experimental results on random strings with Levenshtein distance.

138 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

L
e
v
e
n
s
h
te

in
 d

is
ta

n
c
e

string length

Levenshtein distance between random binary strings

experiment mean
experiment std. dev.
(6.2) fit
(6.3) fit

Figure 6.2: Levenshtein distance from the experiment.

6.1. INTRINSIC DIMENSIONALITY 139

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

in
tr

in
s
ic

 d
im

e
n
s
io

n
a
lit

y

string length

Intrinsic dimensionality of random binary strings

experiment
(6.2) fit
(6.3) fit

Figure 6.3: Intrinsic dimensionality from the experiment.

140 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

these functions, which are also plotted in Figures 6.2 and 6.3:

d̂ = 0.287398n+ 17.072985

ŝ = 0.454622n0.383543

ρ̂ = d̂2/2ŝ2 =Θ(n1.232914) .

(6.3)

The most important result here seems to be that ρ is super-linear in string
length for this space, but less than Θ(n2). That is a distinct new behaviour
compared to other spaces we have considered. Strings with Hamming distance
and most of the distributions we studied in vector spaces turned out to have
intrinsic dimensionality linear in the size of the objects. In the case of vectors
with L∞ distance and the normal distribution per component, we found the
intrinsic dimensionality to be Θ(log2). Strings with prefix distance had intrinsic
dimensionality Θ(n2). Levenshtein distance, with its apparent exponent of ap-
proximately 5/4, fits somewhere between the Lp metrics and prefix distance. The
reason for the unusual behaviour may be that as strings get longer, a substring in
one can match substrings at a greater distance in the other, so the individual bits
in the strings count more towards dimensionality when they are in longer strings.

6.2 Number of neighbours

Levenshtein distance differs from previously-considered metrics in another signif-
icant way: different points in Levenshtein distance have meaningfully different
numbers of neighbours. First, we must define what we mean by a neighbour.
This definition may seem strange in the context of spaces like real vectors, but
we use it for spaces like strings with Levenshtein distance, where distance is the
number of edges in the shortest path through some graph. For such spaces the
definition below corresponds to the graph-theoretic definition of neighbour.

Definition 6.3
A point x in a metric space with metric d is a neighbour of a point y ifneighbour

d(x , y) = 1.

In discrete spaces, all distinct points are neighbours of each other, so with
n points in the space, each one has n − 1 neighbours. In real vector spaces
(Chapters 2, 3, and 8), each point has an infinite number of neighbours; we
could perhaps define a measure and use it to compare sets of neighbours for
different points, but for now we restrict ourselves to spaces where points have
finite numbers of neighbours. In an unweighted tree metric space (Chapter 4),
the neighbours of a point are simply its neighbours in the underlying tree; for

6.2. NUMBER OF NEIGHBOURS 141

the prefix metric in particular, with alphabet size |Σ| the number of neighbours is
|Σ|+ 1 (add any of |Σ| letters, or remove one) except for the empty string which
only has |Σ| neighbours (we cannot remove a letter from it). With the Hamming
distance (Chapter 5), each of the letters in a string of length n can be changed to
any of the |Σ| − 1 other letters, so each string has n(|Σ| − 1) neighbours. These
are all straightforward, and consistent throughout the space.

But for strings with Levenshtein distance, the number of neighbours varies
depending on the content of the string, in particular the number of single-letter
runs it contains.

Definition 6.4
A single-letter run is a string of the form αk for some letter α and integer single-letter run

k ≥ 1. We say that a string x consists of r single-letter runs if r is the
minimal integer such that

x = αk1
1 α

k2
2 . . .αkr

r (6.4)

for some letters α1,α2, . . . ,αr and integers k1, k2, . . . , kr ≥ 1.

Example 6.5
The string 000110010000 consists of five single-letter runs. The unique
string consisting of zero single-letter runs is the empty string λ.

Note that some authors define more general “runs” as repeating sequences of
possibly more than a single letter. Here we are concerned exclusively with the
single-letter variety. The number of single-letter runs in a string determines its
number of neighbours under Levenshtein distance, as shown by the following
theorem.

Theorem 6.1
If a string of length n on alphabet Σ consists of r single-letter runs, then it
has (2n+ 1)|Σ|+ r + 1 neighbours under Levenshtein distance.

Proof Substitution, deletion, and insertion always produce distinct results from
each other because of their effects on the length of the string, so we can enumer-
ate separately the distinct results from each type of edit.
Substitution. The substitution can occur at any of the n positions in the string,
and replace the letter there with any of the |Σ| − 1 other letters in the alphabet,
and all of these produce distinct results, so there are n(|Σ| − 1) neighbours by
substitution.

142 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

Deletion. A letter can be deleted from any of the r runs. By comparing the
result with the original string we can determine which run was shortened, but
not which letter within the run was deleted because they are all the same, so
there are r distinct neighbours by deletion.
Insertion. In general, any of the |Σ| letters can be inserted in any of n + 1
locations (before any existing letter or at the very end). That gives (n+ 1)|Σ|
possible insertions. However, some of these produce identical results. Inserting
any letter adjacent to a copy of itself has the effect of extending whichever run
contained that letter; and all the ways of extending a given run will produce
the same result. To account for these identical neighbours, we will only count
extending a run if we do it at the left-hand end. Subtract n for the insertions
where the inserted letter is identical to the one on its right, and r for the insertions
where the inserted letter is identical to the one on its left and not its right; that
is, inserting a letter between two runs or at the very end of the string. That
leaves all the insertions that do not extend runs (but instead create new runs).
Then add back r for the one extension we permit per run. The result is a total of
(n+ 1)(|Σ| − 1) + 1 distinct neighbours by insertion.

The overall total number of distinct neighbours is (2n+ 1)|Σ|+ r + 1.

6.3 Reverse similarity search

The VPREVERSE and GHREVERSE problems in this space combine Levenshtein
distance among multiple strings with constraint satisfaction, both of which are
often associated with NP-complete problems. As we might expect, these prob-
lems turn out to be NP-complete. Recall from Definition 1.27 that VPREVERSE
is a set of triples (x , r, b) where x is a point in the space, r is is a real number
greater than zero called the radius, and b is 0 or 1. The instance is satisfied if
there exists a point z such that for every (x , r, b) in the instance, (x , r, b) ∈ P,
d(x , z) ≤ r if and only if b = 1. In other words, VPREVERSE is a constraint
satisfaction problem where the constraints each require z to be inside or outside
a sphere. The GHREVERSE problem of Definition 1.29 is similar: an instance
consists of a set of ordered pairs of points (x , y), and the solution z must satisfy
d(z, x)≤ d(z, y) for every (x , y) in the instance.

To prove NP-completeness, we will reduce from VPREVERSE and GHRE-
VERSE on n-bit binary strings with Hamming distance, to the same problems on
(2n2+ n)-bit binary strings with Levenshtein distance. The encoding used is that
0 in the Hamming-distance string translates to 0n10n in the Levenshtein-distance
string, and 1 to 02n1. Here is a summary of the steps in the proof:

6.3. REVERSE SIMILARITY SEARCH 143

• Characterisation of the distance from an arbitrary string to a string of the
form αk (Lemma 6.2).

• Placing a lower limit on string length (Lemma 6.3).

• Placing an upper limit on the number of occurrences of a letter (Lemma 6.4).

• Constraining the solution to a string of the form {0n, 0n1}2n (Lemma 6.5).

• Equivalence between Levenshtein and Hamming distances (Lemma 6.6).

• Assembling the gadgets into a complete instance (Theorem 6.8).

Lemma 6.2 and Theorem 6.8 were presented, without the detailed proofs we
give here, at SISAP’08 [192]. In the present work we also prove Corollary 6.7
along the way; it gives a loose bound on distance permutations in Levenshtein
space.

Proving anything about Levenshtein distance is complicated by the fact that in
general there is no simple expression for Levenshtein distance from an arbitrary
string to a given constant string. It is clear that the Levenshtein distance from an
arbitrary string x to the empty string λ is |x |, the length of x: we can transform
x to λ by deleting every letter, and any other edit could be eliminated because
we could delete the letter involved instead. The next most general case for the
distance from x to y is where x might not be λ, but consists of only one letter
repeated some number of times.

Lemma 6.2
If x is a string in which the letter α occurs m times, then the Levenshtein
distance from x to a string of k repetitions of α is given by

d(x ,αk) =







|x | − k if m≥ k,

|x | −m if m≤ k but |x | ≥ m,

k−m if |x | ≤ k;

(6.5)

=max{|x | − k, |x | −m, k−m} . (6.6)

Proof At least |x | − k edits are always necessary to change x into αk. If |x |> k
then we must remove all the extra letters to reduce the length to k, and if not, then
|x |−k is zero or less and the Levenshtein distance is always at least zero. Similarly,
at least |x | −m edits are always necessary, because that is the number of letters

144 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

that are not α, and each of those must be removed with an edit. And k−m edits
are always necessary, because αk contains k copies of α, and we must use at least
one edit to introduce each copy beyond the n that already exist in s. So, noting
that this is a maximum and not a sum (because one edit might well serve more
than one of those three purposes), we have d(x ,αk)≥max{|x |−k, |x |−m, k−m},
a lower bound on the Levenshtein distance.

If m ≥ k, then we have k copies of α in x and can transform x into αk by
removing everything except those, in exactly |x | − k edits. Then |x | −m≤ |x | − k
and k−m≤ 0, so we have achieved the lower bound.

If m≤ k but |x | ≥ k, then we can remove letters other than α from x in |x |− k
edits to get a string of length k containing n copies of α, and we can convert the
remaining non-α letters to α in k−m further edits for a total of |x | −m edits. In
this case |x | − k ≤ |x | −m and k−m ≤ |x | −m, so again we have achieved the
lower bound.

Finally, if |x | ≤ k, then we can convert the non-α letters to α in |x | −m edits
and then add k− |x | additional copies of α for a total of k−m edits. In this case,
|x | − k ≤ 0, and |x | −m≤ k−m, so we have achieved the lower bound.

In all cases max{|x | − k, |x | −m, k−m} edits are necessary and sufficient, so
the result holds.

The distance proved by Lemma 6.2 does not seem to be an especially con-
venient function of x , but we nonetheless can form a comparison between two
strings differing by one letter to make a useful function of x . The next result
shows that we can create a lower limit on the length of x .

Lemma 6.3
For any string x , these statements are equivalent:

|x |> k, (6.7)

d(λ, x)> k, (6.8)

d(αk+1, x)≤ d(αk, x) . (6.9)

Proof The result for (6.8) is obvious: distance to the empty string is just the
length of x . For (6.9), the proof follows the three cases of Lemma 6.2, making
use of the fact that they overlap. Let m be the number of times α occurs in x .
In the first case, suppose m > k, which implies |x | > k because |x | ≥ m. Then
m≥ k+ 1, d(αk+1, x) = |x | − (k+ 1), and d(αk, x) = |x | − k. We have (6.9).

6.3. REVERSE SIMILARITY SEARCH 145

If m≤ k, consider |x |. If |x |> k, then we have |x | ≥ k+ 1. Both distances are
equal to |x | −m, and so (6.9) holds.

Finally, if |x | ≤ k, then |x | ≤ k+ 1. The distances are given by d(αk+1, x) =
(k+ 1)−m and d(αk, x) = k−m. Then (6.9) does not hold. Therefore, (6.9) is
true if and only if |x |> k.

With that result, we are ready to begin the reduction. Starting with an
arbitrary instance of VPREVERSE or GHREVERSE on n-bit binary strings with
Hamming distance, we will create an equivalent instance on strings of some
alphabet with at least two letters (without loss of generality, say 0 and 1) using
Levenshtein distance. In a VPREVERSE instance, it is convenient to bound the
length in both directions, so the first two spheres (centre, radius, and bit triples)
will be

�

λ, 2n2+ n, 1
�

, (6.10)
�

λ, 2n2+ n− 1,0
�

. (6.11)

In a GHREVERSE instance, the first pair will be
�

02n2+n, 02n2+n−1
�

. (6.12)

By Lemma 6.3, inclusion of this gadget means that any solution x to the edit-
distance instance must be a string of length at least 2n2+ n for GHREVERSE or
exactly that for VPREVERSE.

Next, we need to constrain the composition of the string in terms of how many
times each letter of the alphabet can appear. For GHREVERSE we use the same
kind of gadget with the order of points reversed, and by restricting all the letters
in the alphabet we form an upper bound on the total string length to match the
lower bound already set. For VPREVERSE, we already have a fixed total length
from the previous gadget, and we depend on that in the present gadget.

Lemma 6.4
If x is a string in which the letter α occurs m times, with |x |> k, then these
statements are equivalent:

m≤ k, (6.13)

d(αk+1, x)> |x | − k− 1, (6.14)

d(αk, x)≤ d(αk+1, x) . (6.15)

146 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

Proof First, consider (6.14). If m≤ k, then d(αk+1, x) = |x | −m> |x | − k− 1 by
Lemma 6.2, and (6.14) holds. If m> k, then d(αk+1, x) = |x | − k− 1 and (6.14)
does not hold. Therefore it is equivalent to m≤ k.

For (6.15) we again follow the three cases of Lemma 6.2. If m > k, then
d(αk, x) = |x |− k and d(αk+1, x) = |x |− (k+1), so (6.15) does not hold. If m≤ k
but |x |> k, then both distances are equal to |x | −m, and (6.15) holds. If |x | ≤ k,
which implies n≤ k, then d(αk, x) = k−m and d(αk+1, x) = (k+1)−m, so (6.15)
holds. In summary, it holds if and only if m≤ k.

Lemma 6.4, in conjunction with the limits already placed on total length of
the string, lets us place an upper limit on how many times each letter α can occur
in the solution. For VPREVERSE, we add a triple of the form

�

αk+1, 2n2+ n− k− 1, 0
�

(6.16)

and for GHREVERSE we add a pair of the form
�

αk,αk+1
�

. (6.17)

In either case, the gadget forces there to be at most k occurrences of α in the
solution. We use this gadget to limit the solutions to at most 2n2 occurrences
of 0, n of 1, and no occurrences of any other letter if the alphabet contains any
other letters. Since the solution is already also constrained to a total length of at
least 2n2+ n, all these constraints must hold with equality.

Now the Levenshtein distance solution string must contain the same number
of each letter as the string that would be produced by encoding an n-bit Hamming-
distance string, but at this point there is no constraint on the order in which
those letters can appear. We build up the constraint that x must actually be an
encoded n-bit string in two steps. The first one is to require that x be of the form
{0n, 0n1}2n; that is, every 1 follows a block of n copies of 0.

Lemma 6.5
If x is a string consisting of 2n2 occurrences of 0 and n occurrences of 1 in
some order, then these statements are equivalent:

x is of the form {0n, 0n1}2n, (6.18)

d
�

(0n1)2n , x
�

≤ n, (6.19)

d
�

(0n1)2n , x
�

≤ d
�

02n2
, x
�

. (6.20)

6.3. REVERSE SIMILARITY SEARCH 147

0 1 2 R

1 1 1

0 0
0

00
0

1 1 0,1

0 1 2 R

1 1 1

0 0
0

00
0

1 1 0,1

n n

n n

Figure 6.4: Automata accepting strings of the form {0n, 0n1}2n and strings not of
that form.

Proof By Lemma 6.2, d = (02n2
, x) = n, so (6.19) is equivalent to (6.20). There

are n letters other than 0, and n edits are necessary and sufficient to remove
them and leave 02n2

. If x is of the specified form, then n edits are sufficient to
transform it into (0n1)2 n: it must consist of n copies of 0n and n copies of 0n1
for the total counts to be correct, and then we can transform the n copies of
0n1 into n copies of 0n with n edits, leaving (0n1)2 n. Furthermore, n edits are
necessary because that is the difference in length between x and (0n1)2 n, and
each edit adds at most one to the length. Therefore (6.19) holds if x is of the
form {0n, 0n1}2n.

There are two ways that x could fail to be of that form: it could contain a
1 at some position i such that the number of occurrences of 0 before position i
is not a multiple of n, or it could contain a 1 that is not immediately preceded
by a 0. These possibilities are illustrated by automata in Figure 6.4; the upper
automaton accepts strings of the form {0n, 0n1}2n, and the lower one is simply
its inverse. The state labels (other than R) refer to the number of occurrences
of 0 seen so far. The lower automaton accepts strings in which the number of
occurrences of 0 is not divisible by n, but x cannot be such a string (and so the
accept states are shown with dashed circles) because we know it contains exactly
2n2 occurrences of 0. The only other way for the lower automaton to accept is in
the state R, which is entered (and never left) if a 1 is seen after a non-multiple of
n occurrences of 0, if a 1 is seen at the start of the string, or if 11 occurs.

If x contains a 1 at some position i such that the number of occurrences of 0
before position i is not a multiple of n, then in transforming x to (0n1)2n we must
add or remove a 0 before position i. That changes the number of occurrences of

148 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

0 in the string, but that number is the same for the two strings, so we must make
one more edit to change it back. Of those two edits, at most one can introduce a
1 (because one must introduce a 0); so we need to make at least n− 1 more edits
to introduce the remaining occurrences of 1. Then the total Levenshtein distance
is at least n+ 1, and (6.19) does not hold.

If x contains a 1 not immediately preceded by a 0, then when we edit x
to obtain (0n1)2n we must eliminate that. We could do so by inserting a 0 (or
some letter other than 1) before the 1; but then we would still need to make
n edits to add the needed n copies of 1, so (6.19) would not hold. Similarly, if
we deleted or changed to some other letter the 1 not immediately preceded by
a 0, we would need n+ 1 other edits to achieve a total of 2n occurrences of 1.
The only remaining possibility is to delete the letter immediately preceding the
offending 1; but in that case, we again would need to make n+1 additional edits
to bring the string up to length 2n2+ n.

Therefore, when x consists of 2n2 occurrences of 0 and n occurrences of 1,
(6.19) holds if and only if x is of the form {0n, 0n1}2n.

So we can force the solution string into a form whose Levenshtein distance
models Hamming distance by inserting the gadget suggested by Lemma 6.5; for
VPREVERSE we add a triple

�

(0n1)2n , n, 1
�

(6.21)

and for GHREVERSE we add a pair
�

(0n1)2n , 02n2
�

. (6.22)

We were forced to constrain the number of occurrences of 1 to exactly n, and that
complicates the encoding; but before dealing with that, we prove that Levenshtein
distances within the current constrained set of strings really do reflect Hamming
distances.

Lemma 6.6
Let x and y be bit strings of the same length, with the Hamming distance
between x and y less than or equal to 2n. Encode x and y by replacing each
0 with 0n and each 1 with 0n1 to produce new strings x ′ and y ′. Then the
Levenshtein distance between x ′ and y ′ is equal to the Hamming distance
between x and y.

6.3. REVERSE SIMILARITY SEARCH 149

Proof First of all, the Levenshtein distance is at most the Hamming distance
because we could transform x ′ to y ′ by inserting a 1 for each bit that is 0 in x
and 1 in y and deleting a 1 for each bit that is 1 in x and 0 in y; the total number
of edits to do that is the Hamming distance.

Now consider a minimal sequence of edits from x ′ to t ′. In case our alphabet
includes letters other than 0 and 1, none of the edits in the minimal sequence can
introduce such a letter α because we would be forced to delete it or change it to
a 0 or 1 in some future edit, and we could, in fewer edits, either not introduce it
at all (and never have to delete it) or introduce instead the 0 or 1 that we would
eventually change it to, saving one edit. Thus the sequence of strings formed by
our minimal sequence of edits, consists entirely of strings on the alphabet {0, 1}.

Now, x ′ and y ′ each contain the same number of length-n blocks of 0. In
editing x ′ to y ′ in a minimal number of steps, at least one 0 in each block must be
left untouched. If we changed one but changed it back, we could in fewer edits
not change it at all; so all changed copies of 0 must be changed to 1 or deleted.
If we changed or deleted them all, in n edits, we would be missing a block in y ′

and would have to spend an additional n edits to re-create it. That would use up
our maximum of 2n edits, and we could instead follow the Hamming-distance
procedure without touching any occurrences of 0. So if the minimal number
of edits is less, choose one unchanged 0 from each block except the first, and
split up x ′ and y ′ into fragments by cutting immediately after each of the chosen
letters.

Each fragment of x ′ and y ′ corresponds to a bit from x or y respectively. It
contains some number of copies of 0, and exactly one 1 if the bit is 1, or no 1 if
the bit is 0. Each fragment from x ′ is transformed to the corresponding fragment
in y ′, with (by the construction) no letters from other fragments involved.

If the bits are the same, the number of edits between the fragments must still
be at least zero. If the bits differ, the number of edits must be at least one, to
create or destroy the 1, whether by insertion, deletion, or changing a letter to or
from 0. So, either way, the number of edits between the fragments must be at
least the Hamming distance between those two bits. Then the number of edits
between x ′ and y ′ must be at least the Hamming distance between x and y. We
already have that it is at most the Hamming distance, so the two distances must
be equal.

Now we have a Levenshtein edit-distance model for Hamming distance on
2n-bit strings which contain n 1 bits each. To model arbitrary strings, we use a
trick similar to the dimension-doubling of Frances and Litman [76]. Each bit from
the Hamming-distance instance will give rise to two blocks in the edit-distance
instance, with one containing a 1 and the other not. That way, the count of each

150 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

letter is unchanged regardless of whether we encode a 0 or a 1.
To limit x to the desired form, we need to make sure that consecutive pairs

are constrained to 01 or 10. For VPREVERSE, with 1≤ i ≤ n, we insert triples
�

0(2i−1)n10n10(2n−2i)n, n, 1
�

. (6.23)

The string at the centre of the sphere consists of the encoding of a string consisting
entirely of 0 except for one pair 11. Knowing that 1 must occur exactly n times
in the solution, there must be at least one 1 in the pair of positions under
consideration for the Hamming distance to be at most n. Since there must be at
least one 1 in every one of the n pairs and a total of n of them overall, there must
be exactly one in every pair, and the string is of the desired form.

Similarly, for GHREVERSE, with 1≤ i ≤ n, insert pairs
�

0(2i−1)n10n10(2n−2i)n, 02n2
�

, (6.24)
�

02n2
, 0(2i−1)n10n10(2n−2i)n

�

. (6.25)

These pairs split the 2n bits encoded in the form described by Lemma 6.6 into
pairs. For any pair other than the i-th one, the bit values contribute equally to the
distance from both strings and so can be ignored. Thus a string x is allowed by
these pairs as a function of its bit values in that one pair of bit positions. Since the
same two strings are used in both directions, it becomes an equality constraint:
the bit values must be equidistant from 00 and 11. As a result, they must be 01 or
10. Then x must be the encoding of an m-bit Hamming distance string, and we
can prove the NP-completeness result.

First, however, we digress briefly to consider distance permutations. Recall
that given k fixed strings called the sites, x1, x2, . . . , xk, if for another string ysite

we find the closest site to y, the second-closest site to y, and so on, we can
form a permutation that sorts the site indices into order of increasing distance
from y. If two sites are equidistant we break the tie by choosing the lower-
index site first. The resulting permutation is called the distance permutation ofdistance

permutation y (Definition 1.25). Depending on the space and the choice of sites, a given
permutation may not be the distance permutation of any point. In general, we
are interested in the maximum number of distance permutations that occur in
the space, as a function of the number of sites and whatever concept of size (such
as string length) applies to the particular space.

For the space of binary strings with Levenshtein distance, this appears to be a
very difficult problem because of the complex relationships that can occur among
points. It is not even clear how best to pose the question. There is only one space
of strings with Levenshtein distance, containing arbitrarily long strings, and it
seems reasonable that we could always get all k! permutations from k sites if we

6.3. REVERSE SIMILARITY SEARCH 151

had no restriction on string length; so to get an interesting answer, we should
have some restriction on string length. The following result allows us to apply
the Hamming distance lower bounds of Section 5.2 to Levenshtein distance, with
the size of the problem taken as the length of the longest site.

Corollary 6.7
If Nn,H(k) is the maximum number of distinct distance permutations of k
sites among n-bit binary strings with Hamming distance and Nn,L(k) is the
maximum number of distinct distance permutations of k sites among binary
strings with Levenshtein distance where n is the length of the longest site,
then we have

N2n(n+1),L(k)≥ N2n,H(k) . (6.26)

Proof If we encode strings of length 2n by replacing each 0 with 0n and each 1
with 0n1, we get strings of length at most 2n(n+ 1) whose pairwise Levenshtein
distances match the Hamming distances of the original strings. The maximum
Hamming distance between strings is just their length, so Lemma 6.6 applies.
Then we can take a set of k sites that achieves N2n,H(k) and encode them to get a
set of sites that achieves at least as many distance permutations with Levenshtein
distance.

Now we proceed to the main result of this section, which follows naturally
from the gadgets already introduced.

Theorem 6.8
In the space of strings on an alphabet Σ of at least two letters with Leven-
shtein distance, VPREVERSE and GHREVERSE are NP-complete.

Proof Without loss of generality, say that two of the letters in Σ are 0 and 1.
Starting with an arbitrary instance of VPREVERSE or GHREVERSE on n-bit strings
with the alphabet {0, 1}, which are NP-complete problems by Theorem 5.4
and Corollary 5.5 respectively, we will create a polynomial-sized equivalent
instance of the same problem on strings with alphabet Σ and edit distance.

For clarity, we repeat the pairs and triples making up the gadgets as they are
used. First, introduce the gadget described by (6.10) and (6.11) for VPREVERSE,

152 CHAPTER 6. LEVENSHTEIN EDIT DISTANCE

or (6.12) for GHREVERSE:
�

λ, 2n2+ n, 1
�

(6.10)
�

λ, 2n2+ n− 1,0
�

(6.11)
�

02n2+n, 02n2+n−1
�

. (6.12)

By Lemma 6.3, these bound the length of the solution string.
Then, use the gadget described by (6.16) for VPREVERSE or (6.17) for

GHREVERSE and proved by Lemma 6.4, to bound the number of occurrences of
each letter in the solution string:

�

αk+1, 2n2+ n− k− 1,0
�

(6.16)
�

αk,αk+1
�

. (6.17)

Add the gadget described by (6.21) for VPREVERSE or (6.22) for GHRE-
VERSE,

�

(0n1)2n , n, 1
�

(6.21)
�

(0n1)2n , 02n2
�

, (6.22)

and the one described by (6.23) for VPREVERSE or (6.24) and (6.25) GHRE-
VERSE:

�

0(2i−1)n10n10(2n−2i)n, n, 1
�

(6.23)
�

0(2i−1)n10n10(2n−2i)n, 02n2
�

(6.24)
�

02n2
, 0(2i−1)n10n10(2n−2i)n

�

. (6.25)

At this point, by Lemmata 6.5 and 6.6 and the discussion above, we have a
situation where the solution string can be any n-bit string encoded by replacing 0
with 0n10n and 1 with 02n1, and the Levenshtein distance between any two such
encoded strings is twice the Hamming distance of the corresponding unencoded
strings.

Now all the constraints from the original VPREVERSE or GHREVERSE instance
can be translated to constraints in the new instance by encoding the centres
or vantage points, and doubling the radii in the case of VPREVERSE triples. A
solution to the new instance must be an encoded solution to the original instance,
and a solution to the original instance can be encoded to find a solution to the
new instance, so the two instances are equivalent. The string that satisfies an
instance is trivially a polynomial-time certificate for the decision problem, placing
the decision problem in NP. Therefore VPREVERSE and GHREVERSE on strings
with Levenshtein edit distance are NP-complete problems.

Chapter 7

Superghost distance

In the game of Ghosts, players take turns adding letters to the end of a string Ghosts

subject to the constraint that it must always be a prefix of some dictionary word.
The player who is forced to spell a complete word loses the round and is said
to have become one third of a ghost. Players who have lost three rounds are
complete ghosts and drop out of the game, until only the winner remains. The
dictionary for the game normally excludes words of three letters or less, because
they tend to make the game boring. Ghosts has been part of children’s folklore
for a long time; Morris and Morris describe it in 1959 as already more than a
century old [155].

Example 7.1
Alice: I
Bob: IN
Alice: INS
Bob: INSO (hoping to make Alice spell INSOFAR)
Alice: INSOL (hoping for INSOLENT)
Bob: INSOLU
Alice: INSOLUB (she doesn’t have much choice)
Bob: INSOLUBL
Alice: INSOLUBLE

Ghosts has some interest in the context of the combinatorial game theory
introduced by Conway [49] and developed by Berlekamp, Conway, and Guy [28]
because its game tree is exactly the trie of dictionary words, after removing words
that have shorter prefixes in the dictionary and so could never be reached. If we
use that tree to define a tree metric, we get the familiar prefix distance studied in
Chapter 4; it could reasonably be called the “Ghost distance.”

153

154 CHAPTER 7. SUPERGHOST DISTANCE

As an amusement, Ghosts only has limited appeal. The last few moves of each
round tend to be forced, as in Example 7.1, and not much fun. If we allow letters
to be added at the start as well, the result is a more difficult and interesting game
called Superghosts [155, 204]. The more difficult game also naturally yields aSuperghosts

distance function.

Definition 7.2
The Superghost distance between two strings x and y is the minimalSuperghost

distance number of edits to transform x to y where an edit consists of adding or
removing a letter at either end of the string.

Example 7.3
The Superghost distance from TYPOGRAPHER to BIOGRAPHY is 8. Re-
move TYP and ER (five edits), leaving OGRAPH, and then add BI and Y
(three more edits).

It is plausible that Superghost distance could arise in some application beyond
the parlour game. For instance, in bioinformatics we might describe distance
among linear RNA molecules in equilibrium with polymerases such that they
can add and remove bases at either end but only at the ends. However, the
main reason for studying it is theoretical: the Superghost distance is a compro-
mise between the prefix distance and the Levenshtein and Hamming distances.
The prefix distance allows edits at one end only, and with it, VPREVERSE and
GHREVERSE are easy. The Levenshtein and Hamming distances allow edits
anywhere, and with them, VPREVERSE and GHREVERSE are NP-hard. So by
choosing a metric which allows edits at more places than just one end, but less
than everywhere in the string, we can explore the boundary between easy and
NP-hard problems.

Thurber writes that “Starting words in the middle and spelling them in
both directions lifts the pallid pastime of Ghosts out of the realm of children’s
parties and ladies’ sewing circles and makes it a game to test the mettle of the
mature adult mind.” [204] This modification similarly tests the mettle of reverse
similarity search algorithms. It turns out that our reverse similarity problems are
NP-complete in Superghost space (Theorem 7.9). That is the main result of this
chapter. The NP-completeness result was presented, with a sketch of the proof,
at SISAP’08 [192].

Although Superghost distance is primarily introduced for the purpose of
studying VPREVERSE and GHREVERSE, we also discuss our other metric space
problems in relation to this metric. In particular, we give an asymptotic lower
bound on intrinsic dimensionality for fixed-length uniformly distributed binary
strings; fully characterise the number of neighbours of an arbitrary string; and

7.1. INTRINSIC DIMENSIONALITY AND NEIGHBOUR COUNT 155

give a construction (not necessarily tight in terms of length) for a set of sites that
achieves all possible distance permutations.

Just as the prefix distance between two strings could be characterised by
the distance from each string to their longest common prefix, the Superghost
distance is the total distance from two strings to their longest common substring.
The following lemma formalises that.

Lemma 7.1
Where x and y are strings and lcs(x , y) is the longest common substring of
x and y, then the Superghost distance between x and y denoted by d(x , y)
is |x |+ |y| − 2| lcs(x , y)|.

Proof Find a minimal sequence of edits, each consisting of adding or deleting a
letter at either end of the string, to transform x into y. Arrange them to place
all deletions before all additions. This must be possible because an addition and
deletion must either be at different ends of the string, in which case they may be
freely rearranged, or else at the same end with the deletion before the addition.
If we ever did a deletion after an addition on the same end of the string, then we
could omit that deletion and the corresponding addition to get an equivalent but
shorter sequence of edits, contradicting minimality.

Consider the string z that results from applying all the deletions and none of
the additions. It is obviously a common substring of x and y. The length of the
sequence of edits is the number of deletions to get from x to z, which is |x | − |z|,
plus the number of additions to get from z to y, which is |y| − |z|, for a total of
|x |+ |y| − 2|z|. But we can construct a sequence of edits of length |x |+ |y| − 2|z|
any common substring z, so the minimal-length sequence of edits must be for
some z that minimises that expression; namely, the longest possible z. Then
d(x , y) = |x |+ |y| − 2| lcs(x , y)|.

Note 7.4
We always use the word substring to refer to a contiguous substring; a substring

possibly-discontiguous selection of the letters in a string is a subsequence. subsequence

7.1 Intrinsic dimensionality and neighbour count

Recall that we measure intrinsic dimensionality by measuring the tendency noted
in high-dimensional spaces for points to usually be equidistant from each other.
The intrinsic dimensionality ρ is defined as the mean squared divided by twice

156 CHAPTER 7. SUPERGHOST DISTANCE

the variance of the distance between two random points drawn from the space’s
native distribution (Definition 1.23). For Superghost distance on n-bit strings
chosen uniformly at random, we start by bounding the length of the longest
common substring.

Lemma 7.2
The longest common substring between two uniformly chosen random
binary strings of length n has length Θ(log n) with probability 1− o(n−c) for
any constant c > 0.

Proof Let x and y be the two random strings of length n. With high probabil-
ity, they contain a common substring of length 1/2 lg n. Divide the strings into
nonoverlapping substrings of that length. Each of x and y contains 2n/ lg n such
substrings, each of which is chosen independently and uniformly at random.
There are

p
n strings of length 1/2 lg n, so each nonoverlapping substring in x or

y has 1/
p

n probability of being that string. For any given string of length 1/2 lg n,
the chance of it failing to occur in x is at most (1− 1/pn)2n/ lg n. By the well-known
formula (1+ t/n)n ≤ et , the probability of any given string of length 1/2 lg n failing
to occur in one of x or y is less than or equal to e−2

p
n/ lg n. Then with probability

1− o(n−c) it occurs in both of them and so they have a common substring of
length Ω(log n).

In the other direction, consider substrings of length (3+ c) lg n. There are
n3+c strings of that length, but each of x and y can contain at most n of them,
with the conservative assumption that all the substrings in x or y are distinct
from each other. So there are n2 ways to choose a pair of substrings of length
(3+c) lg n by choosing one from x and one from y. Each of those pairs, considered
independently, has 1/n3+c probability of matching. With n2 pairs the chance of
any of them matching is at most 1/n1+c, so the probability of x and y having a
common substring of length 3 lg n is o(n−c), and with probability 1− o(n−c), the
longest common substring has length O(log n).

Note that although the longest common substring between two random
strings is potentially a very difficult problem because of the dependencies among
overlapping substrings, we can at least get an asymptotic lower bound on intrinsic
dimensionality with the very loose result above. Difficulties like those seen in
Section 6.1 would only arise if we tried to push it further, to the variance and the
exact values of the constants.

7.2. DISTANCE PERMUTATIONS 157

Theorem 7.3
The intrinsic dimensionality of uniformly chosen random binary strings of
length n with Superghost distance is Ω(n2/ log2 n).

Proof The longest common substring of two uniformly chosen random strings
of length n is of O(log n) length with probability 1 − o(n−c) for any constant
c > 1 by Lemma 7.2, so because its length must always be between 0 and n its
expected value and variance must be Θ(log n) and O(log2 n) respectively. Then
the Superghost distance must have mean Θ(n) and variance O(log2 n), and from
the intrinsic dimensionality definition (mean squared divided by twice variance)
the intrinsic dimensionality is Ω(n2/ log2 n).

As with the spaces discussed in Section 6.2, we can ask how many neighbours
strings have under Superghost distance. Recall that a neighbour of a point x is a neighbour

point y such that the distance between x and y is 1. At first glance it may appear
that the number of neighbours in Superghost space is the same for all strings of
sufficient length: we can always delete either the first or last letter, and we can
always add any letter from the alphabet at the start or end. Some exceptions
must be made if the string is empty or a single letter, at which point deletion
may be impossible or operations on the two ends may be the same, but in fact,
an exception can also apply to an arbitrarily long string if it happens to consist
of a single letter repeated. In such a case, deleting at either end will produce
an identical result. So the complete answer to the number of neighbours is that
a string x on alphabet Σ with Superghost distance has |Σ| neighbours if x = λ
(add any alphabet letter, the two ends are indistinguishable), 2|Σ| neighbours if
x consists of a single letter repeated one or more times (add an alphabet letter
or delete, at either end, but the ends are indistinguishable for deletions and the
one letter that makes up the string), and 2|Σ|+ 2 in any other case (all moves
produce distinct results).

7.2 Distance permutations

As with Levenshtein distance, the question of distance permutations under the
Superghost metric is complicated by the dependence between overlapping sub-
strings. Recall that with k fixed strings called the sites, x1, x2, . . . , xk, if for another site

string y we find the closest site to y, the second-closest site to y, and so on, we
can form a permutation that sorts the site indices into order of increasing distance

158 CHAPTER 7. SUPERGHOST DISTANCE

from y, breaking ties by placing the lower-index site first. This permutation is
called the distance permutation of y (Definition 1.25). The main question we askdistance

permutation is how many distinct distance permutations can occur among all the points in
a space, if k sites are chosen to maximise the number of distance permutations.
The maximum number of distance permutations determines the storage space
required to represent a distance permutation, if we build an index data structure
around distance permutations.

For the Superghost metric, it seems natural that if we allow the k sites to
be strings of unlimited length, we can easily achieve all k! permutations of the
sites as distance permutations. As a first step toward understanding the limits of
distance permutations in this space, we give the following result that achieves all
k! permutations with limited-length strings. It introduces the encoding technique
also used in the next section.

Theorem 7.4
In the space of strings on an alphabet of at least two letters with Leven-
shtein distance, there exist k sites of length O(k log k) such that for every
permutation of the k sites, there is a string of length O(k2 log k) with that as
its distance permutation.

Proof Say without loss of generality that two of the letters in the alphabet are
0 and 1. Let enc(i) be the encoding of an integer 0 < i ≤ k, which is the valueenc(i)

of i − 1 written as a (lg k)-bit number with the digit 0 replaced by 001 and 1
replaced by 011. This encoding has the property of not containing more than
two consecutive identical bits. The k sites are x i = (enc(i))k+2, that is, each one
consists of k+ 2 repetitions of its own encoded index.

Let π : {1,2, . . . , n} → {1,2, . . . , n} be an arbitrary permutation of the sites and
let

y = 00(enc(1))k−π(1)+31100(enc(2))k−π(2)+311 . . . 00(enc(k))k−π(k)+311 (7.1)

The string y consists of k blocks corresponding to the k sites. Now, since the sites
are all the same length, we can compare their distances to y just by comparing
the lengths of their longest common substrings with y. The site x i has a common
substring of length at least 6dlg ke with the i-th block of y, because that block
contains at least two copies of enc(i). Each block starts and ends with 000 and
111, neither of which occurs in a site, so the longest common substring between
y and a site cannot cross a boundary between blocks. Furthermore, the longest

7.3. REVERSE SIMILARITY SEARCH 159

common substring with any block other than the i-th block can be at most the
length of one encoded index, which is less than the known common substring
with the i-th block. Therefore the longest common substring between y and x i

is of length 3dlg ke(k−π(i) + 3), which is monotonically decreasing with π(i).
Therefore the distance from y to x i is monotonically increasing with π(i), and so
π is the distance permutation of y.

7.3 Reverse similarity search

The main purpose for which we introduce the Superghost distance is to test the
boundary of NP-completeness of the VPREVERSE and GHREVERSE problems.
Recall that VPREVERSE is constraint satisfaction based on spheres: an instance
consists of a set of balls and complements of balls in some metric space, and
the instance is satisfiable if there exists a point in the intersection of all those
sets (Definition 1.27). Similarly, a GHREVERSE instance is a set of points (x , y),
and a point z satisfies the instance if d(z, x) ≤ d(z, y) for every (x , y) in the
set (Definition 1.29). It turns out that even with such a simple metric as the
Superghost distance, these problems remain NP-complete.

The proof for this metric follows substantially the same outline as the proof
for Levenshtein distance given in Section 6.3:

• Characterisation of the distance between two strings (Lemma 7.1).

• Forcing a substring to appear, forbidding it from appearing, or constraining
the length of the solution, all in the VPREVERSE case (trivial).

• Forcing a substring to appear in GHREVERSE (Lemma 7.5).

• Forbidding a substring from appearing in GHREVERSE (Lemma 7.6).

• Setting up the encoded form of the problem (Lemma 7.7).

• Requiring each clause to be satisfied (Lemma 7.8).

• NP-completeness of the problems (Theorem 7.9).

In this proof we use an encoding function enc(i), which is the value of the enc(i)

integer i written as a k-bit binary number (k to be defined later) with the digit 0
replaced by 001 and 1 replaced by 011. The purpose of that encoding is to express
integers in a fixed-length form that does not contain any letter repeated more
than twice consecutively.

160 CHAPTER 7. SUPERGHOST DISTANCE

The proof of Theorem 7.9 is by reduction from 3SAT, with variable assignments
encoded into strings by adding four dummy variables and then concatenating a
value for each variable vi in the form 0001 enc i0b1, where b is 0 if the variable is
false and 1 if the variable is true. The dummy variables are all given the value
of false, and the length k is chosen to provide enough bits to encode the n+ 4
distinct indices. A series of gadgets will be introduced to force the solution to
be of this form and restrict it to encode satisfying solutions for an original 3SAT
instance.

Recall that in Lemma 7.1 we showed that the Superghost distance between
two strings was the sum of their lengths minus twice the length of their longest
common substring. Then we can easily fix the length of the solution in a VPRE-
VERSE problem by fixing its distance from the empty string; and with a known
fixed length of the solution string, it becomes easy to require that a substring
appear, or forbid it from appearing, by bounding the distance from solution to
substring to include, or not, the case of the entire substring appearing in the so-
lution. The detailed proof for the VPREVERSE gadgets is omitted; the equivalent
gadgets for the GHREVERSE case are given in more detail because they are more
complicated and depend on having a known substring included in the solution.

Lemma 7.5
Suppose x and y are strings, with y = α1α2 . . .αn; that is, y1, y2, . . . , yn

are the letters of y. Then d(x , y) ≤ d(x , y1 y2 . . . yn−1) ∧ d(x , y) ≤
d(x , y2 y3 . . . yn) if and only if y is a substring of x .

Proof If y is a substring of x , then the longest common substring of x and y ′

where y ′ is any substring of y, must be y ′. Then

d(x , y) = |x | − |y|< |x | − |y|+ 1= d(x , y1 y2 . . . yn−1) = d(x , y2 y3 . . . yn) .

Suppose y is not a substring of x . Then let y ′ be the longest common substring
of x and y; |y ′| < |y|. It must be the case that y ′ is also the longest common
substring of x and at least one of y1 y2 . . . yn−1 and y2 y3 . . . yn; without loss of
generality, say y1 y2 . . . yn−1. Then

d(x , y) = |x |+ |y| − 2|y ′|> |x |+ |y| − 1− 2|y ′|= d(x , y1 y2 . . . yn−1) .

Lemma 7.5 allows us to force a given substring to appear in the solution.
Once we have forced a sufficiently long substring, it then becomes possible to

7.3. REVERSE SIMILARITY SEARCH 161

forbid substrings as well, using the next result. It is for this purpose, to provide a
sufficiently long known substring, that we add dummy variables to the problem.

Lemma 7.6
Suppose x , y, and z are strings with |y| ≤ |z| + 1 and z a substring
of x with z = z1z2 . . . zn; that is, z1, z2, . . . , zn are the letters of z. Then
d(x , z1z2 . . . z|y|−1)≤ d(x , y) if and only if y is not a substring of x .

Proof Since z is a substring of x , d(x , z1z2 . . . z|y|−1) = |x | − |y| + 1. If y is a
substring of x , we have

d(x , z1z2 . . . z|y|−1) = |x | − |y|+ 1> |x | − |y|= d(x , y) .

If y is not a substring of x , then | lcs(x , y)|< |y| and we have

d(x , z1z2 . . . z|y|−1) = |x | − |y|+ 1≤ |x |+ |y| − 2| lcs(x , y)|= d(x , y) .

With the ability to force and forbid substrings, we can then constrain the
solution into a form that encodes a 3SAT truth assignment. In the GHREVERSE
case, it is at this point that the length of the solution becomes fixed implicitly
by the strings required to appear, their fixed relationship to each other, and the
exclusion of other strings that could make the encoding longer.

Lemma 7.7
We can construct a polynomial-sized Superghost distance VPREVERSE
or GHREVERSE instance whose solutions are exactly the encodings of n-
variable truth assignments.

Proof Choose the smallest k such that 2k ≥ n+4. Then the encoding of a variable
vi with 0 ≤ i < n is given by 0001 enc(i)0b1 where enc(i) is the index i written
in binary and then transformed by {0→ 001, 11→ 011}, and b is 0 if vi is false,
1 if wi is true. The encoding of the complete truth assignment consists of the
encodings of the assignments for all the variables in order of index, followed by
the encodings for four dummy variables vn, vn+1, vn+2, vn+3, all of which are given
the value false. Thus the encoding of the complete truth assignment has length
(3k+ 7) · (n+ 4).

162 CHAPTER 7. SUPERGHOST DISTANCE

Subsequent gadgets depend on known properties of the solution string. In
a VPREVERSE instance, we force the string to known length by adding two
triples (λ, (3k+ 7) · (n+ 4)− 1, 0) and (λ, (3k+ 7) · (n+ 4), 1). In a GHREVERSE
instance, we force the inclusion of the known substring consisting of the encoded
truth assignments for the dummy variables using the gadget of Lemma 7.5; that
substring is of length 12k+ 28.

Consider all strings of length 6k + 14, which is the length of two encoded
variable assignments. The number of such strings is polynomial in n because k is
logarithmic in n. For any string of that length we can easily compute whether it
could ever appear in a valid encoded set of assignments: it must not contain any
substrings forbidden by the encoding rules (such as 0000, 111, or any letter other
than 0 and 1), any encoded variable indices it contains must be consistent with
the ordering of the variables, and if it contains the encoded value of a dummy
variable, the encoded value must be false.

Examine all the strings of length 6k+14 and forbid the ones that cannot occur,
Forbidding a substring x in a VPREVERSE instance consists of adding a triple

(x , (3k+ 7) · (n+ 4)− |x |, 0) ;

in the GHREVERSE case, we use the gadget of Lemma 7.6, using the known
forced substring of length 12k+ 28 introduced previously.

We require every variable to appear in the solution by forcing a substring of the
form 0001 enc(i)0 (that is, the encoded variable index without the variable’s value)
to appear for every variable. In combination with the forbidden substrings, the net
effect is that the solution string must be the encoding of some truth assignment
for the n variables, but could be the encoding of any truth assignment.

With the solution encoding any truth assignment, it remains to constrain it
to truth assignments that satisfy the original 3SAT instance. Each 3SAT clause
is translated to a constraint in the VPREVERSE or GHREVERSE instance as
described in the following lemma.

Lemma 7.8
Given that the solution of a Superghost distance VPREVERSE or GHREVERSE
instance is constrained to the encoding of a truth assignment, we can add a
gadget to require that a 3-clause must be satisfied by the solution.

Proof Let va, vb, and vc be the variables that appear in the clause, and let ba, bb,
and bc be bits equal to 0 if the corresponding variables are negated in the clause,

7.3. REVERSE SIMILARITY SEARCH 163

1 if they are not. Let

x = 0001 enc(i)0ba1100001 enc(j)0bb1100001 enc(k)0bc1 .

Note that x consists of an encoding of each of the three variable assignments
that could satisfy the clause, separated by additional copies of 0 and 1 to form
forbidden substrings (specifically, 0000, which cannot occur at all, and 11, which
cannot occur immediately after an encoded variable). The longest common
substring between x and any solution string cannot contain more than one of the
encoded variables because of the forbidden substrings in between, and cannot be
of length greater than 3k+7; it will be of that length if the clause is satisfied, but
can be of length at most 3k+ 5 if the clause is not satisfied.

So the gadget must require the longest common substring to have length
3k+ 7. For the VPREVERSE problem, that is accomplished with the triple

(x , (3k+ 7) · (n+ 5) + 1, 1) ,

and for the GHREVERSE problem, the gadget consists of the pair
�

x , 13k+10
�

.

Now we can prove Theorem 7.9: that VPREVERSE and GHREVERSE on strings
with Superghost distance are each NP-complete problems.

Theorem 7.9
In the space of strings on an alphabet of at least two letters with Superghost
distance, VPREVERSE and GHREVERSE are NP-complete.

Proof The proof is by reduction from 3SAT. Starting from any instance of 3SAT
with n variables, let k = dlog(n+ 4)e. In the VPREVERSE case, force the solution
to be of length (3k+ 7) · (n+ 4) by bounding on both sides its distance from the
empty string, and then force it to contain or not contain any arbitrary string by
bounding the distance from that string, as discussed above. In the GHREVERSE
case, we use Lemmata 7.5 and 7.6.

Use Lemma 7.7 to constrain the solution to an encoded truth assignment for
the 3SAT instance, and Lemma 7.8 for each clause to require satisfaction of the
clause. Then the VPREVERSE or GHREVERSE instance will be satisfied if and
only if there is a satisfying variable assignment for the 3SAT instance, and the
solution string that satisfies all the constraints is a polynomial-time certificate, so
the problems are NP-complete.

Chapter 8

Real vectors: reverse similarity search

We have seen that the difficulty of the VPREVERSE and GHREVERSE problems
depends on the space. Intuitively, some spaces with complicated metrics seem
intrinsically difficult and lead to apparently difficult reverse similarity search
problems, whereas others with simpler metrics allow for polynomial-time solu-
tions. We even designed the Superghost distance to narrow down the location
of the boundary between P and NPC among edit distances: assuming such a
boundary exists at all, it comes between the Superghost and prefix distances.

In the present chapter, we consider the same question for real vectors with
Lp metrics. As p varies, what happens to the difficulty of reverse similarity
search? The overall result we prove is that VPREVERSE and GHREVERSE are
NP-complete for real vectors to some specified precision with any Lp metric
except that GHREVERSE is polynomial-time for Euclidean (L2) vectors.

Note 8.1
For all the results of this chapter, it is assumed that vectors must be given
explicitly, component by component, in the input. Real numbers in the
input must be given to some specified precision, unless we state otherwise;
since all the metrics in this class are independent of scaling the entire
problem, it would be convenient to simply require that all the numbers in
the input be integers.

These considerations are significant because n, the number of com-
ponents, is the quantity in which the hard problems appear not to be
polynomial-time. If n were fixed, the problems might no longer be hard;
and if vectors could be given in some abbreviated form instead of explicitly,
then the hardness of the problems would be less surprising. The numeric
precision issues will be discussed in more detail as they come up.

165

166 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

The complexity results were announced, with brief sketches of the proof
techniques involved, in SISAP’08 [192]. In the present work, the proofs are
broken down as follows.

• Theorem 8.3: VPREVERSE in NPC for Lp with finite p;

• Theorem 8.4: VPREVERSE in NPC for L∞;

• Theorem 8.5: GHREVERSE in P for L2;

• Theorem 8.9: GHREVERSE in NPC for Lp with finite p 6= 2; and

• Theorem 8.10: GHREVERSE in NPC for L∞.

The exception for GHREVERSE in L2 is interesting in two ways. It shows
that Euclidean space is special in having an easy GHREVERSE problem even
though in many other ways all Lp metrics are interchangeable; and it shows
a boundary between VPREVERSE and GHREVERSE. In most spaces the two
problems are basically equivalent. The strongest division between them so far
was the one in Theorem 4.6, which only becomes relevant for strange, badly-
behaved spaces. The results of this chapter show a situation where, with ordinary
well-behaved spaces actually used in practice, VPREVERSE and GHREVERSE are
really fundamentally different.

Throughout this chapter, we will use n to refer to the length (number of
components) of a vector, or the number of letters in a string. Table 8.1 is a quick
reference guide to that and other variable names used in this chapter; where
possible, we keep the names consistent among different proofs. Similar symbols
like xi and x i are differentiated by typography, but the difference between them
should be clear from context also. We define the following notation for unit
vectors.

Definition 8.2
Let ui represent the unit vector along the positive i-th coordinate axis; thatunit vector (ui)

is, the vector with the i-th component equal to 1 and all other components
zero.

We use the same general approach for all the NP-complete cases. Enough
details differ between VPREVERSE and GHREVERSE, and between Lp for finite p
and L∞, to require separate proofs, but in all four cases, we begin by mapping
binary strings to the corners of a hypercube. Then it becomes possible to reduce
either from the same problem on strings with Hamming distance, or directly from
3SAT, to establish NP-hardness.

The polynomial-time case (Theorem 8.5) is a reduction to linear programming.
Some issues arise from questions of which model of computation we use; those

167

δ,ε arbitrarily small positive reals
i, j, k indices
n number of components in vector or letters in string
p type of Lp metric
r, r1, r2 sphere radii
ui unit vector along positive i-th axis
vi i-th variable in 3SAT instance
v normal vector for linear programming constraint
x sphere centre (VP) or nearer point in pair (GH)
x i i-th component of x
xi centre of i-th sphere or nearer point in i-th pair
x i, j j-th component of xi

y sphere centre or farther point in pair
yi i-th component of y
yi farther point in i-th pair
yi, j j-th component of yi

z solution to VPREVERSE or GHREVERSE instance
zi i-th component of z
z1,z2 two solution vectors
z′1, z′2 strings corresponding to solution vectors

Table 8.1: Some variable names used in vector reverse-similarity proofs.

168 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

are discussed in detail in Section 8.3. The intuition for why that case is easy
comes from the fact that it is, uniquely, the question of finding a point in the
intersection of a collection of convex sets. All the other cases allow some or all
the sets to be nonconvex, and the NP-hardness proofs involve arranging the sets
to make their nonconvexity encode an NP-hard problem.

We conclude the chapter with some comments on what happens to the
VPREVERSE question when all the spheres are constrained to the same diameter.

8.1 VPREVERSE with the Lp metric for finite p

For the VPREVERSE problem in a finite-p Lp space, we will reduce from the same
problem in Hamming distance space, known to be NP-complete by Theorem 5.4.
The basic encoding is almost trivial: n-bit binary strings reduce to n-component
vectors, with 0 encoded by 0 and 1 encoded by 1. The complication is that the
definition of VPREVERSE does not allow for placing a strict equality constraint
on distances: we can write a triple (x, r, 1) to require the solution to be within
or on the surface of a sphere, or (y, r, 0) to require that it be strictly outside, but
we cannot combine them to require an exact distance from the solution to the
centre, as we might with integer-valued metrics. Instead, we get around the
limitation in the obvious way by adding an arbitrarily small offset ε; then the
solution has a nonempty topological interior, we can expect to find a solution
with rational coordinates if there is a solution at all, and some of the thornier
numeric precision issues vanish.

The approach used to limit the solution to the corners is illustrated in Fig-
ure 8.1. We place two spheres to limit the solutions to be close to the surface
of the sphere that circumscribes the hypercube, then use another sphere offset
in the plus or minus direction along each of the n dimensions (2n of these in
total) to remove the edges, faces, and higher-dimensional analogues, leaving
the solution restricted to a small region around each corner. We can make the
regions arbitrarily small, and when they are small enough, an equivalence to the
VPREVERSE problem on Hamming strings follows.

The following lemma is part of the proof that the corner-limiting gadget
in Figure 8.1 really works. It may seem obvious, but we state it explicitly to
emphasise that it really does work for all p ≥ 1. The figure only shows the
intuitive case of two-dimensional Euclidean space; and excessive reliance on easy
cases is dangerous, as we have seen with such things as intrinsic dimensionality
in Chapter 2 and will see again later in this chapter when we consider other
metrics.

8.1. VPREVERSE WITH THE LP METRIC FOR FINITE P 169

Figure 8.1: Limiting the solution to the corners for VPREVERSE in Lp space.

170 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

Lemma 8.1
Let f (x) = |x |p − |1− x |p. Then for any ε > 0, p ≥ 1, there is a δ > 0 such
that if f (x)< δ then x < 1/2+ ε. Also, for fixed p and sufficiently small ε, δ
is only polynomially small in ε.

Proof The function f (x) is everywhere continuous. Consider its derivative:

f ′(x) =







−p(−x)p−1+ p(1− x)p−1 if x ≤ 0

px p−1+ p(1− x)p−1 if 0≤ x ≤ 1

px p−1− p(x − 1)p−1 if x ≥ 1

The derivative is defined and nonnegative for all x , so f (x) is monotonically
increasing. Furthermore, f (1/2) = 0. Therefore by requiring f (x) to be less than
some positive δ, we can require x to be less than 1/2+ ε for arbitrarily small ε.

Note that f (x) is also a polynomial-sized function of x; actually only piecewise
polynomial-sized, but for x close to 1/2 only the middle piece is relevant. Therefore
as ε decreases, δ can only decrease polynomially.

The point about δ being polynomial in ε matters because it means we will
not find it impossible to write the sphere radii in polynomial space during the
NP-completeness reduction. The present case is not a difficult or mysterious one.
It should be intuitive that we can make the spheres nearly touch each other, but
not quite, and get them close enough to use in the reduction, without running
out of bits in which to name the radii. But use of real numbers in these kinds of
problems always calls for some caution, as will be discussed for the case of linear
programming (where it does become difficult and mysterious) in Section 8.3. For
now, we proceed to apply the lemma.

Lemma 8.2
For any Lp metric and arbitrarily small ε > 0, there exists a polynomial-sized
VPREVERSE instance on n-component vectors such that every solution is
within a distance less than ε from an n-bit string (that is, a vector in which
every component is 0 or 1), and every n-bit string is a solution.

Proof Let x=
∑n

i=1
1/2ui. That represents the centre of the hypercube. Let δ be a

small positive real number we will choose later. Let r1 = 1/2
ppn; that is the radius

8.1. VPREVERSE WITH THE LP METRIC FOR FINITE P 171

of the Lp sphere circumscribing the hypercube. Let r2 = (n2−p −δ)1/p; that is a
slightly smaller radius, used for all the other spheres. These are the spheres in
the VPREVERSE instance:

(x, r1, 1) (8.1)

(x± ui , r2, 0) for all i ∈ {1, 2, . . . , n} (8.2)

(x, r2, 0) . (8.3)

It is easy to verify that all corners of the hypercube, which are exactly the
set of n-bit strings written as vectors, are included as solutions. Consider a
solution z and the spheres (8.1) and (8.2) for some vector component zi, without
loss of generality z1. By the definition of Lp spheres, they impose the following
constraints on the components:

|1/2− z1|p +
n
∑

j=2

�

�
1/2− z j

�

�

p ≤ n2−p

| − 1/2− z1|p +
n
∑

j=2

�

�
1/2− z j

�

�

p
> n2−p −δ

|3/2− z1|p +
n
∑

j=2

�

�
1/2− z j

�

�

p
> n2−p −δ .

Then we can subtract the inequalities and apply Lemma 8.1 to place bounds
on z1, using f (x) = |x |p − |1− x |p. By the lemma, we can choose δ to make ε as
small as desired. We have

| − 1/2− z1|p − |1/2− z1|p >−δ |3/2− z1|p − |1/2− z1|p >−δ
|1/2− z1|p − |1− (1/2− z1)|p < δ |z1− 1/2|p − |1− (z1− 1/2)|p < δ

f (1/2− z1)< δ f (z1− 1/2)< δ
1/2− z1 <

1/2+ ε z1− 1/2 <
1/2+ ε

z1 >−ε z1 < 1+ ε

and therefore for all components zi:
�

�
1/2− zi

�

�< 1/2+ ε . (8.4)

Now consider the sphere described by (8.3). It is equivalent to this constraint
on the components of x:

n
∑

j=1

�

�
1/2− z j

�

�

p
> n2−p −δ .

172 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

Combining that constraint with (8.4) gives, for each component zi:

(n− 1)(1/2+ ε)
p +
�

�
1/2− zi

�

�

p
> n2−p −δ

and by making δ sufficiently small, we can force
�

�
1/2− zi

�

� arbitrarily close to
1/2. Then each component of z must be arbitrarily close to 0 or 1, and so by
abuse of notation the distance from z to the nearest n-bit string can be made
less than any chosen ε. Moreover, we can write down the VPREVERSE instance
in a number of bits polynomial in n, for fixed p, by increasing r1 and r2 to
conveniently-representable numbers polynomially close to their preferred values,
while introducing distortion of less than ε in the distances.

Limiting the solutions to the corners is the difficult part of the result; with
that out of the way, the NP-completeness of the problem follows naturally.

Theorem 8.3
VPREVERSE is in NPC for real vectors with an Lp metric and finite p.

Proof By Lemma 8.2, we can construct a polynomial-sized VPREVERSE instance
for this space such that every solution is within ε distance of an n-bit string.
Then by the triangle inequality, the distance between two solutions z1 and z2 is
within 2ε of p

p

dH(z′1, z′2) where z′1 and z′2 are the strings corresponding to the
nearest corners to z1 and z2, and dH is Hamming distance. Then each possible
Hamming distance (they are all nonnegative integers) corresponds to an interval
of width 4ε of Lp distances, and by choosing sufficiently small ε we can make
these intervals non-overlapping.

Note that pp· is a strictly increasing function. For any sphere in Hamming-
distance space we can find a sphere in Lp space such that a solution in Lp space
is in the Lp sphere if and only if it corresponds to a string in the Hamming
sphere. The VPREVERSE problem on n-bit strings with Hamming distance is NP-
complete by Theorem 5.4. Then we can take a Hamming-distance VPREVERSE
instance and convert it to an equivalent Lp VPREVERSE instance, and so Lp

VPREVERSE is also NP-hard.
This problem is also in NP, making it NP-complete, because the solution

vector z is a polynomial-time-verifiable certificate. Note that although we give
less detail on this point here than in the previous proof, there is still nothing
subtle going on with precision: the solution regions near the hypercube corners
are of polynomial size, any solution will do, and so we can always pick a solution
that can be written conveniently in a polynomial number of bits.

8.2. VPREVERSE WITH THE L∞ METRIC 173

8.2 VPREVERSE with the L∞ metric

The VPREVERSE problem is also NP-hard with the L∞ metric, but the proof in
the previous section cannot be applied because of problems with enforcing the
encoding. The Lp construction shown in Figure 8.1 depends on using the inner
sphere (8.3) to eliminate all the interior of the hypercube except the corners.
If we imagine the sphere being inflated like a bubble from a single point at the
centre of a three-dimensional cube, it first intersects the cube’s surface at the
centres of the faces, then circular bulges grow in each face until they meet along
the edges, then larger and larger segments of the edges are engulfed until finally
the vertices disappear.

In the L∞ case, the sphere is a hypercube, and it does not intersect the surface
of the hypercube representing truth assignments at all until it suddenly coincides
with the entire surface all at once. There is no possibility to exclude all but the
corners by a careful selection of radius. Similarly, we would not find a strictly
increasing function from Hamming distance to L∞ distance; any two distinct
corners of a hypercube have equal L∞ distance.

Instead, we use a different encoding and reduce directly from 3SAT. Vector
components will represent variables. Each component will be nonnegative
for a variable set to true, and negative for a variable set to false. As in the
previous section the overall goal is to restrict solutions to be near the corners of
a hypercube; but we count components with the correct signs as close enough
instead of requiring an arbitrarily small error. We also exploit the convenient
form of L∞ spheres: they are simply products of intervals.

Theorem 8.4
VPREVERSE is in NPC for real vectors with L∞.

Proof The reduction is from 3SAT. Let v1, v2, . . . , vn be the variables of any ar-
bitrary 3SAT instance. We will create a polynomial-sized equivalent instance
of VPREVERSE on n-component real vectors with the L∞ metric. Let the VPRE-
VERSE instance contain the sphere (0, 1, 1); that restricts solutions to have each
component in the closed interval [−1,1].

For each clause in the input 3SAT instance, where vi , v j , vk are the variables in
the clause, add a sphere (±ui ±u j ±uk, 3/2, 0) where the signs on the unit vectors
are chosen positive if the corresponding variables are negated in the clause,
negative if not negated. Now, bearing in mind that every component in a solution
vector must be in the range [−1,1], consider a solution z to the VPREVERSE

174 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

problem. To be outside this sphere there must be at least one component that
differs from the sphere’s centre by more than 3/2. No component but zi , z j , and
zk can be that far from the sphere’s centre because the sphere’s centre is zero in
all but those components and solution components must be in [−1,1]. But the
solution vector can differ from the sphere centre by more than 3/2 if one of the
three components corresponding to variables in the clause is less than −1/2 for
a negated literal or greater than 1/2 for a non-negated literal. Those values are
exactly the ones equivalent to assignments that satisfy the clause in the original
3SAT problem.

Therefore, when spheres have been added corresponding to all the clauses,
then for any solution to the 3SAT instance there will be a corresponding vector
consisting of −1 or 1 in each component, corresponding to F or T respectively,
and for any vector that solves the VPREVERSE instance, we can find a satisfying
assignment for the 3SAT problem by converting negative components to F as-
signments and nonnegative to T. Note that this VPREVERSE instance is made up
entirely of easy-to-represent constants and is polynomial-sized. Therefore VPRE-
VERSE in this space is NP-hard; and it is NP-complete because the satisfying
vector is a polynomial-time certificate.

8.3 GHREVERSE in Euclidean space

There is a special case for the GHREVERSE problem: Euclidean space. The proof
for finite p given in the next section does not apply to p = 2, and that does not
just represent a gap in the proof, but an actual and fundamental difference in
the underlying spaces. For finite p in general, GHREVERSE is NP-hard; but for
p = 2, it is easy, as shown by the following theorem.

Theorem 8.5
GHREVERSE is in P for real vectors with the Euclidean metric, by a
polynomial-time equivalence with linear programming in the same space.

Proof Each pair of points in the input problem corresponds to a hyperplane that
bisects the two points, and the solution z is any point that is on the specified sides
of all the hyperplanes. For each pair of vectors (x,y) in a GHREVERSE instance,
the vector (x+ y)/2 is on the hyperplane and the vector (y− x) is normal to it,
pointing in the direction of the y (undesired) half-space, so the corresponding
inequality is (y − x) · z ≤ (y − x) · (x + y)/2. The points that satisfy all those

8.3. GHREVERSE IN EUCLIDEAN SPACE 175

inequalities are exactly the points that are solutions to the GHREVERSE instance.
Solving the system of inequalities is an instance of linear constraint feasibility,
or linear programming if we supply any linear objective function (such as the
constant zero). Linear programming is in P, so GHREVERSE is also.

In the other direction, given a linear programming instance stated as a decision
problem (the decision being whether it is possible to achieve a given value for the
objective), the constraint on the objective function can be written as just another
constraint on a linear function. Then each constraint on the solution vector z is
of the form z · v≤ c for some vector v and scalar c, and this GHREVERSE pair is
equivalent:

�� c

v · v
− 1
�

v,
� c

v · v
+ 1
�

v
�

.

Therefore we can convert any linear programming instance into an equivalent
GHREVERSE instance.

That is a simple result, but it has subtle consequences because the status
of linear programming is not fully known. Throughout this work we assume
that real numbers in the input to a decision problem must be stated in binary,
with their sizes counted in the size of the input. That implies they must actually
be rationals; and in fact, because of the scaling-independence of both linear
programming and Lp reverse similarity problems, it is convenient to require that
all the input numbers be integers. In that model, linear programming is known
to be in P; one well-known algorithm for it is due to Karmarkar [117].

But the known polynomial-time algorithms for linear programming, including
Karmarkar’s, are interior-point methods that work iteratively, improving the
precision of an estimate in each successive iteration until they reach an exact
solution. The time to complete the process is not limited by a polynomial in
the number of constraints and dimensions. Suppose instead of counting bits we
use a model of computation that allows for arbitrary real numbers and charges
a cost of one unit (in space) for storing a real number or (in time) for doing
an arithmetic operation on two real numbers—hence called the unit cost model. unit cost model

Then we can construct an ill-conditioned linear programming instance for which
existing methods will need more than polynomial time. The real numbers used in
such an instance require more than polynomial bits to write down, which is how
this result does not contradict the polynomial bound for the standard model.

Megiddo describes an algorithm for linear programming in the unit cost
model with time linear for any fixed dimension, but exponential in number of
dimensions [151]. There is also a randomised algorithm due to Matoušek, Sharir,
and Welzl with expected time polynomial in the unit cost model, but worst case
time exponential [150]. The expected polynomial time of that algorithm applies

176 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

to any input; worst-case behaviour is determined by bad random choices in the
algorithm, not bad input. These results seem to come very close to establishing
linear programming as worst-case polynomial time in the unit cost model, but it
remains open.

For our purposes, however, the main question was in the Turing-machine
model where inputs must be given in binary, and in that model, GHREVERSE in
Euclidean space is special for being in P while all the other cases of VPREVERSE
or GHREVERSE on Lp real vector spaces are NP-complete.

8.4 GHREVERSE with the Lp metric for finite p 6= 2

Intuitively, the reason for GHREVERSE with the Euclidean metric to be easy is
that the set of solutions is convex. The bisector of two points in Euclidean space
is a flat hyperplane. It divides the space into two sets which are each convex. The
intersection of any number of such sets remains convex. That convexity seems to
be what makes the problem easy.

With any other Lp metric, the set described by a pair of points and their bisec-
tor is no longer convex; and the non-convex sets can have arbitrarily complicated
intersections. As a result, with any Lp metric other than L2, the GHREVERSE
problem becomes NP-complete. As in the VPREVERSE case, we will restrict
the solutions to the corners of a hypercube and then reduce from the same
problem on binary strings. The gadget to do that uses a dimension-doubling trick
similar to that used by Frances and Litman in their work on Hamming distance
strings [76]. Each letter in the binary strings corresponds to two components in
the vectors, and we use one more component as a slack variable, for a total of
2n+ 1 vector components.

The proof is complicated, so we will introduce it in several pieces. First,
assume we start with an instance of GHREVERSE on binary strings of length n
with Hamming distance. We will construct an equivalent instance of GHREVERSE
on real vectors of length 2n+ 1, using the Lp metric for some finite constant
p ≥ 1 with p 6= 2. A string is encoded to a vector consisting of a zero component
followed by two repetitions of the letters of the string split into components, so
that for instance the string 011 corresponds to the vector 〈0,0, 1,1, 0,1, 1〉. The
first step is to restrict the vector components to 0 for the first component and
the interval [0,1] for the other components; the latter restriction is illustrated in
Figure 8.2.

8.4. GHREVERSE WITH THE LP METRIC FOR FINITE P 6= 2 177

x
2j+2

y
2j+2

y
2i+2

z
i

z
j

x
2j+1

y
2j+1

x
2i+2

x
2i+12i+1

y

0 1 2 3−1−2−3

−3

−2

−1

0

1

2

3

Figure 8.2: Limiting vector components to [0, 1].

178 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

Lemma 8.6
There exists a GHREVERSE instance on 2n+ 1-component real vectors with
the Lp metric such that the following hold for any solution 〈z1, z2, . . . , zn〉:

z1 = 0 (8.5)

zi ≥ 0 1≤ i ≤ 2n+ 1 (8.6)

zi ≤ 1 1≤ i ≤ 2n+ 1 . (8.7)

Proof Introduce two pairs of points for each of the 2n+ 1 vector components:

x1 = 2u1 y1 =−2u1 (8.8)

x2 =−2u1 y2 = 2u1 (8.9)

x2i+1 = 2ui y2i+1 =−2ui 1< i ≤ 2n+ 1 (8.10)

x2i+2 =−ui y2i+2 = 3ui 1< i ≤ 2n+ 1 . (8.11)

For finite p and each pair (xi ,yi), a vector z is a solution to the instance only if

d(xi ,z)≤ d(yi ,z) (8.12)






2n+1
∑

j=1

|x i, j − z j|p







1/p

≤







2n+1
∑

j=1

|yi, j − z j|p







1/p

. (8.13)

Since p and all the absolute values are nonnegative, and xi and yi differ in
only one component, we can simplify (8.13) to refer only to that component.
Where j is the component in which the vectors differ, we have (8.12) if and only
if |x i, j − z j| ≤ |yi, j − z j|. For x i, j < yi, j, we can remove the absolute value signs as
follows:

|x i, j − z j| ≤ |yi, j − z j|⇔







x i, j − z j ≤ yi, j − z j (true) if z j ≤ x i, j;

z j − x i, j ≤ yi, j − z j if x i, j < z j ≤ yi, j;

z j − x i, j ≤ z j − yi, j (false) if yi, j < z j .

(8.14)

The inequality (8.14) is therefore equivalent to z j − x i, j ≤ yi, j − z j, which is
equivalent to z j ≤ (x i, j + yi, j)/2, when x i, j < yi, j. The same kind of argument
gives z j ≥ (x i, j + yi, j)/2 when x i, j > yi, j. For the pathological case of x i, j = yi, j

and therefore xi = yi, there is no restriction on z. In summary, a pair can be used
as a gadget to place a “less than or equal” or “greater than or equal” condition on
any component of z.

8.4. GHREVERSE WITH THE LP METRIC FOR FINITE P 6= 2 179

The pairs we have introduced then use that technique to create the required
constraints on the value of z. The pairs (8.8) and (8.9) enforce the constraints
z1 ≥ 0 and z1 ≤ 0 respectively, which combine to enforce z1 = 0, (8.5). The pairs
(8.10) and (8.11) enforce the constraints zi ≤ 1 and zi ≥ 0, making up (8.6)
and (8.7) for each zi except the first, to which those constraints already apply
because of the stronger constraint that z1 = 0.

Now we must constrain the values of the components even further, so that
except for the first component, which is used by the construction, the remaining
components each have only two values. It was in preparation for this step that
we introduced two components for each letter in the string instance; although
we only need one component to model a letter, the second is required by the
gadget shown in Figure 8.3. The case p = 1.7 is shown. The open circles are the
vantage points used in GHREVERSE pairs; the one in the middle is displaced a
distance in a third, unshown dimension (u1), and its bisectors with the other two
intersect to limit the values of zi + 1 and zi + n+ 1.

Here is where we make use of the non-convexity of Voronoi cells in Lp metrics
other than L2. The line segment from (0,0) to (1, 1) is a counterexample to the
convexity of Voronoi cells: both endpoints are in a cell but intermediate points
between them are not. As a result we can intersect two cells, and the existing
square constrained region from previous pairs, to give only two pairs of values
for the two components that satisfy all constraints. As p increases from 1 to
2, the spindle-shaped region in the centre of the figure becomes thinner and
thinner. For p > 2, the curves pass each other, but we can invert the sense of the
pairs and again have two concave-sided triangles with an empty spindle between
them. But for p exactly 2, no such trick applies: the triangular regions intersect
everywhere along the segment from (0, 0) to (1,1) and the gadget fails. That is
the case shown to be in P by Theorem 8.5.

Although it is easy to explain intuitively why this gadget works, proving that
it works for general p is surprisingly difficult because the spindle-shaped region
is described only implicitly, by functions involving general powers of binomials.
Trivial algebra does not suffice; the following lemma, resorting to techniques
from calculus, makes the proof possible.

Lemma 8.7
Given reals p ≥ 1 and 0≤ x ≤ 1, the following hold:

x p + |1− x |p = 1− 21−p + 2|1/2− x |p if x = 0, x = 1, or p = 2; (8.15)

x p + |1− x |p > 1− 21−p + 2|1/2− x |p if 0< x < 1 and 1≤ p < 2; (8.16)

180 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

0 1

0

1

z

z

x2i+4n+3

x2i+4n+2

i+n+1

i+1

y2i+4n+2

y2i+4n+3

Figure 8.3: Limiting a pair of components to {0,1}.

8.4. GHREVERSE WITH THE LP METRIC FOR FINITE P 6= 2 181

x p + |1− x |p < 1− 21−p + 2|1/2− x |p if 0< x < 1 and p > 2. (8.17)

Proof The equality (8.15) follows by substituting x = 0, x = 1, and p = 2 in turn.
Then for the remaining cases, we can assume 0< x < 1. Let fx(p) = x p+ |1− x |p

and gx(p) = 1− 21−p + 2|1/2− x |p; that is, the left-hand and right-hand sides of
the statements we are proving, with notation that lends itself to considering them
as functions of p. Both functions are continuous with respect to p.

Two special cases will be relevant:

fx(1) = 1> 2|1/2− x |= gx(1) (8.18)

fx(2) = 2x2− 2x + 1= gx(2) . (8.19)

The concept of the proof is that as we increase p starting from p = 1, the curve
fx(p) begins above gx(p), and they both move towards each other to coincide
when p = 2. After that, fx(p) remains below gx(p) as p goes to infinity. The
curves, for representative values of p, are illustrated in Figures 8.4 and 8.5. In
(8.18) we have the starting point of the process, with fx(p) above gx(p); then
(8.19) shows that they do coincide at p = 2. The increase from gx(1) and gx(2)
is not monotonic for all values of x , but the non-monotonicity is numerically
small and almost invisible in Figure 8.5. Figure 8.6 shows a magnified section of
g0.15(p) that makes it more obvious.

Consider the derivative of fx(p):

f ′x(p) = x p log x + |1− x |p log |1− x | .

Given 0< x < 1, p ≥ 1, both logarithms must be negative and both p-th powers
must be positive, so the derivative is always negative. The function fx(p) is
maximised for p = 1 and strictly decreasing with increasing p.

Now, consider the first two derivatives of gx(p):

g ′x(p) = 21−p log2+ 2|1/2− x |p log |1/2− x |
g ′′x (p) =−21−p log2 2+ 2|1/2− x |p log2 |1/2− x | .

Although log |1/2− x | is undefined at x = 1/2, the derivative is by definition a limit,
and since p ≥ 1 we can compute the limit 0 log 0= 0 to define a value for these
derivatives even at x = 1/2; the logarithmic term vanishes. With these derivatives,
we can describe the behaviour of gx(p) on intervals of p values with enough
precision to prove the desired results.

182 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f x
(p

)=
x

p
+

|1
-x

|p

x

The function fx(p) used in the Lp gadget

p=1 (coincides with axis)

p=1.25

p=1.5

p=1.75

p=2

p=3

p=10

p=100

Figure 8.4: The function fx(p) for some representative values of p.

8.4. GHREVERSE WITH THE LP METRIC FOR FINITE P 6= 2 183

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

g
x
(p

)=
1
-2

1
-p

+
2
|1

/ 2
-x

|p

x

The function gx(p) used in the Lp gadget

p=1

p=1.25

p=1.6

p=2

p=3

p=5

gx(1.25)<gx(1)

Figure 8.5: The function gx(p) for some representative values of p.

184 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

 0.695

 0.7

 0.705

 0.71

 0.715

 0.72

 0.725

 0.73

 0.735

 0.74

 0.745

 1 1.2 1.4 1.6 1.8 2

g
x
(p

)=
1
-2

1
-p

+
2
|1

/ 2
-x

|p

p

Non-monoticity of gx(p)

x=0.15

Figure 8.6: Curve showing the non-monotonicity of gx(p).

8.4. GHREVERSE WITH THE LP METRIC FOR FINITE P 6= 2 185

Consider the case 1 ≤ p < 2. We already have that fx(p) > fx(2) = gx(2) for
all p in this interval, so it remains to show that gx(p) < gx(2). We do that by
determining the maximum value of gx(p) in the (closed) interval from p = 1
to p = 2. The values at the endpoints were calculated in (8.18) and (8.19).
We split (8.18) into two cases depending on the sign inside the absolute value
function, and find that the difference gx(2)− gx(1) is positive in both cases, using
the assumption that 0< x < 1:

2x2− 2x + 1− 2(1/2− x) = 2x2 > 0

2x2− 2x + 1− 2(x − 1/2) = 2x2− 4x + 2= 2(x − 1)2 > 0 .

Therefore gx(2)> gx(1).
But the maximum could still occur at some intermediate value between p = 1

and p = 2. To address that case, we observe that the first two (indeed, all)
derivatives are continuous over the entire interval, so we can find the relative
extrema by setting the first derivative zero:

g ′x(p) = 0

−21−p log2= 2|1/2− x |p log |1/2− x | .

That allows a substitution into the second derivative:

g ′′x (p) =−21−p log2 2+ 2|1/2− x |p log2 |1/2− x |
=−(21−p log2)(log 2) + (2|1/2− x |p log |1/2− x |)(log |1/2− x |)
=−(21−p log2)(log 2+ log |1/2− x |) .

Now, (21−p log 2) must be positive. Since 0< x < 1, then |1/2− x |< 1/2 and its
logarithm is less than − log2, so the second term is negative. Then g ′′x (p) is the
negative of a product of a positive and a negative, and so it is positive; therefore
the graph is concave upward at this value of p, and so this is a relative minimum,
not a maximum. The maximum on the closed interval is achieved at p = 2; gx(p)
is less than gx(2) for all 1 ≤ p < 2. Then since fx(p) > fx(2) and gx(p) < gx(2),
and fx(2) = gx(2), we have (8.16).
Consider the case p > 2. We already have that fx(p) < fx(2) = gx(2) for all
p > 2. The equation g ′x(p) = 0 has a unique solution and so g ′x(p) changes sign
at most once as p increases; there is only one p such that g ′x(p) = 0. And because
we know g ′′x (p) is positive at that point, the change must be from negative to
positive. We must determine the sign of g ′x(p) at p = 2.

We have g ′x(2) =
1/2 log 2+2|1/2− x |2 log |1/2− x |. The first term is an obviously

positive constant, and the second term is of the form z2 log z. That expression
is minimised when its derivative 2z log z = 0, at z = e−1/2 ≈ 0.6065, which is

186 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

outside the range of values for |1/2− x |. Therefore the minimum possible value of
the second term is that achieved at the endpoint |1/2− x |= 1/2, namely −1/2 log2,
just enough to make the derivative zero, not negative; and since |1/2 − x | = 1/2
cannot actually occur given the strict inequalities (open interval) 0< x < 1, then
the derivative g ′x(2) is always positive. The value of p minimising gx(p) must be
less than p = 2; so for increasing p > 2, gx(p) is strictly increasing.

So for p > 2, gx(p)> gx(2) = fx(2)> fx(p) and we have (8.17).

Now we can precisely define the gadget and prove its correctness.

Lemma 8.8
There exists a GHREVERSE instance on (2n+ 1)-component real vectors
with the Lp metric such that for any solution 〈z1, z2, . . . , zn〉, z1 = 0 and for
any integer 1< i ≤ n+ 1, zi ∈ {0, 1} and zi+n = zi.

Proof Start with the instance of Lemma 8.6, which restricts the first component
to zero and all others to [0,1]. For each 1 ≤ i ≤ n we add two pairs (x2i+4n+2,
x2i+4n+2) and (x2i+4n+3, x2i+4n+3), with the following values for p < 2. Note that
the indices are chosen to continue the numbering used in Lemma 8.6.

x2i+4n+2 = ui+1 y2i+4n+2 = (1− 21−p)1/pu1+
1/2(ui+1+ ui+n+1)

x2i+4n+3 = ui+n+1 y2i+4n+3 = (1− 21−p)1/pu1+
1/2(ui+1+ ui+n+1) .

(8.20)

For p > 2 the pairs are reversed:

x2i+4n+2 = (1− 21−p)1/pu1+
1/2(ui+1+ ui+n+1) y2i+4n+2 = ui+1

x2i+4n+3 = (1− 21−p)1/pu1+
1/2(ui+1+ ui+n+1) y2i+4n+3 = ui+n+1 .

(8.21)

Consider a pair of components zi and zi+n. From Lemma 8.6, they are both
constrained to the interval [0,1].

Each pair of vectors (x,y) corresponds to a constraint d(x,z) ≤ d(y,z). As
before, we can expand that to (8.13). Since x1/p is a strictly increasing function
we can eliminate it without changing the truth of the inequality; and since all the
vectors x and y under consideration here are zero, and more importantly, equal
to each other, in components other than those numbered 1, i, and i + n, then
they contribute equally to both sides of the inequality and can be ignored. With
z1 = 0 from (8.5), we are left with

x1+ |x i − zi|p + |x i+n− zi+n|p ≤ y1+ |yi − zi|p + |yi+n− zi+n|p . (8.22)

8.4. GHREVERSE WITH THE LP METRIC FOR FINITE P 6= 2 187

Suppose 1 ≤ p < 2. Substituting (8.20) into (8.22) gives

|1− zi|p + zp
i+n ≤ 1− 21−p +

�

�
1/2− zi

�

�

p
+
�

�
1/2− zi+n

�

�

p

zp
i + |1− zi+n|p ≤ 1− 21−p +

�

�
1/2− zi

�

�

p
+
�

�
1/2− zi+n

�

�

p

zp
i + |1− zi|p + zp

i+n+ |1− zi+n|p ≤ 2
�

1− 21−p +
�

�
1/2− zi

�

�

p
+
�

�
1/2− zi+n

�

�

p�
.

From Lemma 8.7 we have

zp
i + |1− zi|p ≥ 1− 21−p +

�

�
1/2− zi

�

�

p

zp
i+n+ |1− zi+n|p ≥ 1− 21−p +

�

�
1/2− zi+n

�

�

p

zp
i + |1− zi|p + zp

i+n+ |1− zi+n|p ≥ 2
�

1− 21−p +
�

�
1/2− zi

�

�

p
+
�

�
1/2− zi+n

�

�

p�
,

which is a contradiction unless zi and zi+n are both in {0,1}. Substituting each of
the four combinations gives zi ∈ {0, 1}, zi+n = zi.
Suppose p > 2. As above, substituting (8.21) into (8.22) gives

|1− zi|p + zp
i+n ≥ 1− 21−p +

�

�
1/2− zi

�

�

p
+
�

�
1/2− zi+n

�

�

p

zp
i + |1− zi+n|p ≥ 1− 21−p +

�

�
1/2− zi

�

�

p
+
�

�
1/2− zi+n

�

�

p

zp
i + |1− zi|p + zp

i+n+ |1− zi+n|p ≥ 2
�

1− 21−p +
�

�
1/2− zi

�

�

p
+
�

�
1/2− zi+n

�

�

p�
,

and from Lemma 8.7 we have

zp
i + |1− zi|p ≤ 1− 21−p +

�

�
1/2− zi

�

�

p

zp
i+n+ |1− zi+n|p ≤ 1− 21−p +

�

�
1/2− zi+n

�

�

p

zp
i + |1− zi|p + zp

i+n+ |1− zi+n|p ≤ 2
�

1− 21−p +
�

�
1/2− zi

�

�

p
+
�

�
1/2− zi+n

�

�

p�
,

which is a contradiction unless zi and zi+n are both in {0,1}. Substituting each of
the four combinations gives zi ∈ {0, 1}, zi+n = zi.

At this point we have constrained z to a set of 2n points representing truth
assignments. The complexity result then follows easily.

Theorem 8.9
GHREVERSE is in NPC for real vectors with an Lp metric and finite p 6= 2.

Proof Starting with any instance of GHREVERSE on binary strings of length
n with Hamming distance, we will construct an instance of GHREVERSE on
(2n+ 1)-component vectors with the Lp metric. By Lemma 8.6 we can constrain

188 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

the components of a solution z to zero for the first component and the interval
[0, 1] for the others. By Lemma 8.8 we can further constrain them to the set
{0,1}, as well as forcing pairs of components zi and zi + n to be equal to each
other. The remaining possibilities are exactly the vectors that encode n-bit strings.

Furthermore, the Lp distance between any two of these points is a strictly
increasing function (namely, the 1/p power) of the number of components
that differ, which is twice the Hamming distance. Therefore the inequality
d(x , z) ≤ d(y, z) on strings is unchanged if we replace all the strings with the
vectors that encode them, and the Hamming distance with the Lp distance. So by
encoding the strings in a pair from the input space, we get an equivalent pair for
the output space. We encode all the pairs in the input instance and add them to
the output instance, and the resulting instance of GHREVERSE on vectors with
Lp is equivalent to the original instance of GHREVERSE on binary strings.

By inspection of the proofs, all these steps involve polynomial numbers of
objects, processed a polynomial number of times, and can be conducted in time
polynomial to the size of the initial instance. Only a small constant number of
distinct real numbers are used as vector components, and they are well-behaved
in the sense that we can write each on in a constant number of bits for fixed p.
Therefore GHREVERSE on strings with Hamming distance, which is NP-hard by
Corollary 5.5, can be reduced in polynomial time to a polynomial-sized instance
of GHREVERSE on vectors with the Lp metric, making GHREVERSE on vectors
with the Lp metric NP-hard, and the satisfying vector z is a polynomial-time
certificate, so it is in NP and therefore NP-complete.

8.5 GHREVERSE with the L∞ metric

For the L∞ metric, the approach above does not work without modification.
One problem is that the gadget used in Lemma 8.6 for limiting the values of an
individual component becomes pathological in the L∞ case and requires a more
elaborate proof to show that the constraints still hold; the details are below. The
gadget of Lemma 8.8 suffers a similar problem. The most serious problem is that
distance between corners of a cube is no longer a strictly increasing function of
L1 distance; in L∞, all the corners of a cube are equidistant from each other, and
so the proof of Theorem 8.9 fails. So, as with VPREVERSE, we instead reduce
directly to GHREVERSE from 3SAT, using an encoding based on the signs of the
components instead of forcing the components to zero and one.

8.5. GHREVERSE WITH THE L∞ METRIC 189

Theorem 8.10
GHREVERSE is in NPC for real vectors with L∞.

Proof Starting with any arbitrary instance of 3SAT with n variables, we will
construct an equivalent instance of GHREVERSE on (n + 1)-component real
vectors. Vectors will encode truth assignments as follows: the first component z1

of a solution vector z will be zero, and the remaining components will correspond
to the n variables in sequence with negative values corresponding to false and
nonnegative values to true.

As in the finite-p case, we introduce pairs of points to limit the values of the
components:

x1 = 2u1 y1 =−2u1

x2 =−2u1 y2 = 2u1

x2i+1 = 1ui y2i+1 =−3ui 1< i ≤ m+ 1

x2i+2 =−ui y2i+2 = 3ui 1< i ≤ m+ 1 .

From the proof of Lemma 8.6 it should be clear that these pairs are intended
to limit the component values to zero for z1 and the interval [−1,1] for all other
zi. However, in the case of the L∞ metric, the “less than or equal” in the definition
of GHREVERSE causes trouble; when the points in a pair are axis-aligned, as
here, then the set of z equidistant from x and y is more than just a flat plane, as
shown in Figure 8.7. For large enough radius, specifically radius r ≥ d(x,y)/2,
L∞ spheres of radius r centred on x and y will partially coincide instead of merely
intersecting.

The desired behaviour of the gadget is to limit one component of z, say the
j-th. As shown in the figure, we do have that behaviour, provided the maximum
of the other components is not too large. As long as z remains in the regions
labelled (a) and (b) in Figure 8.7, or on the hyperplane (c), the argument from
Lemma 8.6 applicable to finite p also applies to L∞. The conditions could fail if z
is in the region labelled (d).

When xi and yi are both scalar multiples of some u j, that is, they differ in one
component and are zero in all others, then the restriction actually enforced by
the gadget is

z j ≤max
� x i, j + yi, j

2
, x i, j + max

1≤k≤2n+1
|zk|
�

for x i, j < yi, j, and (8.23)

190 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

x

y

z

z

i

j

(d) (d)

(a)

(b)

(c)

Figure 8.7: The gadget for limiting one component in L∞ fails if some other
component is too large.

8.5. GHREVERSE WITH THE L∞ METRIC 191

z j ≥min
� x i, j + yi, j

2
, x i, j − max

1≤k≤2n+1
|zk|
�

for x i, j > yi, j . (8.24)

As already mentioned, when x i, j = yi, j there is no restriction.
Now, because we are using these pairs of points two at a time, symmetrically

about the origin, we can turn (8.23) and (8.24) into a single constraint on the
absolute value of z j. For each z j we have two pairs with x i, j =±1 and yi, j =∓3
except z1, which is restricted even further, so for all z j we have

|z j| ≤max
�

1,−1+ max
1≤k≤2n+1

|zk|
�

.

In other words: if the absolute value of a component of z is more than 1, then
it must be smaller by at least 1 than the greatest absolute value of any component.
That would be a contradiction if any component had absolute value more than 1;
there would have to be a maximum but none of them could be it. Therefore none
of the components do have absolute value greater than 1. Figure 8.8 shows how
this step works: the limitations on each component, despite being conditional on
other components also being limited, combine to limit z to the desired values.

Now, for each clause in the 3SAT instance, let i, j, and k be the indices of the
variables vi, v j, and vk in the clause, and let li, l j, and lk be indicator variables,
each equal to 1 if the corresponding variable is negated in the clause and −1 if it
is not negated. Insert a pair (x,y) in the GHREVERSE instance with the vectors
below. This gadget is shown in Figure 8.9, limited to two components for clarity.

x= 2u1

y= 3/2
�

liui+1+ l ju j+1+ lkuk+1

�

.
(8.25)

Since the components of z are all limited to the interval [−1,1], they can
differ from the zero components of x by at most 1, and so the distance d(x,z) is
solely determined by the first component, which is constant 0 for z and constant
2 for x. Therefore d(x,z) = 2.

Any z corresponding to an assignment of truth values that failed to satisfy the
clause, would have the same sign as y in each of the three components i, j, and
k. So its distance from y along those axes could be at most 3/2. Its distance from
y along any other axis could be at most one; and so in all cases it would be closer
to y than x with its constant distance of two, and z could not be a solution to the
GHREVERSE instance.

Conversely, for any assignment of truth values that satisfied the clause, we
could find a corresponding vector z by setting components to 1 for true variables
and −1 for false variables, and the resulting z would differ from y by 5/2 in at
least one component (the component corresponding to the literal that satisfied
the clause), making d(y,z)> d(x,z).

192 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

z
i

z
j

Figure 8.8: Multiple limiting gadgets support each other.

8.5. GHREVERSE WITH THE L∞ METRIC 193

y

x z
i

z
j

(T,F)

(T,T)(F,T)

(F,F)

Figure 8.9: The gadget for clause satisfiability in L∞.

194 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

Therefore with such a pair included for every clause in the 3SAT instance,
the GHREVERSE instance has a solution if and only if the 3SAT instance has
a solution, and the solution to the GHREVERSE instance is a polynomial-time
certificate for the decision problem. Therefore GHREVERSE on real vectors with
L∞ is NP-complete.

8.6 VPREVERSE with equal radii

Our results on VPREVERSE for finite-p Lp spaces involve reduction from the
Hamming distance case studied by Frances and Litman [76]. But Frances and
Litman did not study the fully general VPREVERSE problem described by Defini-
tion 1.27: their MCR problem (Definitions 5.5 and 5.6) is actually a special case
of VPREVERSE, where all spheres are of the same type (solutions constrained to
be either inside, or outside, all the spheres) and all radii are equal. In the case of
Hamming distance, those special cases are as hard as the fully general problem.
We might ask about similar special cases for VPREVERSE on Lp vectors.

The case where the solution must be outside all the spheres is trivially sat-
isfiable because a solution vector’s components may be arbitrarily large; more
detail on that is given in the proof below. We do not study it in detail, but the
case where a point must be inside all the spheres also seems likely to be easily
decidable, because the set of solutions remains convex no matter how many
spheres we add to the instance. The restriction that all spheres must have the
same radius, with the solution constrained to be inside some of them and outside
others, seems most interesting; the problem remains NP-complete in that case
by the following theorem.

Theorem 8.11
VPREVERSE with all radii equal is in NPC for real vectors with any Lp

metric (including L∞).

Proof The finite-p case. We will reduce from an arbitrary VPREVERSE instance
on n-dimensional vectors with Lp to one on n+ 1-dimensional vectors with Lp

and all spheres having the same radius. Note that if all the constraints in the
input instance require a solution to be outside a sphere, then the instance is
trivially satisfiable by choosing a sufficiently large vector; for example, one with
any component equal to the sum of the absolute values of all the real numbers in
the instance, plus one. In that case any satisfiable output instance will do.

8.6. VPREVERSE WITH EQUAL RADII 195

Assuming there are some “inside” spheres, add a component which we will
call zn+1 to all the vectors. Choose a fixed radius r larger than any radius in
the input instance by a factor of more than ppn+ 1. Then replace each sphere
in the input with a pair of spheres of the same type and of radius r, arranged
symmetrically about the zn+1 = 0 hyperplane as shown by the top two gadgets
in Figure 8.10, such that their intersection with each other and the zn+1 = 0
hyperplane is exactly the sphere from the input.

Any solution to the input instance corresponds to a solution to the output
instance identical except for the inclusion of the extra component with value
zero. In the other direction, because of the choice of r, the distance between the
centres of the two spheres in each pair must be more than r. Then the presence
of at least one inside sphere pair creates the constraint |zn+1| < r on any solution
z. With that constraint, for each pair the set of solutions permitted with zn+1 6= 0
is a subset of the set of solutions permitted with zn+1 = 0. So no additional
solutions to the underlying NP-hard problem are permitted by this modified
encoding. Therefore the theorem holds for finite p.
The infinite-p case. No changes to the encoding or vector lengths are needed.
Start with the reduction proved in Theorem 8.4; note that it only uses two distinct
radii, namely 1 and 3/2, and the radius 1 is only used for the one sphere (0, 1, 1).
Replace it with two spheres of radius 3/2:

±
1

2

n
∑

i=1

ui ,
3

2
,1

!

As shown for two dimensions by the bottom gadget in Figure 8.10, the two L∞
spheres intersect to create the same effect as one L∞ sphere, which is exactly the
one we replaced. Therefore the theorem holds for L∞.

A further relaxation of the problem is possible: we can require all the radii to
be equal and then leave the radius unspecified. That variation is considered for
general metric spaces in the following chapter.

196 CHAPTER 8. REAL VECTORS: REVERSE SIMILARITY SEARCH

zn+1 =0

n+1 axis n+1 =0 planeView along some other axis showing zView along z

zn+1 =0

n+1 axis n+1 =0 planeView along some other axis showing zView along z

Figure 8.10: Gadgets used in proof of Theorem 8.11.

Chapter 9

Additional results

In this chapter we present a few additional results of interest that fall outside
the structure of the main body of this work. In particular, we show that Dq

dimensions are independent of the intrinsic dimensionality ρ; we comment
on some other problems that reduce easily to GHREVERSE; we give distance
permutation counts for some practical databases; and we discuss the question of
distance permutations in hyperbolic spaces.

9.1 Independence of dimensionality measures

Recall that the intrinsic dimensionality ρ and the Dq dimensions both measure the
dimensionality of a space by describing the probability distribution of distances
among randomly chosen points. Intrinsic dimensionality measures the tendency
for points in high-dimensional spaces to all be equidistant; it is defined as
the mean squared divided by twice the variance of the distance between two
randomly chosen points, a quantity which (as we have described in previous
chapters) tends to increase as difficulty of distance-based indexing increases.
That statistic is primarily concerned with the behaviour of typical points; the
width of the main body of the probability distribution.

The Dq dimensions are based on the lower tail of the distribution—the be-
haviour of distances in the limit of small distance. In an ordinary Euclidean space,
with locally uniform probability density, the density in a small neighbourhood
will increase as some power (determined by the number of dimensions) of the
radius of the neighbourhood. Attempting to find the power by which it increases,
and using that as a measure of the number of dimensions, gives a spectrum of Dq

197

198 CHAPTER 9. ADDITIONAL RESULTS

dimensions defined by

Dq =
−1

1− q
lim
ε→0+

log
∑n

i=1 Pr[x ∈ Bi]q

logε
(9.1)

where {B1, B2, . . . , Bn} is a minimal cover of the space by open balls of radius at
most ε (Definition 1.22). For q = 0 we use the convention 00 = 0, and for q = 1
we take the limit as q approaches 1. The Dq dimension is only meaningful for
metrics that admit arbitrarily small values, though something less formal can
be derived from attempts to fit a power-law curve to the discrete values of, for
instance, Hamming distance among strings.

We can ask whether there is always a connection between these two measures
of dimensionality, and the answer is that there is not. Although spaces where one
is large seem to usually have the other large as well, it is possible to construct
spaces with both measures chosen arbitrarily and independently of each other.
First we give a construction for a generalised Cantor dust with arbitrary Dq

dimension. Distributions like this one are standard examples in introductory
works on fractals and dynamical systems, but usually from the point of view
of calculating the dimensionality of a given distribution [162, 168]. We give
a detailed description here to emphasise that we can go in the other direction,
from any desired dimensionality to a distribution with that dimensionality.

Lemma 9.1
For any real δ > 0, there exists a probability distribution on vectors with dδe
components, all in the interval [0, 1], and L1 distance, such that all the Dq

dimensions of the distribution are equal to δ.

Proof Let d = dδe and let F0 (mnemonic: F for “fractal”) be the distribution of
d-component vectors with each component chosen uniformly from [0, 1]. Let λ
be a real number, 0< λ≤ 1/2.

Define Fk as the distribution formed by choosing a vector from Fk−1, mul-
tiplying each component by λ, and then for each component independently,
subtracting the component from 1 with 1/2 probability. The first few steps of the
construction are shown in Figure 9.1. We will choose a value of λ so that the
limiting distribution of Fk as k goes to infinity, has all Dq dimensions equal to δ.
Call that distribution F∞. We could select uniformly from it by choosing a real
number uniformly at random from [0,1) and using successive binary digits of
its expansion to choose between the “high” and “low” halves of the distribution
along each coordinate.

9.1. INDEPENDENCE OF DIMENSIONALITY MEASURES 199

Figure 9.1: Constructing a distribution of arbitrary dimension: d = 2, λ = 0.4,
δ ≈ 1.513.

200 CHAPTER 9. ADDITIONAL RESULTS

Now, consider covering the distribution with balls of radius ε. For convenience,
scale the vectors so that a ball of radius 1 exactly covers the unit cube F0; we can
do this because Dq dimensions are invariant under scaling (the constant multiplier
disappears in the limit). If we limit consideration to values of ε that are integer
powers of λ, which is also possible because of constant factors disappearing in
the limit, then we have a situation where the distribution can be covered by 2kd

balls of radius λk, each of which contains 2−kd probability. Then we can evaluate
the Dq dimensionality as follows:

Dq =
−1

1− q
lim
ε→0+

log
∑n

i=1 Pr[x ∈ Bi]q

logε

=
−1

1− q
lim
ε→0+

log
∑2kd

i=1 2−kdq

logλk

=
−1

1− q
lim
ε→0+

log2kd(1−q)

logλk

=−d
1

lgλ
.

Note that the value q cancels out; this value applies to all q. By choosing
λ= 2−d/δ we can force all the Dq dimensions equal to δ.

We can also construct a distribution of any arbitrary intrinsic dimensionality
ρ; as described in Section 5.1, the intrinsic dimensionality of binary strings
of length n where each bit is 1 with probability q (not the same q as in Dq

dimensions), is nq(1− q)/(1−2q+2q2) by Corollary 2.2. We can choose n and q
to achieve any desired value for that. The result follows that we can choose the
two dimensionality measures independently.

Theorem 9.2
For any real δ,ρ > 0 we can construct a space such that all the Dq dimensions
are equal to δ and the intrinsic dimensionality is arbitrarily close to ρ.

Proof The space will be a space of real vectors with L1 distance. Create a
distribution with Dq dimensions all equal to δ by the construction of Lemma 9.1.
Create a distribution with intrinsic dimensionality ρ by choosing a vector length
n and making all components equal to 0 or 1 with probability q such that
ρ = nq(1− q)/(1− 2q+ 2q2) (as described above and in Section 5.1). If these

9.2. OTHER PROBLEMS THAT REDUCE TO GHREVERSE 201

two distributions use vectors of different lengths, extend the shorter ones by
appending zero components.

Now, choose a small constant c. Random points from our space will be points
cx+ y where x is chosen from the distribution with Dq dimensions all equal to δ
and y is chosen from the distribution with intrinsic dimensionality equal to ρ.

For small c, the effect of adding cx on the distance among randomly chosen
pairs of points will be negligible; thus the intrinsic dimensionality of the combined
distribution can be made arbitrarily close to ρ by choosing a small enough c. On
the other hand, for sufficiently small ε, the effect of y is invisible to the limit
that defines Dq dimension; at small enough scales, this space looks exactly like
our space with all Dq dimensions equal to δ. Thus we can construct a space for
arbitrary, independent, Dq and intrinsic dimensionality.

9.2 Other problems that reduce to GHREVERSE

In Section 8.6 we considered the special case of VPREVERSE where all the radii
are equal: that is, a decision problem in which an instance consists of a radius r
and two sets of points X and Y , and a solution z must be a point within radius r of
all the points in X and not within radius r of any of the points in Y . The original
definition of VPREVERSE, with the added condition of all radii being equal, is
equivalent to this definition; the sets X and Y correspond to the values of the bit
b in Definition 1.27. By treating z as the centre of a sphere, that question is also
equivalent to asking whether there exists of a sphere of radius r containing all
the points in X and none of the points in Y .

A further relaxation is possible: we can require all the radii to be equal and
then leave the radius unspecified. The instance then consists only of a list of
centres and bits specifying inside or outside, and it is satisfiable if there exists
any positive radius r for which the corresponding VPREVERSE instance, with all
radii set to r, would be satisfied. This relaxation is drastic enough to warrant
formal definition as a new problem in itself, below.

Definition 9.1 (The VPRU (VPREVERSE, unspecified radius) Problem)
In some metric space (S, d), given a set P of ordered triples (x , b) with
x ∈ S and b ∈ {0, 1}, accept if and only if there exists a point z ∈ S and
real r > 0 such that for every (x , b) ∈ P, d(x , z)≤ r if and only if b = 1.

An equivalent definition is that a VPRU instance consists of two sets of points
X and Y and is satisfiable if there exists a sphere (of any radius, which is the
difference from equal-raidus VPREVERSE) containing all of X and none of Y .
The VPRU problem can be reduced to GHREVERSE. So can two other problems
we define now.

202 CHAPTER 9. ADDITIONAL RESULTS

Definition 9.2 (The Generalised GHREVERSE Problem)
In some metric space (S, d), given a set P of ordered pairs (x i , Yi) where
x i ∈ S and Yi ⊆ S, with n = |P|, accept if and only if there exists a point
z ∈ S such that d(z, x i)≤ d(z, y) for every y ∈ Yi , (x i , Yi) ∈ P.

Definition 9.3 (The DPREVERSE Problem)
In some metric space (S, d), given a sequence of points 〈x1, x2, . . . , xn〉 and
a permutation π : {1,2, . . . , n} → {1,2, . . . , n}, accept if and only if there
exists a point z ∈ S such that π is the distance permutation of z with respect
to 〈x1, x2, . . . , xn〉; that is, if whenever i < j then d(xπ(i), z)< d(xπ(j), z) or
d(xπ(i), z) = d(xπ(j), z) and π(i)< π(j).

These two problems are motivated by further examination of indexing struc-
tures, much in the same way as the original VPREVERSE and GHREVERSE
problems. Generalised GHREVERSE corresponds to a generalised GH-tree, with
possibly more than two vantage points in each internal node; the ordinary GH-
tree is then the special case where each internal node contains exactly two
vantage points. Such trees are used, for instance, by the ght index type in the
SISAP library of Figueroa, Navarro, and Chávez [71]. The DPREVERSE problem
corresponds to a distance permutation-based index, forming a link between our
work on distance permutations and on reverse similarity search. Just as VPRE-
VERSE is the problem of generating a point that would be stored in a particular
leaf in a V P-tree, DPREVERSE is the problem of finding a point that would be
given a particular distance permutation in a distance permutation index.

All three of Definitions 9.1–9.3 can be reduced to the original GHREVERSE
problem of Definition 1.29. The concept is very simple: in all three problems, the
conditions for a satisfying point are inequalities on the distance to points from
the problem, and GHREVERSE can express any such set of inequalities.

Theorem 9.3
For any metric space, the following polynomial-time reductions hold among
decision problems in the space:

DPREVERSE⇒ generalized GHREVERSE⇔ GHREVERSE⇐ VPRU .
(9.2)

Proof Any arbitrary instance of DPREVERSE can be expressed as a single con-
straint on the solution z: its distance permutation Πz must be equal to π. That
can be split into k constraints Πz(1) = π(1),Πz(2) = π(2), . . . ,Πz(k) = π(k). But

9.2. OTHER PROBLEMS THAT REDUCE TO GHREVERSE 203

each of those is equivalent to a constraint of the form used in a generalised
GHREVERSE instance: the closest site among all k sites must be xπ(1), the closest
among the remaining k− 1 sites must be xπ(2), and so on. Thus we can replace
the DPREVERSE instance with k−1 generalised GHREVERSE constraints (no con-
straint is needed for the last equality, which involves the closest among a singleton
set of one vantage point) and obtain an equivalent generalised GHREVERSE
instance of polynomial size.

Any arbitrary instance of generalised GHREVERSE consists of constraints of
the form “d(x , z) ≤ d(yi , z) for all yi ∈ Y .” Each such constraint can be split
into |Y | number of constraints of the form d(x , z)≤ d(y, z); by doing so, we can
convert a generalised GHREVERSE instance to a polynomial-sized equivalent
instance of the basic GHREVERSE problem. The reduction in the other direction
is trivial, by changing all the points y into singleton sets {y}.

Consider an arbitrary instance of the VPRU problem. For a point z to be a
solution means that there is some radius r such that z is within distance r of all
the points in one set (call it N for “near”; N = {x |(x , 1) ∈ P}), and not within
distance r of all the points in another set (call it F for “far”; F = {x |(x , 0) ∈ P}).
In other words, for each pair of points (x , y) such that x ∈ N , y ∈ F , z is nearer to
x than to y. Those pairs of points are exactly the pairs of points in an equivalent
GHREVERSE instance. Given a satisfying point z for the GHREVERSE instance,
we can find a solution to the VPRU instance just by using that point and choosing
an r greater than the distance from z to any point in N but less than its distance
to any point in F .

It is not necessarily possible, and at least not trivial, to reduce in the other
direction for the reductions where Theorem 9.3 does not show equivalence. The
difficulty can be demonstrated by imagining an instance carried all the way from
one end of (9.2) to the other. If we start with a distance permutation, it naturally
converts to a set of less-than-or-equal constraints on distance restricting the
distances to vantage points to a total order. But a single VPRU instance is limited
to two sets of distances, and enforces constraints pairwise between elements of
the two sets but no constraints within a set. Short of transforming the problem
into a completely different space, no equivalence seems possible. In the other
direction, it seems impossible to express the permissiveness of a VPRU instance
in the form of a distance permutation: VPRU should accept any of the possible
permutations among (for instance) vantage points that appear only as inside
centres, but DPREVERSE would require a separate instance for each permutation,
apparently blowing up to factorially many instances.

204 CHAPTER 9. ADDITIONAL RESULTS

9.3 Distance permutations in practical databases

In Section 3.5 we presented some results on the number of distance permutations
actually occurring in randomly-generated databases of vectors. As part of the
same series of experiments, which were also presented at SISAP’08 [191], we
counted the distance permutations in the sample databases provided with the
SISAP library [71]. The results are shown in Tables 9.1 and 9.2. Note that the
columns labelled n report the number of points in each database; not number of
components in a vector, as we have usually used n in this work.

The language databases (Dutch, English, French, German, Italian, Nor-
wegian, and Spanish) are dictionaries “of unknown source” [71] with the
Levenshtein distance as described in Chapter 6. The listeria database is
similarly a database of strings with Levenshtein distance, but here the strings
represent DNA sequences of genes from the Gram-positive bacterium Listeria
monocytogenes, on the alphabet {A, C, G, T} [32]. The long and short databases
represent a collection of news articles as vectors with cosine distance, as de-
scribed by Figueroa, Navarro, and Chávez in the library documentation [71].
Finally, the colors and nasa databases are vectors with Euclidean distance,
having 112 and 20 components respectively. The colors database represents
“color histograms. . . from an image database” provided by Seidl [71, 185]. The
nasa database represents feature vectors from images in the NASA archives,
provided by Katayama and Satoh as part of the Sixth DIMACS Implementation
Challenge [120].

For each database we tested each number of sites k from 2 to 12. The site
selection code was inherited from the library’s pivots index type, which chooses
the first k sites of the database as the sites. Since each database was supplied
in randomised order, this selection is equivalent to choosing sites uniformly at
random from the points in the database. It does mean that a choice of k+ 1 sites
will always start with the same sites chosen for a choice of k sites; as a result,
we can expect some correlation among columns of Tables 9.1 and 9.2 in that if
one column (because of a lucky or unlucky choice of sites) happens to produce
a count significantly more or less than the mean, then all subsequent columns
probably will also.

Even in this very simple experiment, however, some interesting results are
evident. First, all the numbers are surprisingly small. For instance, the long sam-
ple database has only 261 distinct distance permutations for k = 12, compared
to 12! = 479001600 general permutations of 12 options. The small number of
points in that database may be a major cause, but similar effects show up in
other databases too. For instance, the colors database only has 4408 distance
permutations for k = 12, even though with 112544 points there are on average

9.3. DISTANCE PERMUTATIONS IN PRACTICAL DATABASES 205

k:
database n ρ 3 4 5 6 7 8

Dutch 229328 7.159 6 24 119 577 2693 11566
English 69069 8.492 6 24 120 645 2211 7140
French 138257 10.510 6 24 118 475 2163 8118
German 75086 7.383 6 24 119 517 1639 4839

Italian 116879 10.436 6 24 120 653 3103 10872
Norwegian 85637 5.503 6 24 118 632 2530 7594

Spanish 86061 8.722 6 24 118 598 2048 5428
listeria 20660 0.894 4 11 19 29 49 85

long 1265 2.603 5 10 22 47 51 98
short 25276 808.739 6 24 111 508 2104 6993

colors 112544 2.745 6 18 44 96 200 365
nasa 40150 5.186 6 24 115 530 1820 3792

Table 9.1: Distance permutations for sample databases.

k:
database n ρ 9 10 11 12

Dutch 229328 7.159 34954 74954 116817 163129
English 69069 8.492 16212 28271 38289 45744
French 138257 10.510 19785 35903 58453 81006
German 75086 7.383 10154 19489 30347 43208

Italian 116879 10.436 27843 45754 71921 90316
Norwegian 85637 5.503 15147 25872 42992 57988

Spanish 86061 8.722 13357 23157 39443 54628
listeria 20660 0.894 206 510 952 1145

long 1265 2.603 114 163 252 261
short 25276 808.739 13792 20223 23102 23940

colors 112544 2.745 796 1563 2800 4408
nasa 40150 5.186 7577 13243 19066 24154

Table 9.2: Distance permutations for sample databases (continued).

206 CHAPTER 9. ADDITIONAL RESULTS

more than 25 points per permutation. That can be compared with the last column
of Table 3.3, showing distance permutations for vectors: we did not go as far
as 20-dimensional vectors, and even at the 10-dimension level the count was
being limited by the database size of 106, but it is clear that a 20-dimensional
uniform distribution would give far more than 4408 distance permutations. So
the low distance permutation count for colors reflects some fact about the
arrangement of points in that database, which is less complicated (in some
sense, lower-dimensional) than a similar-sized database chosen from a uniform
distribution.

We added intrinsic dimensionality results to the experiment in response to
comments from the anonymous SISAP referees. For each sample database, we
chose 107 pairs of points uniformly at random from each database and computed
the intrinsic dimensionality as the mean squared divided by twice the variance of
the distance between the points. The results are shown in Tables 9.1 and 9.2 in
the columns labelled ρ.

Intrinsic dimensionality (Subsection 1.3.2) is primarily a function of the native
distribution of the space. Different kinds of distribution can produce qualitatively
different behaviour for ρ; for instance, as described in Section 2.1, the intrinsic
dimensionality of vectors with L∞ can be linear or log-squared for uniform or
normal components respectively. The number of distance permutations, on the
other hand, is determined solely by the sites and the set of points that can
exist (essentially, the support of the native distribution). Thus a comparison
between distance permutations and intrinsic dimensionality may not be entirely
meaningful: we can change intrinsic dimensionality arbitrarily by changing the
distribution, without changing the distance permutations.

Nonetheless, we can form some sort of comparison by assuming a distribution.
Note that there are two distributions relevant here: the one that generated the
database, and the one for selecting points from the database. It seems reasonable
to select points uniformly from the the database, so that both distributions are the
same relative to the space. That is the assumption used for the ρ columns in our
tables, and it leads to an evident relationship between distance permutations and
ρ. Spaces with large ρ seem to have more distance permutations in general. Also,
even without a comparison to ρ, it seems clear that higher-dimensional spaces
tend to have more distance permutations; so distance permutations may be useful
as another way of expressing the dimensionality of a space. We can compare
the results from Tables 9.1 and 9.2 with the Euclidean theoretical bounds from
Table 3.1 to estimate the dimensionality of an Euclidean space equivalent to each
of our databases.

In particular, colors has a few more distance permutations than we would
expect from a Euclidean space with two dimensions. Similarly, nasa has a few

9.4. DISTANCE PERMUTATIONS IN HYPERBOLIC SPACE 207

more distance permutations than a Euclidean space with three dimensions, if
we ignore the values for k > 10 where the number of points in the database
seem to limit the permutations. The results from the dictionary databases are
variable, but in general they seem comparable to Euclidean spaces of up to
four dimensions. The document databases (long and short) are problematic:
with long there are so few points that the number of points limits the number
of distance permutations before we get to a reasonable number of sites, and
with short, it appears that very many pairs of points are at maximum distance
(leading to the huge measured value of ρ). That may impair the counting of
distance permutations. The listeria database, despite having plenty of points,
seems equivalent to a Euclidean space with between one and two dimensions.

Note that because distance permutations depend only on the ordering of
distances, not their magnitudes, the number of distance permutations is invariant
not only under scaling (like intrinsic dimensionality) but also under monotonic
functions of distance. For instance, if we take the square of a metric (as we
might do for instance with Euclidean distance, to avoid expensive computation
of square roots), the resulting distance function will produce a different intrinsic
dimensionality; but distance permutations will be unchanged because the square
function is monotonic. This effect seems to make distance permutations especially
robust to changes in representation.

9.4 Distance permutations in hyperbolic space

Hyperbolic spaces occur in the study of non-Euclidean geometry. Whereas in
the Euclidean plane a line and a point not on the line define exactly one line
parallel to the first and passing through the line, and in the projective plane all
lines intersect, in the hyperbolic plane a given point and line define an infinite
number of distinct lines passing through the point and failing to intersect the
given line. Higher-dimensional hyperbolic spaces can be defined analogously.
Anderson gives a detailed introduction to hyperbolic space and its properties [8].

One important intuitive description is that at greater distances in hyperbolic
space, the space expands. The circumference of a circle in the hyperbolic plane,
for instance, does not increase linearly with radius as in the Euclidean plane, but
exponentially. One demonstration of the expansion uses crochet, building up a
physical model of the space in expanding rings of stitches [214].

Hyperbolic spaces are metric spaces and just as we did in other metric spaces,
we can define a bisector as the set of points equidistant from two sites (Def-
inition 3.3), and the distance permutation of a point y with respect to some
sites as the permutation that sorts them into increasing order of distance from y
(Definition 1.25). Then we can ask how many distinct distance permutations can

208 CHAPTER 9. ADDITIONAL RESULTS

be generated by k sites in n-dimensional hyperbolic space.
One convenient model for hyperbolic space is the Poincaré disc (or, generalised

to higher dimensions, Poincaré ball) model, where points are described by vectors
of (Euclidean) length less than 1 with this metric:

d(x,y) = arc cosh

�

1+
2|x− y|2

(1− |x|2)(1− |y|2)

�

.

In the Poincaré model, straight lines in the two-dimensional version take the form
of diameters, or Euclidean circles meeting the edge of the disc (which corresponds
to infinity in the hyperbolic space) at right angles; and in higher-dimensional
versions, flat hyperplanes in the hyperbolic space take the form of Euclidean
hyperplanes through the centre, or spherical caps meeting the boundary at right
angles. It is intuitively clear (we omit a formal proof, but it follows from the
more detailed presentation given by Anderson [8]) that a bisector in this model
must be one of those flat hyperplanes. If the two sites happen to be opposite
vectors, then their Euclidean and hyperbolic bisectors coincide as the hyperplane
passing through the centre and normal to both vectors, and by symmetry, any
other pair of sites must also have a flat hyperbolic hyperplane as their bisector
because we should be able to choose a centre for the model arbitrarily.

With k sites in general position there must always be at least
�k

2

�

+ 1 permu-

tations; that is the number created by
�k

2

�

bisectors that fail to intersect each
other at all. In Euclidean space that can only happen if all the bisectors are
parallel; a degenerate case for n > 1, corresponding to all the sites being on a
line. However, in hyperbolic space this lower bound is achievable with points
in general position; we can put the points on a line so that their bisectors do
not intersect, then perturb the points within small neighbourhoods and keep
the bisectors non-intersecting. Such a case (for n = 2 and k = 4) is shown in
Figure 9.2 at upper left.

As shown in the figure, many other cases are also possible. Recall that in the
Euclidean plane, four sites can generate up to 18 distance permutations and four
sites in general position always generate exactly 18. In Figure 9.2 we display
numbers of distance permutations ranging from 7 to 18, all achieved with four
points in general position.

It appears that we can always achieve at least as many distance permutations
in hyperbolic space as in Euclidean space by starting with a set of sites from
Euclidean space and scaling it down to bring the points sufficiently close together.
Such a case is shown at lower right in Figure 9.2. In a small enough neighbour-
hood, the hyperbolic metric becomes arbitrarily close to the Euclidean metric,
so by making all the bounded cells of the generalised Voronoi diagram small
enough, we can have as many cells in hyperbolic space as we would in Euclidean

9.4. DISTANCE PERMUTATIONS IN HYPERBOLIC SPACE 209

Figure 9.2: Four-point bisector systems with between 7 and 18 regions on the
Poincaré disc.

210 CHAPTER 9. ADDITIONAL RESULTS

space. As the example of nearly-collinear points shows, however, we can also
have many fewer. We have found no examples of more distance permutations
in hyperbolic space than would be possible with the same number of sites and
dimensions in Euclidean space, suggesting that perhaps the Euclidean count
given by Theorem 3.2 is also an upper bound for hyperbolic space.

Chapter 10

Conclusion

We have described three computer science questions relating to metric spaces:
the questions of intrinsic dimensionality; number of distance permutations;
and complexity of similarity search. We have explored each of these questions
with theoretical and experimental work on a variety of spaces, including real
vectors with the Minkowski Lp metrics; weighted and unweighted tree metrics
including the prefix distance on strings; strings with Hamming distance; strings
with Levenshtein distance; and strings with a new distance we introduce called
Superghost distance.

For intrinsic dimensionality, we have discussed its definition and relationship
to other measures of dimensionality, as well as its application to measuring the
difficulty of building distance-based index data structures. We have analysed
its asymptotic behaviour in a variety of spaces and distributions, both with
theoretical and experimental work. For vectors uniform in the unit cube, we
have the counterintuitive result that intrinsic dimensionality for the L∞ metric
approaches an asymptotic line approximately equivalent to the line for L5.778,
much different from the lines for Lp with large p. For strings with different kinds
of edit distance, we have found intrinsic dimensionality varying from linear to
approximately Θ(n5/4) to Ω(n2/ log2 n).

We have given exact results for the number of distance permutations that occur
in Euclidean space, asymptotic bounds for many other spaces, and experimental
results on real-life and randomly-generated databases. These bounds improve
the best previous limits on storage space for an index data structure based on
distance permutations. Where the concept can be meaningfully defined, we have
also given results on the number of neighbours for each point. In addition to
their application to index data structures, these distance permutation results
implicate questions in combinatorial geometry and reveal theoretical differences
among spaces.

211

212 CHAPTER 10. CONCLUSION

The reverse similarity search problems VPREVERSE and GHREVERSE also
reveal theoretical differences among spaces, in addition to having practical appli-
cation to the security of robust hash schemes. After describing these problems in
detail, we analyse their complexity in all our study spaces, showing that they are
NP-complete for most spaces but with polynomial-time cases showing that some
spaces are special. For instance, in Euclidean space GHREVERSE is equivalent to
linear programming. In tree spaces the problems are generally easy, but can be
made equivalent to apparently difficult problems by special construction of the
space. We also show equivalences among these problems, variations on them,
and problems connected with distance permutations.

Future work on intrinsic dimensionality could include theoretical results on
other spaces and the cases not addressed here; connections between intrinsic
dimensionality and the practical considerations of indexing difficulty; practical
studies of the intrinsic dimensionality occurring in real-life databases; and other
ways to measure dimensionality of spaces and their native distributions. For
distance permutations, many theoretical questions about the number of permuta-
tions and their structure (possibly as an oriented matroid) remain open. There
is also room for more experimental work on how many occur in real databases,
and how best to apply distance permutations to indexing. The reverse similarity
search problems, as novel NP-complete problems, admit to the same kinds of
studies made for problems like 3SAT, including difficulty and phase transition
behaviour for random instances; good heuristic algorithms for real cases; the
possibility of approximation algorithms; and the original application to robust
hash. Since it may be difficult to randomly generate known hard instances of
NP-complete problems in general, another area for further work is the question
of what problems would be well-suited to the original application to robust hash
in general metric spaces.

Bibliography

The numbers at the end of each entry list pages where the reference was cited.
In the electronic version, they are clickable links to the pages.

[1] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathemati-
cal Functions. [U.S.] National Bureau of Standards, 1964. Tenth printing,
1972. 13, 218, 220, 226

[2] George W. Adamson and Jillian Boreham. The use of an association
measure based on character structure to identify semantically related
pairs of words and document titles. Information Storage and Retrieval,
10(7–8):253–260, July–August 1974. 6

[3] Richa Agarwala, Vineet Bafna, Martin Farach, Babu Narayanan, Mike
Paterson, and Mikkel Thorup. On the approximability of numerical taxon-
omy (fitting distances by tree metrics). In SODA’96 [195], pages 365–372.
99

[4] Noga Alon, Richard M. Karp, David Peleg, and Douglas B. West. A graph-
theoretic game and its application to the k-server problem. SIAM Journal
on Computing, 24(1):78–100, 1995. 99, 102

[5] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and
David J. Lipman. Basic local alignment search tool. Journal of Molecular
Biology, 215(3):403–410, 1990. 132

[6] Carme Àlvarez and Maria J. Serna, editors. Experimental and Efficient
Algorithms: 5th International Workshop (WEA’06), volume 4007 of Lecture
Notes in Computer Science, Cala Galdana, Menorca, Spain, May 24–27,
2006. Springer. 219

[7] Laurent Amsaleg and Patrick Gros. Content-based retrieval using local
descriptors: Problems and issues from a database perspective. Pattern
Analysis Applications, 4(2–3):108–124, 2001. 5

213

214 BIBLIOGRAPHY

[8] James W. Anderson. Hyperbolic Geometry. Springer, 1999. 207, 208

[9] George Arfken. Mathematical Methods for Physicists. Academic Press,
London, third edition, 1985. 13

[10] A. V. Arkhangel’skǐı and V. V. Fedorchuk. The basic concepts and construc-
tions of general topology. In Arkhangel’skǐı and Pontryagin [11], part I. 2,
4, 21

[11] A. V. Arkhangel’skǐı and L. S. Pontryagin, editors. General Topology I,
volume 17 of Encyclopaedia of Mathematical Sciences. Springer, 1990. 214,
219

[12] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradžev. On eco-
nomical construction of the transitive closure of a directed graph. Soviet
Mathematics—Doklady, 11(5):1209–1210, 1970. English translation of
Doklady Akademii Nauk SSSR, 194(3):487–488, 1970. 132

[13] Barry C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A First Course in
Order Statistics. Wiley, 1992. 15, 42, 46, 47, 48, 53, 56, 57

[14] Richard Arratia and Michael S. Waterman. A phase transition for the
score in matching random sequences allowing deletions. Annals of Applied
Probability, 4(1):200–225, February 1994. 134

[15] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental
geometric data structure. ACM Computing Surveys, Sept 1991, 23(3),
1991. 78

[16] David A. Bader and Ashfaq A. Khokhar, editors. Proceedings of the ISCA
17th International Conference on Parallel and Distributed Computing Sys-
tems (ISCA’04), San Francisco, California, USA, September 15–17, 2004.
217

[17] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, October15, 1999. 28

[18] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In CRYPTO’01 [122], pages 1–18. 102

[19] Yair Bartal. Probabilistic approximations of metric spaces and its algorith-
mic applications. In FOCS’96 [73], pages 184–193. 102

BIBLIOGRAPHY 215

[20] Yair Bartal. On approximating arbitrary metrics by tree metrics. In
STOC’98 [202], pages 161–168. 102

[21] Alexander Basilevsky. Statistical Factor Analysis and Related Methods:
Theory and Applications. Wiley, 1994. 60

[22] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string em-
beddings and edit distance approximations. In SODA’06 [197], pages
792–801. 133

[23] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-tree: An efficient and robust access method for points and
rectangles. In SIGMOD’90 [81], pages 322–331. 8

[24] Richard Bellman. Adaptive Control Processes: a guided tour, page 94.
Princeton University Press, Princeton, New Jersey, USA, 1961. 19

[25] Charles H. Bennett, Péter Gács, Ming Li, Paul M. B. Vitányi, and Woj-
ciech H. Zurek. Information distance. IEEE Transactions on Information
Theory, 44(4):1407–1423, 1998. 6

[26] Jon Louis Bentley. Multidimensional binary search trees used for associa-
tive searching. Communications of the ACM, 18(9):509–517, September
1975. 7

[27] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegel. The pyramid-
technique: Towards breaking the curse of dimensionality. In SIGMOD’98
[96], pages 142–153. 8, 12, 71

[28] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways
for Your Mathematical Plays. Academic Press, London, 1982. 3, 153

[29] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and
Günter M. Ziegler. Oriented Matroids. Cambridge University Press, second
edition, 1999. 81

[30] Hilary S. Booth, Shevarl F. MacNamara, Ole M. Nielsen, and Susan R.
Wilson. An iterative approach to determining the length of the longest
common subsequence of two strings. Methodology and Computing in
Applied Probability, 6(4):401–421, December 2004. 133, 134

[31] Sergey Brin. Near neighbor search in large metric spaces. In VLDB’95
[58], pages 574–584. 12

216 BIBLIOGRAPHY

[32] Broad Institute of Harvard and MIT. Listeria monocytogenes Sequencing
Project. Online http://www.broad.mit.edu/. 204

[33] Adam L. Buchsbaum and Jack Snoeyink, editors. Algorithm Engineering
and Experimentation: Third International Workshop (ALENEX’01), vol-
ume 2153 of Lecture Notes in Computer Science, Washington, D.C., USA,
January 5–6, 2001. Springer. 216

[34] Peter Buneman. A note on the metric properties of trees. Journal of
Combinatorial Theory, Series B, 17:48–50, 1974. 101

[35] W. A. Burkhard and R. M. Keller. Some approaches to best-match file
searching. Communications of the ACM, 16(4):230–236, April 1973. 8

[36] Christian Cachin and Jan Camenisch, editors. Advances in Cryptology:
International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT’04), volume 3027 of Lecture Notes in Computer
Science, Interlaken, Switzerland, May 2–6, 2004. Springer. 225

[37] Proceedings of the 11th Canadian Conference on Computational Geometry
(CCCG’99), Vancouver, B.C., August 15–18, 1999. UBC. 222

[38] Kaushik Chakrabarti and Sharad Mehrotra. The hybrid tree: An index
structure for high dimensional feature spaces. In ICDE’99 [105], pages
440–447. 8

[39] Edgar Chávez, Karina Figueroa, and Gonzalo Navarro. Proximity searching
in high dimensional spaces with a proximity preserving order. In MICAI’05
[84], pages 405–414. 33, 34

[40] Edgar Chávez and Gonzalo Navarro. Measuring the dimensionality of gen-
eral metric spaces. Technical Report TR/DCC-00-1, Department of Com-
puter Science, University of Chile, 2000. Submitted. Online ftp://ftp.

dcc.uchile.cl/pub/users/gnavarro/metricmodel.ps.gz. 26, 27,
28, 41, 44, 45, 51, 68

[41] Edgar Chávez and Gonzalo Navarro. A probabilistic spell for the curse of
dimensionality. In ALENEX’01 [33], pages 147–160. 19

[42] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marro-
quín. Searching in metric spaces. ACM Computing Surveys, 33(3):273–321,
September 2001. 4, 7

http://www.broad.mit.edu/
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/metricmodel.ps.gz
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/metricmodel.ps.gz

BIBLIOGRAPHY 217

[43] Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors. Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Management
of Data (SIGMOD’00), Dallas, Texas, USA, May 16–18, 2000. ACM. 224

[44] L. Paul Chew and Robert L. (Scot) Drysdale, III. Voronoi diagrams based
on convex distance functions. In SCG’85 [182], pages 235–244. 44

[45] Vacláv Chvátal and David Sankoff. Longest common subsequences of two
random sequences. Journal of Applied Probability, 12(2):306–315, June
1975. 133, 134, 135

[46] Proceedings of the 40th Annual Conference on Information Sciences and
Systems (CISS’06), Princeton University, New Jersey, USA, March 2006.
IEEE. 217

[47] Communications Security Establishment. Proceedings of the 10th Annual
Canadian Information Technology Security Symposium (CITSS’98), Ottawa,
Ontario, June 1–8, 1998. 229

[48] Mariano P. Consens and Gonzalo Navarro, editors. String Processing
and Information Retrieval: 12th International Conference (SPIRE’05), vol-
ume 3772 of Lecture Notes in Computer Science, Buenos Aires, Argentina,
November 2–4, 2005. Springer. 224, 227, 229

[49] J. H. Conway. On Numbers and Games. Number 6 in L.M.S. Monographs.
Academic Press, London, 1976. 153

[50] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms, pages 314–320. MIT Press, Cambridge, Massachusetts,
USA, 1990. 8, 133

[51] Baris Coskun and Nasir Memon. Confusion/diffusion capabilities of some
robust hash functions. In CISS’06 [46]. 18, 38

[52] Fourth International IEEE Computer Society Computational Systems Bioin-
formatics Conference (CSB’05), Stanford, California, USA, August 8–11,
2005. IEEE Computer Society. 225

[53] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarai. An
open digest-based technique for spam detection. In ISCS’04 [16]. 39, 118

[54] Vladimír Dančík. Expected Length of Longest Common Subsequences. PhD
thesis, University of Warwick, September 1994. 133, 134

218 BIBLIOGRAPHY

[55] Frédéric Dardel and François Képès. Bioinformatics: Genomics and Post-
Genomics, chapter 2, pages 26–59. Wiley, 2006. Translated by Noah Hardy.
132

[56] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of the Johnson-
Lindenstrauss Lemma. Technical Report TR-99-006, Berkeley, CA, 1999.
4

[57] Philip J. Davis. Gamma function and related functions. In Abramowitz
and Stegun [1], chapter 6. 59, 61

[58] Umeshwar Dayal, Peter M. D. Gray, and Shojiro Nishio, editors. Proceedings
of the 21st International Conference on Very Large Data Bases (VLDB’95),
Zurich, Switzerland, September 11–15, 1995. 215

[59] Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayaraman, edi-
tors. Proceedings of the 19th International Conference on Data Engineering
(ICDE’03), Bangalore, India, March 5–8, 2003. IEEE Computer Society.
228

[60] Joseph Deken. Probabilistic behaviour of longest-common-subsequence
length. In Sankoff and Kruskal [179], chapter 16, pages 359–362. 133

[61] Joseph G. Deken. Some limit results for longest common subsequences.
Discrete Mathematics, 26:17–31, 1979. 133

[62] Jay L. Devore. Probability and Statistics for Engineering and the Sciences.
Wadsworth, Belmont, CA, USA, fourth edition, 1995. 6, 15

[63] Lee R. Dice. Measures of the amount of ecologic association between
species. Ecology, 26(3):297–302, July 1945. 6

[64] Andreas W. M. Dress. Trees, tight extensions of metric spaces, and the
cohomological dimension of certain groups: A note on combinatorial
properties of metric spaces. Advances in Mathematics, 53(3):321–402,
September 1984. 101

[65] Patrice Enjalbert, Ernst W. Mayr, and Klaus W. Wagner, editors. Proceedings
of the 11th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’94), volume 775 of Lecture Notes in Computer Science, Caen, France,
February 24–26, 1994. Springer. 224

[66] Christos Faloutsos and Ibrahim Kamel. Beyond uniformity and indepen-
dence: Analysis of R-trees using the concept of fractal dimension. In
PODS’94 [170], pages 4–13. 25, 26

BIBLIOGRAPHY 219

[67] V. V. Fedorchuk. The fundamentals of dimension theory. In Arkhangel’skǐı
and Pontryagin [11], part II. 20

[68] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of com-
plete sets. SIAM Journal on Computing, 22(5):994–1005, October 1993.
40

[69] Karina Figueroa. personal communication, January 11, 2008. 93

[70] Karina Figueroa, Edgar Chávez, Gonzalo Navarro, and Rodrigo Paredes.
On the least cost for proximity searching in metric spaces. In WEA’06 [6],
pages 279–290. 34

[71] Karina Figueroa, Gonzalo Navarro, and Edgar Chávez. Metric Spaces Li-
brary. Online http://www.sisap.org/?f=library. Accessed Novem-
ber 24, 2007. 4, 34, 93, 202, 204

[72] R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distri-
bution of the largest or smallest member of a sample. Proceedings of the
Cambridge Philosophical Society, 24:180–190, 1928. 47

[73] 37th Annual Symposium on Foundations of Computer Science (FOCS’96),
Burlington, Vermont, USA, October 14–16, 1996. IEEE. 214

[74] 40th Annual Symposium on Foundations of Computer Science (FOCS’99),
New York, New York, USA, October 17–18, 1999. IEEE Computer Society.
223

[75] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics: Principles and Practice, pages 550–555. Addison-
Wesley, 1996. Second Edition in C. 7

[76] M. Frances and A. Litman. On covering problems of codes. Theory of
Computing Systems, 30(2):113–119, 1997. 126, 127, 128, 149, 176, 194

[77] Andrew U. Frank, Irene Campari, and Ubaldo Formentini, editors. GIS—
From Space to Territory: Theories and Methods of Spatio-Temporal Reasoning,
volume 639 of Lecture Notes in Computer Science, Pisa, Italy, September 21–
23, 1992. Springer. 4

[78] Maurice Fréchet. Sur quelques points du calcul functionnel [On some
points of functional calculus]. Rendiconti del Circolo Matematico di Palermo,
22:1–74, 1906. 4

http://www.sisap.org/?f=library

220 BIBLIOGRAPHY

[79] Jiri [Jessica] Fridrich. Visual hash for oblivious watermarking. In Ping W.
Wong and Edward J. Delp III, editors, Security and Watermarking of Mul-
timedia Contents II, volume 3971 of Proceedings of SPIE, pages 286–294,
San Jose, California, January 24–26, 2000. SPIE. 18

[80] Janos Galambos. The Asymptotic Theory of Extreme Order Statistics. Robert
E. Krieger Publishing Company, Malabar, Florida, U.S.A., second edition,
1987. 46, 48, 56, 57

[81] Hector Garcia-Molina and H. V. Jagadish, editors. Proceedings of the
1990 ACM SIGMOD International Conference on Management of Data (SIG-
MOD’90), Atlantic City, New Jersey, USA, May 23–25, 1990. ACM Press.
215

[82] Martin Gardner. Crafty cheese cuts. In aha! Insight, pages 32–33. W. H.
Freeman and Company, 1978. 85

[83] Martin Gardner. Piet Hein’s superellipse. In Mathematical Carnival, chap-
ter 18, pages 240–254. Mathematical Association of America, Washington,
D.C., USA, 1989. 43

[84] Alexander F. Gelbukh, Alvaro de Albornoz, and Hugo Terashima-Marín,
editors. Advances in Artificial Intelligence: 4th Mexican International Con-
ference on Artificial Intelligence (MICAI’05), volume 3789 of Lecture Notes
in Computer Science, Monterrey, Mexico, November 14–18, 2005. Springer.
216

[85] K. Goldberg, M. Newman, and E. Haynsworth. Multinomial coefficients.
In Abramowitz and Stegun [1], subsection 24.1.2, pages 823–824. 13,
119

[86] Michael T. Goodrich and Catherine C. McGeoch, editors. Algorithm Engi-
neering and Experimentation: International Workshop (ALENEX’99), vol-
ume 1619 of Lecture Notes in Computer Science, Baltimore, Maryland, USA,
January 15–16, 1999. Springer. 231

[87] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products.
Academic Press, Boston, sixth edition, 2000. 50, 60, 61, 65

[88] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley, Reading, Massachusetts, USA, second edition,
1994. 13, 59, 119

[89] Peter Grassberger and Itamar Procaccia. Measuring the strangeness of
strange attractors. Physica D, 9:189–208, 1983. 25, 26

BIBLIOGRAPHY 221

[90] Joachim Grollmann and Alan L. Selman. Complexity measures for public-
key cryptosystems. SIAM Journal on Computing, 17(2):309–335, April
1988. 114

[91] S. Grumbach and F. Tahi. A new challenge for compression algorithms:
Genetic sequences. Journal of Information Processing and Management,
30(6):875–886, 1994. 5

[92] Branko Grünbaum. Arrangements and Spreads. Number 10 in Confer-
ence Board of the Mathematical Sciences Regional Conference Series in
Mathematics. American Mathematical Society, Providence, June 1971. 81

[93] Anupam Gupta. Embedding tree metrics into low-dimensional euclidean
spaces. Discrete & Computational Geometry, 24(1):105–116, 2000. 99

[94] Allan Gut. Probability: A Graduate Course. Springer, 2005. 45, 46

[95] Antonin Guttman. R-trees: a dynamic index structure for spatial searching.
SIGMOD Record (ACM Special Interest Group on Management of Data),
14(2):47–57, 1984. 8

[96] Laura M. Haas and Ashutosh Tiwary, editors. Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data (SIGMOD’98),
Seattle, Washington, USA, June 2–4, 1998. ACM Press. 215

[97] Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors. Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data
(SIGMOD’03), San Diego, California, USA, June 9–12, 2003. ACM. 228

[98] Peter Hall. On the rate of convergence of normal extremes. Journal of
Applied Probability, 16:433–439, 1979. 56, 57, 69

[99] Felix Hausdorff. Grundzüge der Mengenlehre. Chelsea Publishing Company,
New York, reprint of first edition, 1965. First published 1914. 4, 221

[100] Felix Hausdorff. Set Theory. Chelsea Publishing Company, New York,
second edition, 1962. Translation by John R. Aumann et al. of the 1935
third edition of Grundzüge der Mengenlehre [99]. 4

[101] Gisli R. Hjaltason and Hanan Samet. Index-driven similarity search in
metric spaces. ACM Transactions on Database Systems, 28(4):517–580,
December 2003. 4, 7, 9

[102] Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice Hall, 1971. 4

222 BIBLIOGRAPHY

[103] Douglas R. Hofstadter. Metamagical Themas: Questing for the essence of
mind and pattern. Basic Books, New York, 1985. 3, 43

[104] Gregory M. Hunter and Kenneth Steiglitz. Operations on images using
quad trees. IEEE Transactions on Pattern Analysis and Machine Intelligence,
1(2):145–153, April 1979. 7

[105] Proceedings of the 15th International Conference on Data Engineering
(ICDE’99), Sydney, Australia, March 23–26, 1999. IEEE Computer So-
ciety. 216

[106] C. Icking, R. Klein, N.-M. Lê, L. Ma, and F. Santos. On bisectors for convex
distance functions in 3-space. In CCCG’99 [37], pages 119–123. 85

[107] Christian Icking, Rolf Klein, Ngo. c-Minh Lê, and Lihong Ma. Convex
distance functions in 3-space are different. Fundamenta Informaticae,
22(4):331–352, 1995. 81, 82

[108] James Pickands III. Moment convergence of sample extremes. The Annals
of Mathematics Statistics, 39(3):881–889, 1968. 49

[109] Piotr Indyk and Jǐrí Matoušek. Low-distortion embeddings of finite metric
spaces. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 8. Chapman and Hall,
second edition, 2004. 99

[110] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In STOC’98 [202], pages 604–613.
19

[111] Chris L. Jackins and Steven L. Tanimoto. Oct-trees and their use in
representing three-dimensional objects. Computer Graphics and Image
Processing, 14(3):249–270, November 1980. 7

[112] Eddy L. O. Jansson and Matthew Skala. The breaking of Cyber Patrol R© 4.
Electronic white paper., March 11, 2000. 102

[113] Tao Jiang and Ming Li. On the approximation of shortest common superse-
quences and longest common subsequences. SIAM Journal on Computing,
24(5):1122–1139, October 1995. 132, 133

[114] Norman L. Johnson, Adrienne W. Kemp, and Samuel Kotz. Univariate
Discrete Distributions. Wiley, third edition, 2005. Effectively the first
volume of, and has chapter numbering continuous with, Johnson, Kotz,
and Balakrishnan [115, 116]. 27, 104, 223

BIBLIOGRAPHY 223

[115] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continuous
Univariate Distributions, volume 1. Wiley, 1994. References in this volume
to “Volume 1” actually refer to Johnson, Kemp, and Kotz [114]. 27, 54,
58, 60, 72, 222

[116] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continuous
Univariate Distributions, volume 2. Wiley, 1994. 27, 47, 48, 222

[117] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. Combinatorica, 4(4):373–396, 1984. 175

[118] Mark G. Karpovsky. Weight distribution of translates, covering radius, and
perfect codes correcting errors of given weights. IEEE Transactions on
Information Theory, 27(4):462–471, 1981. 127

[119] Norio Katayama and Shin’ichi Satoh. The SR-tree: an index structure for
high-dimensional nearest neighbor queries. In SIGMOD’97 [165], pages
369–380. 8

[120] Norio Katayama and Shin’ichi Satoh. Experimental evaluation of disk-
based data structures for nearest neighbor searching. In Data Structures,
Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Imple-
mentation Challenges, volume 59 of AMS DIMACS Series, pages 87–104.
AMS, 2002. 204

[121] Mohamed A. Khamsi and William A. Kirk. An Introduction to Metric Spaces
and Fixed Point Theory. Wiley, 2001. 2

[122] Joe Kilian, editor. Advances in Cryptology: 21st Annual International
Cryptology Conference (CRYPTO’01), volume 2139 of Lecture Notes in
Computer Science, Santa Barbara, California, USA, August 19–23, 2001.
Springer. 214

[123] L. Christine Kinsey. Topology of Surfaces. Undergraduate Texts in Mathe-
matics. Springer, 1993. 20

[124] Marcos Kiwi, Martin Loebl, and Jǐrí Matoušek. Expected length of the
longest common subsequence for large alphabets. In LATIN’04 [133],
pages 302–311. 133

[125] Jon M. Kleinberg and Éva Tardos. Approximation algorithms for classifi-
cation problems with pairwise relationships: Metric labeling and markov
random fields. In FOCS’99 [74], pages 14–23. 102

224 BIBLIOGRAPHY

[126] Keith Knight. Mathematical Statistics. Chapman and Hall/CRC, Boca
Raton, 2000. 27, 46

[127] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers and
Typesetting, pages 15, 23. Addison-Wesley, 1986. 43

[128] Grzegorz Kondrak. N -gram similarity and distance. In SPIRE’05 [48],
pages 115–126. 6

[129] Flip Korn and S. Muthukrishnan. Influence sets based on reverse nearest
neighbor queries. In SIGMOD’00 [43], pages 201–212. 35

[130] Daniel Kunkle and Gene Cooperman. Twenty-six moves suffice for Rubik’s
cube. In ISSAC’07 [210], pages 235–242. 3

[131] George Lakoff and Mark Johnson. Metaphors We Live By. University of
Chicago Press, 1980. 1

[132] Nikolaos Laoutaris, Vassilis Zissimopoulos, and Ioannis Stavrakakis. On
the optimization of storage capacity allocation for content distribution.
Computer Networks, 47(3):409–428, 2005. 102

[133] Theoretical Informatics: 6th Latin American Symposium (LATIN’04), volume
2976 of Lecture Notes in Computer Science, Buenos Aires, Argentina, April 5–
8, 2004. Springer. 223

[134] Ngo. c-Minh Lê. On voronoi diagrams in the Lp-metric in higher dimensions.
In STACS’94 [65], pages 711–722. 81

[135] G. Lejeune Dirichlet. Über die reduction der positiven qudratischen for-
men mit drei unbestimmten ganzen zahlen [On the reduction of positive
quadratic forms of three integer variables]. Journal für die reine und
angwandte Mathematik, 40:209–227, 1850. 78

[136] J. Lember and H. Matzinger. Standard deviation of the longest
common subsequence. Preprint 06-035, Bielefeld University CRC
701, 2006. Online http://www.math.uni-bielefeld.de/sfb701/

preprints/sfb06035.pdf. 134

[137] Arthur M. Lesk. Introduction to Bioinformatics, chapter 4, pages 160–215.
Oxford University Press, 2002. 132

[138] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics—Doklady, 10(8):707–710, 1966. English
translation of Doklady Akademii Nauk SSSR, 163(4):845–848, 1965. 131,
134

http://www.math.uni-bielefeld.de/sfb701/preprints/sfb06035.pdf
http://www.math.uni-bielefeld.de/sfb701/preprints/sfb06035.pdf

BIBLIOGRAPHY 225

[139] Lun Li, David Alderson, John Doyle, and Walter Willinger. Towards
a theory of scale-free graphs: Definition, properties, and implications.
Internet Mathematics, 2(4), 2005. 28

[140] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M. B. Vitányi. The similarity
metric. IEEE Transactions on Information Theory, 50(12):3250–3264, 2004.
6, 7

[141] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and
its Applications. Springer, 1993. 5, 20

[142] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, November 2004.
4, 5

[143] George S. Lueker. Improved bounds on the average length of longest com-
mon subsequences. In SODA’03 [196], pages 130–131. Extended version
online http://www.ics.uci.edu/~lueker/papers/lcs/. 133

[144] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and
techniques for obfuscation. In EUROCRYPT’04 [36], pages 20–39. 99,
101, 102

[145] Arnaldo Mandel. Topology of Oriented Matroids. PhD thesis, University of
Waterloo, 1982. 81

[146] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman,
1982. 18, 25

[147] Rui Mao, Weijia Xu, Smriti Ramakrishnan, Glen Nuckolls, and Daniel P.
Miranker. On optimizing distance-based similarity search for biological
databases. In CSB’05 [52], pages 351–361. 27

[148] William J. Masek and Michael S. Paterson. A faster algorithm computing
string edit distances. Journal of Computer and System Sciences, 20(1):18–
31, February 1980. 132

[149] Jǐrí Matoušek. On embedding trees into uniformly convex Banach spaces.
Israel Journal of Mathematics, 114(1):221–237, December 1999. 101

[150] Jǐrí Matoušek, Micha Sharir, and Emo Welzl. A subexponential bound for
linear programming. Algorithmica, 16(4–5):498–516, 1996. 175

[151] Nimrod Megiddo. Linear programming in linear time when the dimension
is fixed. Journal of the ACM, 31(1):114–127, January 1984. 175

http://www.ics.uci.edu/~lueker/papers/lcs/

226 BIBLIOGRAPHY

[152] Luisa Micó, José Oncina, and Enrique Vidal. A new version of the nearest-
neighbour approximating and eliminating search algorithm (AESA) with
linear preprocessing time and memory requirements. Pattern Recognition
Letters, 15(1):9–17, 1994. 33, 34

[153] R. D. Milne. Applied Functional Analysis: An Introductory Treatment.
Pitman, Boston, 1980. 42

[154] H. Minkowski. Space and time. In The Principle of Relativity: A collection
of original memoirs on the special and general theory of relativity, pages
73–91. Dover, 1952. Translation by W. Perrett and G. B. Jeffery of an
address to the 80th Assembly of German Natural Scientists and Physicians,
Cologne, September 21, 1908. 4

[155] William [Morris] and Mary Morris. The Word Game Book, pages 25–27.
Harper and Brothers, 1959. 153, 154

[156] Gonzalo Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31–88, 2001. 134

[157] Joseph Needham and Wang Ling. Mathematics and the Sciences of the
Heavens and the Earth, volume 3 of Science and Civilisation in China, page
101. Cambridge University Press, 1959. 54

[158] S. B. Needleman and C. D. Wunsch. A general method applicable to the
search of similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3):443–453, 1970. 132

[159] Chad Norwood and cmeclax. Digest::Nilsimsa 0.06. Computer soft-
ware, June 13, 2002. Online http://search.cpan.org/~vipul/

Digest-Nilsimsa-0.06/. 118

[160] Fritz Oberhettinger. Hypergeometric functions. In Abramowitz and Stegun
[1], chapter 15. 13

[161] F. W. J. Olver. Bessel functions of integer order. In Abramowitz and Stegun
[1], chapter 9. 61

[162] Edward Ott. Chaos in dynamical systems. Cambridge University Press,
Cambridge, U.K., 2nd edition, 2002. 24, 25, 26, 198

[163] Allan Paivio. Mental Representations: A dual coding approach, volume 9 of
Oxford Psychology Series. Oxford University Press, 1986. 1

http://search.cpan.org/~vipul/Digest-Nilsimsa-0.06/
http://search.cpan.org/~vipul/Digest-Nilsimsa-0.06/

BIBLIOGRAPHY 227

[164] Rodrigo Paredes and Edgar Chávez. Using the k-nearest neighbor graph
for proximity searching in metric spaces. In SPIRE’05 [48], pages 127–138.
12

[165] Joan Peckham, editor. Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data (SIGMOD’97), Tucson, Arizona, USA,
May 13–15, 1997. ACM Press. 223

[166] David Peleg and Eilon Reshef. A variant of the arrow distributed directory
with low average complexity. In ICALP’99 [215], pages 615–624. 102

[167] Persistence of Vision Raytracer Pty. Ltd. POV-Ray 3.6.1 Documentation,
August 3, 2004. Online http://www.povray.org/documentation/.
43, 83

[168] Yakov B. Pesin. Dimension Theory in Dynamical Systems: Contemporary
Views and Applications. University of Chicago Press, 1997. 25, 198

[169] Vera S. Pless, W. Cary Huffman, and Richard A. Brualdi. An introduction
to algebraic codes. In Handbook of Coding Theory, volume 1, chapter 1,
pages 3–139. Elsevier, Amsterdam, The Netherlands, 1998. 4, 117, 122

[170] Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’94), volume 13, Minneapolis,
Minnesota, May 24–26, 1994. ACM Press. 218

[171] Derek J. Price. Some unusual series occurring in n-dimensional geometry.
The Mathematical Gazette, 30:149–150, 1946. 86, 88, 92

[172] Singiresu S. Rao. The Finite Element Method in Engineering, pages 57–59.
Butterworth Heinemann, Boston, third edition, 1999. 7

[173] J. David Rawn. Biochemistry, pages 826–829. Neil Patterson Publishers,
Carolina Biological Supply Company, Burlington, North Carolina, USA,
1989. 132

[174] Michael Reid. Superflip requires 20 face turns. Electronic mailing list mes-
sage, January 18, 1995. Online http://www.math.rwth-aachen.de/

~Martin.Schoenert/Cube-Lovers/michael_reid__superflip_

requires_20_face_turns.html. 3

[175] Arun Ross, Jidnya Shah, and Anil K. Jain. From template to image:
Reconstructing fingerprints from minutiae points. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(4):544–560, 2007. 38

http://www.povray.org/documentation/
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/michael_reid__superflip_requires_20_face_turns.html
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/michael_reid__superflip_requires_20_face_turns.html
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/michael_reid__superflip_requires_20_face_turns.html

228 BIBLIOGRAPHY

[176] E. Vidal Ruiz. An algorithm for finding nearest neighbors in (approxi-
mately) constant time. Pattern Recognition Letters, 4:145–157, 1986. 11,
34

[177] S. Cenk Sahinalp, Murat Tasan, Jai Macker, and Z. Meral Ozsoyoglu.
Distance based indexing for string proximity search. In ICDE’03 [59]. 6

[178] Magnus Sahlgren. The Word-Space Model. PhD thesis, Stock-
holm University, 2006. Online http://www.sics.se/~mange/

TheWordSpaceModel.pdf. 4, 21

[179] David Sankoff and Joseph B. Kruskal, editors. Time Warps, String Edits,
and Macromolecules: The Theory and Practice of Sequence Comparison.
Addison-Wesley, 1983. 218, 228

[180] David Sankoff and Sylvie Mainville. Common subsequences and monotone
subsequences. In Sankoff and Kruskal [179], chapter 17, pages 363–365.
133

[181] Francisco Santos. On Delaunay oriented matroids for convex distance
functions. Discrete & Computational Geometry, 16(2):197–210, 1996. 81

[182] Proceedings of the Symposium on Computational Geometry (SCG’85), Balti-
more, Maryland, USA, June 5–7, 1985. ACM. 217

[183] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local
algorithms for document fingerprinting. In SIGMOD’03 [97], pages 76–85.
7

[184] Bruce Schneier. Applied Cryptography. Wiley, second edition, 1996. 38,
118

[185] Thomas Seidl. Untitled computer data file. Online http:

//www.dbs.informatik.uni-muenchen.de/~seidl/DATA/

histo112.112682.gz. Accessed January 25, 2008. 204

[186] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-tree:
A dynamic index for multi-dimensional objects. In VLDB’87 [203], pages
507–518. 8

[187] Dennis Shasha and Tsong-Li Wang. New techniques for best-match re-
trieval. ACM Transactions on Information Systems, 8(2):140–158, April
1990. 12

http://www.sics.se/~mange/TheWordSpaceModel.pdf
http://www.sics.se/~mange/TheWordSpaceModel.pdf
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz

BIBLIOGRAPHY 229

[188] Proceedings of the 1st International Workshop on Similarity Search and Ap-
plications (SISAP’08), Cancún, Mexico, April 11–12, 2008. IEEE Computer
Society. 229

[189] Matthew Skala. A limited-diffusion algorithm for blind substring search.
In CITSS’98 [47], pages 397–410. 102

[190] Matthew Skala. Measuring the difficulty of distance-based indexing. In
SPIRE’05 [48], pages 103–114. 28, 44, 68, 71, 118

[191] Matthew Skala. Counting distance permutations. In SISAP’08 [188],
pages 69–76. 75, 93, 105, 204

[192] Matthew Skala. On the complexity of reverse similarity search. In SISAP’08
[188], pages 149–156. 108, 114, 126, 143, 154, 166

[193] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1):195–197, 1981. 132

[194] Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Dis-
crete Algorithms (SODA’93), Austin, Texas, USA, January 25–27, 1993.
ACM/SIAM. 231

[195] Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’96), Atlanta, Georgia, USA, January 28–30, 1996.
ACM/SIAM. 213

[196] Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’03), Baltimore, Maryland, USA, January 12–14, 2003.
ACM/SIAM. 225

[197] Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’06), Miami, Florida, USA, January 22–26, 2006. ACM
Press. 215

[198] Robert R. Sokal and Peter H. Sneath. Principles of Numerical Taxonomy,
pages 125–141. W. H. Freeman, San Francisco, 1963. 6

[199] J. Michael Steele. An Efron-Stein inequality for nonsymmetric statistics.
The Annals of Statistics, 14(2):753–758, June 1986. 133, 134

[200] Lynn Arthur Steen and J. Arthur Seeback, Jr. Counterexamples in Topology.
Springer, second edition, 1978. 2, 4

230 BIBLIOGRAPHY

[201] Mark Steyvers and Joshua B. Tenenbaum. The large-scale structure of
semantic networks: Statistical analyses and a model of semantic growth.
Cognitive Science, 29(1):41–78, 2005. 28

[202] Proceedings of the Thirtieth Annual ACM Symposium on Theory of Com-
puting (STOC’98), Dallas, Texas, USA, May 23–26, 1998. ACM. 215,
222

[203] Peter M. Stocker, William Kent, and Peter Hammersley, editors. Proceedings
of the 13th International Conference on Very Large Data Bases (VLDB’87),
Brighton, England, September 1–4, 1987. 228

[204] James Thurber. Do you want to make something out of it? In Thurber
Country, chapter 13. Simon and Schuster, New York, 1953. 154

[205] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with
metric trees. Information Processing Letters, 40:175–179, November 25,
1991. 10

[206] Esko Ukkonen. Algorithms for approximate string matching. Information
and Control, 64(1-3):100–118, January/February/March 1985. 132

[207] Georges Voronoï. Nouvelles applications des paramètres continus à la
théorie des formes qudratiques: Premier mémoire, Sur quelques propriétés
des formes quadratiques positives parfaites [New applications of contin-
uous parameters to the theory of qudratic forms: First report, On some
properties of perfect positive quadratic forms]. Journal für die reine und
angwandte Mathematik, 133:97–178, 1908. 78

[208] Robert A. Wagner and Michael J. Fischer. The string-to-string correction
problem. Journal of the ACM, 21(1):168–173, January 1974. 132, 133

[209] Gerard Walschap. Metric Structures in Differential Geometry. Springer,
2004. 4

[210] Dongming Wang, editor. Proceedings of the 2007 International Symposium
on Symbolic and Algebraic Computation (ISSAC’07), Waterloo, Ontario,
July 28–August 1, 2007. ACM. 224

[211] John Edward Warnock. A hidden surface algorithm for computer generated
halftone pictures. PhD thesis, University of Utah, 1969. 7

[212] Henry S. Warren, Jr. The quest for an accelerated population count. In
Andy Oram and Greg Wilson, editors, Beautiful Code, chapter 10. O’Reilly,
Sebastopol, California, USA, 2007. 118

BIBLIOGRAPHY 231

[213] Eric W. Weisstein. Rising factorial. In The CRC Concise Encyclopedia of
Mathematics, page 2581. Chapman and Hall, Boca Raton, Florida, USA,
second edition, 2003. 13

[214] Margaret Wertheim. Crocheting the hyperbolic plane: An interview
with David Henderson and Daina Taimina. Cabinet, (16), Winter 2004.
Online http://www.cabinetmagazine.org/issues/16/crocheting.

php. 207

[215] Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors.
Automata, Languages and Programming: 26th International Colloquium
(ICALP’99), volume 1644 of Lecture Notes in Computer Science, Prague,
Czech Republic, July 11-15, 1999. Springer. 227

[216] Maurice Vincent Wilkes. Time-Sharing Computer Systems. Elsevier, New
York, 1968. 38

[217] Peter N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In SODA’93 [194], pages 311–321. 8

[218] Peter N. Yianilos. Excluded middle vantage point forests for nearest
neighbour search. In ALENEX’99 [86]. 28, 44, 56

[219] L.-S. Young. Dimension, entropy, and Lyapunov exponents. Ergodic Theory
& Dynamical Systems, 2:109–124, 1982. 25

[220] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Simi-
larity Search: The Metric Space Approach. Springer, 2006. 4

[221] Barton Zweibach. A First Course in String Theory, chapter 12. Cambridge
University Press, 2004. 17

http://www.cabinetmagazine.org/issues/16/crocheting.php
http://www.cabinetmagazine.org/issues/16/crocheting.php

Index

Page numbers printed like 123 indicate definitions. Other relevant page numbers
are printed like 123.

!!, see double factorial
(·), 14
[·], 14
{·}, 14
〈·〉, 14
α, see letter
Γ(z), see function, gamma
γ, see Euler-Mascheroni constant
∆ method, see delta method
ε-neighbourhood, see neighbourhood,

epsilon
λ, see string, empty (λ)
π, see pi
ρ, see intrinsic dimensionality
Σ, see alphabet
χ distribution, see distribution, chi
χ2 distribution, see distribution,

chi-squared
ω(x), see little-omega notation

d↔, 15
d
=, 15
d→, 15
→, 14
355/113, 54
3SAT problem, see problem (named),

3SAT

AESA, 11, 12, 34
improved (iAESA), 34

linear (LAESA), 33, 34
aha! insight, 85
almost metric, 6
alphabet, 16
asymptotic notation, 14
automata, 16, 134, 147

Bessel function
modified, see function, Bessel,

modified
big letters for big ideas, 14
big-Oh notation, see asymptotic

notation
binary, 16
bioinformatics, 131–132, 154
biometric, 38
bisctor, 83–85
bisector, 80

degenerate intersections, 90
Euclidean, 86–88
hyperbolic, 208
piecewise linear, 91–92
system, 80, 78–81

BK-tree, 8
BLAST, 132
blind substring search, 102
bounded, 21
box-counting dimension, 24
bubbles, 83, 173

233

234 INDEX

Cantor dust, 198
cell, 78
cell complex, 20
Central Limit Theorem, see theorem

(named), Central Limit
central subtree, 109, 109–111
certificate, 16

unique, 114
Chebyshev distance, 42
chessboard distance, 42
chi distribution, see distribution, chi
chi-squared distribution, see

distribution, chi-squared
coding theory, 4, 117, 122
coefficient of variation, see variation,

coefficient of
combinatorial game theory, see game

theory, combinatorial
combinatorial geometry, see geometry,

combinatorial
compact, 21
complement, 127
complex numbers (C), 13, 17
complexity class
NP (non-deterministic poly), 16
NPC (NP-complete), 16
P (poly decidable), 16
UP (unique poly certificate), 16,

114, 114–115
component, 14
compression distance, see distance

function, compression
Computer Modern typeface family, 43
concatenation, 16
connected component, 105
content filtering, 102
convergence

of moments, see moment
convergence

convex distance function, see distance
function, convex

convexity, 43, 168, 194
copyright

author’s declaration, iii
correlation coefficient, 6
correlation dimension, 25
cosine, 6
crochet, 207
cryptographic hash, see hash,

cryptographic
curse of dimensionality, 19
Cyber Patrol, 102

decoding
nearest-neighbour, 122

delta method, 46
deoxyribonucleic acid, see DNA
dew point, 17
Dewey decimal classification, 102
Dice coefficient, 6
differential geometry, 4
dimension

effective, 18
dimension doubling, 149, 176
dimensional analysis, 26
dimensionality, 17, 17–33

Dq, see Dq dimension
from distance permutations,

206–207
intrinsic, see intrinsic

dimensionality
topological, see topological

dimension
discrete space, 3, 103
distance function, 2, see also metric

compression, 5
convex, 44, 85

distance permutation, 1, 33, 33–35, 75,
104, 122, 150, 158

INDEX 235

Euclidean, 85–90
Hamming distance, 122–126
hyperbolic space, 207–210
L1, 90–92
Levenshtein distance, 150–151
L∞, 90–92
practical databases

experimental results, 204–207
strict, 126
Superghost distance, 157–159
tree metric, 104–105, 112–113
vector, 75–98

experimental results, 93–98
distance-based, 8, 19, 25
distributed directory problem, see

problem (named), distributed
directory

distribution
Bernoulli, 29, 119
chi, 27, 41, 54, 58

not chi-squared, 54
chi-squared, 58, 60
extreme-value limiting, 48–51

norming constants, 48, 53, 57
slow convergence, 57, 69

gamma, 60
geometric, 104
Gram-Charlier expansion, 72
native, 18, 21
Rayleigh

generalised, 54
DNA, 131
document, 6–7
double factorial, 13, 61, 61–62
DPREVERSE problem, see problem

(named), DPREVERSE
Dq dimension, 24, 22–26

constructing arbitrary, 198–200
independent of ρ, 197–201

dynamic programming, 132, 133

écart (variation), 4
edit distance, 117, 131, see also metric,

Levenshtein
effective dimension, 18
element, 14
empty string, see string, empty (λ)
enc(i), 158, 159
equal-radius VPREVERSE problem, see

problem (named),
VPREVERSE, equal-radius

equality metric, 3
Euclidean metric, see metric, Euclidean
Euclidean space, see metric, Euclidean
Euler-Mascheroni constant, 48, 50
evolution, 132
expectation, 14
experimental results, 44, 67–72
exponentiation, 16
extreme-value limiting distribution,

see distribution,
extreme-value limiting

factorial, 12
fingerprint, 38
Four Russians, 132
four-point condition, 101
Fréchet, Maurice, 3
fractal dimension, 25
function

Bessel
modified, 60

gamma, 12, 48–50, 53, 58
properties, 59

hypergeometric, 13, 60, 62
one-way, 114

functional analysis, 3, 42

game theory
combinatorial, 153

gamma, see Euler-Mascheroni constant

236 INDEX

gamma distribution, see distribution,
gamma

gamma function, see function, gamma
generalised GHREVERSE problem, see

problem (named),
GHREVERSE, generalised

generalised hyperplane, 10
generalised Rayleigh distribution, see

distribution, Rayleigh,
generalised

geographic information system, 4
geometric distribution, see

distribution, geometric
geometry

combinatorial, 35
GH-tree, 10, 9–11

is not GHREVERSE on a tree, 10,
106

Ghost distance, 153, see also metric,
prefix

Ghosts, 153, 153–154
GHREVERSE problem, see problem

(named), GHREVERSE
generalised, see problem (named),

GHREVERSE, generalised
GIS, see geographic information system
global alignment, 132
GNAT, 12
Gram-Charlier expansion, 72
graph

scale-free, 28

Hamming code, 117
Hamming distance, see metric,

Hamming
Hamming weight, 117
Hamming, Richard V., 117
hash

cryptographic, 114
Hausdorff dimension, 24

Hausdorff, Felix, 4
Hein, Piet, 43
humidity, 17
hyperbolic space, see space, hyperbolic
hypergeometric function, 13
hypergeometric function, see function,

hypergeometric

image data, 5
information dimension, 25
information theory, see coding theory
inner product, 4
intrinsic dimensionality, 1, 23, 26,

26–33, 41, 118, 135
constructing arbitrary, 200
discrete space, 29–33
experimental results, 44, 67–72,

136–140, 206
Hamming distance, 118–122
independent of Dq, 197–201
Levenshtein distance, 132–140
nonlinear, 51, 56–57, 103–104,

132, 135–140
prefix distance, 103–104
scaling-independence, 32
Superghost distance, 155–157
tree metrics, 102–104
vectors, 41–72

juxtaposition, 16

k-nearest neighbour graph, 12
k-Nearest Neighbour search, see kNN

search
k-server problem, see problem

(named), k-server
kNN search, 7
Kolmogorov complexity, 5, 20

L1 metric, see metric, L1

LAESA, see AESA, linear (LAESA)

INDEX 237

Lamé curve, 43
LC classification, 102
lcs(x , y), 16
letter, 14, 16
Levenshtein distance, see metric,

Levenshtein
Levenshtein, Vladimir, 131
limiting distribution, see distribution,

extreme-value limiting
linear algebra, 4, 17
linear programming, 166–168,

175–176
little-omega notation, 14, 136
local alignment, 132
local descriptor, 5
logarithm, 12
longest common prefix, 102, 104
longest common subsequence, 16, 132

computing, 133
of random strings, 133–134

Lp metric, see metric, Lp

L∞ metric, see metric, L∞

Mandelbrot, Benoit B., 24
Manhattan distance, 42
matroid

oriented, 80–81
max(k){Z}, 15, 42
MCR problem, see problem (named),

MCR
metaphor, 1
meteorology, 17
metric, 2

can’t choose, 4
Chebyshev, 42
chessboard, 42
equality, 3
Euclidean, 42, 57–67, 72, 174–176
expensive, 4, 11, 34
Hamming, 117, 117–129

ball, 119–122
L1, 46, 103, 119, 123
L2, see metric, Euclidean
L4, 81–83
Levenshtein, 131, 131–152

computing, 132
to a single-letter run, 143
trivial bounds, 131

Lp, 15, 42, 41–72, 165–195
finite p, 45–46, 51–52, 54–56,

168–173, 176–188, 194
p < 1, 42

L∞, 46, 48–54, 56–57, 68–72, 123,
173–174, 188–195

Manhattan, 42
prefix, 101
relaxed versions, 2, 4
Superghost, 154, 153–163

rationale, 154
taxicab, 42
tree, 99, 99–115

badly-behaved, 111–115
embedding into, 102
triangle inequality, 101

weighted tree, 99
metric space, 2

finite, 29–33, 103, 112
min(k){Z}, 15, 42
minimum distance, 117
Minkowski Inequality, 42
Minkowski, Hermann, 4, 42
modified Bessel function, see function,

Bessel, modified
moment convergence, 45, 46, 49, 50,

53
MR problem, see problem (named), MR
multifractals, 25
multinomial coefficient, 13, 119
mutation, 131

238 INDEX

National Security Agency, 118
native distribution, 38, see distribution,

native
nearest-neighbour decoding, 122
neighbour, 140, see also number of

neighbours, 157
neighbourhood, 20

epsilon, 20
Nilsima, 118
Nn,p(k), 75
no long paths, 112
notation, 12–16

brackets, 14
NP, see complexity class, NP
NPC, see complexity class, NPC
NSA, see National Security Agency
number of neighbours

discrete space, 140
Hamming distance, 141
Levenshtein distance, 141–142
Superghost distance, 157
tree metric space, 140

numeric precision, see real numbers
(R), precision

obfuscation, 102
octree, 7
one-way function, see function,

one-way
open digest, see robust hash
open set, 20
oriented matroid, see matroid, oriented

P, see complexity class, P
P = UP, 114
password, 38
path, 103
PATH(x , y), 108, 108–111
PCA, see principal component analysis
phylogeny, 132
pi

rational approximation, 54
Piet Hein, 43
plagiarism detection, 6
Pochhammer symbol, see rising

factorial
Poincaré disc, 208
point, 2

dew, 17
frequent flyer, 99

pointwise dimension, 25

polyhedron, 44
polymerase, 154
population count instruction, 117
POV-Ray, 43, 83
power series, 13, 61
prametric, 2

prefix metric, see metric, prefix
principal component analysis, 60
probability, 14

probability distribution, see distribution
problem (named)

3SAT, 35, 111, 160–163, 166,
173–174, 188–194

blind substring search, 102
cheese cutting, 85
distributed directory, 102
DPREVERSE, 202, 202–203
GHREVERSE, 37, 106–111,

128–129, 142–152, 159–163,
174–194

approximate solution, 118
Euclidean, 166, 174–176
generalised, 202, 202–203

k-server, 102
MCR, 127, 127–128
MR, 127, 127–128
pancake cutting, 86
SVPREV, 110, 110–111

INDEX 239

VPREVERSE, 37, 106–108,
110–111, 127–128, 142–152,
159–163, 168–174

approximate solution, 118
equal-radius, 194–195
unspecified radius, 201

VPRU, 201, 202–203
programming

linear, see linear programming
proximity preserving order, 33
pseudometric, 2
Pythagorean Theorem, 42

quadtree, 7
quasimetric, 2

R∗-tree, 8, 25
random self-reducibility, 40
range search, 7
Rayleigh distribution

generalised, see distribution,
Rayleigh, generalised

real numbers (R), 12
precision, 165, 170

repetition, 16
reverse similarity search, 1, 35, 35–40
rho, see intrinsic dimensionality
ribonucleic acid, see RNA
rising factorial, 13
RNA, 154
robust hash, 6, 18–19, 37–39
Rubik’s Cube, 3, 17
run

single-letter, 141

scale-free graph, see graph, scale-free
search engine, 6
security, 102, 114
semimetric, 2
sequence alignment, 132
Sergels Torg, 43

SIFT, 5
similarity, 6–7
similarity search, 7, 7–12, 33

brute-force, 7
kNN, 7
range, 7
reverse, see reverse similarity

search
simulated annealing, 83
single-letter run, 141
SISAP library, 34, 93, 94, 202

sample databases, 204
site, 33, 75, 104, 122, 150, 157
space, see also metric

abstract, 2
conceptual, 1
discrete, 3, 103
Euclidean, see metric, Euclidean
hyperbolic, 207–210
metric, 2–5
physical, 1

spam, 118
sphere

volume, 21, 23–24
star graph, 103, 112
string, 16

empty (λ), 16
string theory (physics), 17
subsequence, 16, 155
substring, 16, 155, 155
superellipse, 43
Superghost distance, 154
Superghosts, 154, 153–154
SVPREV problem, see problem

(named), SVPREV

taxicab distance, 42
taxonomy, 6
temperature, 17
text, 6

240 INDEX

theorem (named)
Central Limit, 45, 47, 64
Minkowski Inequality, 42
Pythagorean, 42

topological dimension, 20, 26
topology, 4, 20–21
tree

binary search, 8
distance-based, 8–11
generalised GH, 12
geometric, 7–8
GH, see GH-tree
GNAT, 12
pyramid, 8, 12
V P, see V P-tree

tree metric, see metric, tree
tree metric space, 99
triangle inequality, 2, 3, 6, 7, 9, 11

in tree metric, 101
trie, 153
Tsu Chhung-Chih, 54
Turing machine, 16

unit circle, 42, 44
unit cost model, 175
unit vector (ui), 166
unreasonable weights, 112
UP, see complexity class, UP

vantage point, 8
variance, 14

computational formula, 15
variation

coefficient of, 27, 28, 41, 54
vector, 17

notation, 15, 167
unit (ui), 166
zero (0), 15
zero-one, 123

vector norm, 4
Vietnam War, 43

voisinage (vicinity), 3
Voronoi diagram, 44, 78–85

generalised, 78
m-th order, 78

V P-tree, 8, 8–9
is not VPREVERSE on a tree, 10,

106
VPREVERSE problem, see problem

(named), VPREVERSE
equal-radius, see problem (named),

VPREVERSE, equal-radius

weighted tree metric, see metric,
weighted tree

zero-one vector, see vector, zero-one
Zǔ Chōngzh̄ı, 54

	Front matter
	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures

	Introduction
	Metric spaces and similarity search
	Metric spaces
	Other abstract spaces
	Similarity search and geometry
	VP-trees
	GH-trees
	Other data structures for similarity search

	Notation and organisation
	General mathematics
	Probability and statistics
	Vectors
	Strings
	Computational complexity

	Dimensionality measurement
	Dq dimension
	Intrinsic dimensionality

	Distance permutations
	Reverse similarity search

	Real vectors, Lp metrics, and dimensionality
	Asymptotic intrinsic dimensionality with all components independent and identically distributed
	Generally distributed components
	Uniform components
	Normal components

	Normal components, Euclidean distance, and finite n
	All components with the same variance
	Exact result for n=2 and distinct variances
	Approximation for larger n

	Experimental results with discussion
	All components independent and identically distributed
	Components independent and normal but not identically distributed

	Real vectors: distance permutations
	Achieving all permutations
	Voronoi diagrams and distance permutations
	Euclidean space
	The L1 and L-infinity metrics
	Experimental results on Lp distance permutations

	Tree metrics
	Intrinsic dimensionality
	Distance permutations
	Reverse similarity search
	Badly-behaved tree metrics

	Hamming distance
	Intrinsic dimensionality
	Distance permutations
	Reverse similarity search

	Levenshtein edit distance
	Intrinsic dimensionality
	Number of neighbours
	Reverse similarity search

	Superghost distance
	Intrinsic dimensionality and neighbour count
	Distance permutations
	Reverse similarity search

	Real vectors: reverse similarity search
	VPREVERSE with the Lp metric for finite p
	VPREVERSE with the L-infinity metric
	GHREVERSE in Euclidean space
	GHREVERSE with the Lp metric for finite p not 2
	GHREVERSE with the L-infinity metric
	VPREVERSE with equal radii

	Additional results
	Independence of dimensionality measures
	Other problems that reduce to GHREVERSE
	Distance permutations in practical databases
	Distance permutations in hyperbolic space

	Conclusion
	Bibliography
	Index

