
Top-k Color Queries On Tree Paths?

Stephane Durocher1, Rahul Shah2,
Matthew Skala1, and Sharma V. Thankachan2

1 University of Manitoba, Winnipeg, Canada, {durocher,mskala}@cs.umanitoba.ca
2 Louisiana State University, Baton Rouge, USA, {rahul,thanks}@csc.lsu.edu

Abstract. We present a data structure for the following problem: Given
a tree T , with each of its nodes assigned a color in a totally ordered set,
preprocess T to efficiently answer queries for the top k distinct colors on
the path between two nodes, reporting the colors sorted in descending
order. Our data structure requires linear space of O(n) words and answers
queries in O(k) time.

1 Introduction and Related Work

Given an array A[1..n] of color values in {1, 2, . . . , σ} and a function p(c) that
defines priorities for the colors, the array range top-k color query problem is to
report, given indices a and b and a count k, the k distinct color values of highest
priority to occur in the array range A[a..b], in descending order of priority. A
data structure for this problem must preprocess the array to answer queries
efficiently. In this work we generalize the array range top-k color query problem
to paths in trees.

Karpinski and Nekrich [15] give a data structure for the array problem with
O(k) query time using O(n log σ) bits, which is asymptotically optimal. Other
related problems include reporting all distinct colors, counting the number of
distinct colors in the query range, finding the most frequent, least frequent,
majority or minority color in the query range, and so on. Efficient data struc-
tures offering different space-time trade-offs for these kinds of problems are
known [1–6, 8–11, 16]. Such problems arise frequently in information retrieval
and computational geometry.

Any two nodes in a tree define a unique path between them, just as two
elements of an array define a unique range. When the entire tree is a path, tree
paths reduce to array ranges. Most array range query problems can thus be gen-
eralized to a tree setting, and some of these problems are well studied. Krizanc
et al. [16] discuss finding the median and mode on tree paths. He et al. [12] give
efficient linear-space solutions for path selection (including median), counting,
and reporting, on individual node values (weights) as opposed to classes of dis-
tinct node values (colors) [12]. Recent results include succinct data structures
for these weighted path query problems [13,19].

? Work supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC) and National Science Foundation (NSF) Grants CCF–1017623
(R. Shah and J. S. Vitter) and CCF–1218904 (R. Shah).



Suppose each node in a tree T of n nodes is assigned a color c ∈ {1, . . . , σ} and
each color has a priority p(c). Let T [a..b] represent the unique path connecting
the nodes with preorder indices a and b. Then the tree path top-k color query
problem is to report, given indices a and b and a count k, the k distinct color
values of highest priority to occur in T [a..b], in descending order according to
priority. We will prove the following result in Word-RAM model.

Theorem 1. There exists a linear-space data structure of O(n) words for an-
swering tree path top-k color queries in O(k) time.

2 Our solution

We begin by defining some useful concepts. Let T be a tree with n nodes. We
define the size of an internal node v to be the number of leaves in the subtree
rooted at v. Then the heavy path of the tree T is the path starting from the
root, which each node v on the path is the largest-size child of its parent. Let
the root of a heavy path be its highest node, that is, closest to the root of T .
The heavy path decomposition of the tree T is the operation where we decompose
each off-path subtree of the heavy path recursively; therefore, edges in T will
be partitioned into disjoint heavy paths. Each leaf node belongs to a unique
path in the heavy decomposition, and each heavy path contains exactly one leaf.
Therefore the number of heavy paths is exactly equal to the number of leaves.
This decomposition will allow us to break query paths into a small number of
pieces by the following lemma.

Lemma 1 (Sleator and Tarjan [20]). Any path from the root to a leaf in T
intersects at most log n paths of the heavy path decomposition.

We will also use a data structure of Navarro and Nekrich for three-sided two-
dimensional top-k queries [18]. Given a set of n points on an n × n grid, each
having a weight, this data structure can report the k points of greatest weight
in a query region of the form [a, b] × [0, h], in O(h + k) time. Furthermore, it
reports the points in order of decreasing weight, and it reports them online, that
is, in constant time per point after the O(h) time to start the query; k need not
be specified in advance.

Any tree path T [a..b] can be divided into two overlapping paths T [a..z] and
T [z..b], where z is the lowest common ancestor (LCA) of a and b. If we can
answer tree path top-k color queries on these two paths in O(k) time, then we
can merge the answers to answer such queries on arbitrary paths in the tree in
the same time. Therefore, it suffices to solve the following problem.

Problem 1. Preprocess T to efficiently answer tree path top-k color queries on
paths of the form T [a..z] where z is an ancestor of a.

A tree path top-k query involves three constraints. Each element returned
must be (1) on the query path; (2) among the top k; and (3) of a distinct
color. In other words, each color must be reported, and counted towards the



top k, only once, even if many elements of that color appear on the query path.
We eliminate the duplicates using an adaptation of Muthukrishnan’s chaining
approach to reporting distinct colors in array ranges [17].

Let depth(i) be the number of nodes on the path from the root to a node i.
Let chain(i) be the depth of the lowest ancestor of i that has the same color as
i, with chain(i) = 0 if there is no such ancestor. If there exists at least one node
with color c in T [a..z], z being an ancestor of a, then there exists a unique node
i in T [a..z] with color c and chain(i) < depth(z). Therefore, Problem 1 can be
rephrased as follows:

Problem 2. Preprocess T to efficiently find, given a node a, one of its ancestors
z, and a count k, the top k colors in decreasing order of priority among the nodes
in the set {i ∈ T [a..z]|chain(i) < depth(z)}.

For any node given by its preorder rank i, let φ(i) be the root of the path
containing i in the heavy path decomposition of T . Let `j be the preorder rank
of the jth leftmost leaf in T . We can transform T to another tree T ′, which
is actually a path, by concatenating the paths T [`i, φ(`i)] for each i up to the
number of leaves. Then we can define an array A[1..n] containing the priorities
of the colors of nodes in T ′, in order along the path starting from the root.
property is ensured. Any subpath of a path in the heavy path decomposition
must correspond to a contiguous range of A.

We build the optimal array range top-k color query data structure of Karpin-
ski and Nekrich on A, using O(n log σ) bits [15]. From each node i in T , we store
the index of the corresponding entry in A. The total space consumption is O(n)
words assuming σ ≤ n. Because heavy paths are contiguous in A, the special
case where both a and z are on the same heavy path can be handled optimally
by first finding the corresponding range in A, and then performing a top-k color
query on the array range top-k color query data structure.

For the case of a and z not on the same path of the decomposition, we map
each node i in T to a weighted two-dimensional point (xi, yi) with weight wi,
letting wi be the priority of the color of node i, xi be the index in A corresponding
to that node, and yi be the number of paths of the heavy path decomposition
intersected by the path from the root to chain(i). We build the data structure 3

of Navarro and Nekrich for three-sided two-dimensional top-k queries on these
weighted points [18, Theorem 2.1]. Because yi ≤ log n, the query time to return
k points from this data structure is O(log n+ k).

To answer a general tree path top-k color query, we first find the lowest
common ancestors of its endpoints and split the path into two queries of the form
T [a..z], with z an ancestor of a. Then for each of the two, we partition the query
path T [a..z] into at most logn disjoint subpaths T [a1..φ(a1)], T [a2..φ(a2)], . . . ,
T [ar..z], where a1 = a, ai is the parent of φ(ai−1) for i = 2, 3, . . . , r, and r ≤ log n

3 Note that an alternate approach is to build the data structure described in [15] over
the list of colors corresponding to each heavy path, and later perform top-k queries
on all heavy paths intersect with T [a..z]. However, the drawback of this approach is
that the same color may be reported from several heavy paths.



is such that z is on the subpath T [ar..φ(ar)]. This step takes only O(r) =
O(log n) time, by consulting a stored copy of the heavy path decomposition.

The query T [ar..z] corresponds to a contiguous range in A, so we can find
its top k colors in O(k) time and merge them in O(k) time with the top k colors
for T [a1..φ(ar−1)]. It only remains to query T [a1..φ(ar−1)] efficiently.

From the definition in Problem 2, we have that a node i can only be part of
the result for T [a1..φ(ar−1)] if chain(i) < depth(φ(ar−1)). In fact, it suffices to
check that the number of centroidal paths intersected by the path from the root
of T to chain(i) is less than the number intersected from the root to φ(ar−1).
Since φ(ar−1) and its parent cannot be on the same path of the decomposition,
any ancestor of it must be in a path nearer the root.

Let h be the number of paths of the heavy path decomposition that are
intersected by the path from φ(ar−1) to the root, and let A[si..ei] be the range
of A associated with T [ai..φ(ai)]. Then for each i ∈ {1, 2, . . . , r−1}, the weighted
points (xj , yj) ∈ [si, ei] × [0, h] correspond to nodes with distinct colors on the
path T [a1..φ(ar−1)]. The union of those lists would include the top k colors in
T [a1..φ(ar−1)], but we still must merge the lists.

We issue r − 1 simultaneous queries to the top-k geometric data structure,
corresponding to the query regions [si, ei] × [0, h] for i = 1, 2, . . . , r − 1. The
answers can be merged using a max-heap H with its size limited to at most
r− 1 = O(log n) points. We insert the first point returned from each Ri into H.
Then we repeat the following steps until we have reported k colors:

1. Extract the highest weighted point in H and report it.
2. If the reported point was from the query box Ri, then fetch the next highest

weighted point from Ri and insert it into H.

Since the size of H is always logO(1) n, we can use an atomic heap, which
can perform all heap operations in constant time in the Word RAM model [7].
Therefore, the number of heap operations, and the required time, can be bounded
by O(k + log n). Each three-sided two-dimensional top-k query takes O(log n)
time in addition to the number of points it returns. Therefore the total time for
query is O(k + log2 n).

Lemma 2. There exists a linear-space data structure for answering tree path
top-k color queries in O(k + log2 n) time.

For k = Ω(log2 n), that time is optimal. To handle the case of small k, we
use other techniques. First, we will choose a subset of the nodes in T , called
the marked nodes, as follows. Let g be an integer to be chosen later called the
grouping factor, and mark every node i in T such that i ≡ 0 (mod g). Also mark
the lowest common ancestor of any pair of marked nodes. This is a simplified
version of the scheme introduced by Hon et al. [14] for identifying marked nodes
in a suffix tree. It has the properties given in the following lemma (the proof is
deferred to the full version).

Lemma 3. If we mark all nodes i such that i ≡ 0 (mod g), and all lowest
common ancestors of pairs of such nodes, then:



1. the number of marked nodes is O(n/g);
2. the lowest marked ancestor of any node is O(g) nodes above it;
3. any unmarked node has at most one unique highest marked descendant; and
4. for any unmarked node i, the subtree of T rooted at i and excluding the

subtree rooted at its highest marked descendant j (if any) contains O(g)
nodes.

We mark nodes in T using g = log3 n. For every marked node i and every
j such that j is an ancestor of i and is the root of a path in the heavy path
decomposition, we store explicitly a precomputed sorted list of the top O(log2 n)
colors on the path T [i..j]. The space is bounded by O((n/ log3 n) log2 n log n) =
O(n) words. Using these precomputed lists we can find the top k colors in T [a..z],
where a is a marked node and z is one of its ancestors, by splitting the query,
as before, into T [a1..φ(ar−1)] and T [ar..z]. The former is precomputed and the
latter corresponds to a contiguous range of A. We can find the top k colors in
both of them and merge the lists in O(k) time.

Lemma 4. There exists a linear-space data structure for answering tree path
top-k color queries of the form T [a..z] in O(k) time, where a is a marked node
and z is one of its ancestors.

Next we must handle the case in which a is not a marked node. For any node
i such that i is not marked but its parent is marked, define the mini-tree T i to
be the subtree rooted at i but excluding any descendants of the highest marked
descendant of i, if any. By Lemma 3, T i is of size O(g). We choose a grouping
factor g′ = log3 g = Θ(log3 log n) and use it to mark nodes within each mini-tree,
and build the data structure of Lemma 4 for each mini-tree. The total space is
bounded by O(n) because each node in T belongs to exactly one mini-tree. By
querying from a to the root of its mini-tree, and from the parent of that root to
z, and merging the results, we can answer top-k color queries of the form T [a..z]
in O(k) time when a is marked in its mini-tree and z is its ancestor, even if a is
not marked in T .

Finally, we generalize the optimal-time solution to arbitrary a. For any i not
marked in T nor in the mini-tree that contains i, let j be the lowest marked
node above i in the same mini-tree. The node j is at most g′ = O(log3 log n)
nodes above i. Therefore the top k colors on the path T [i..j], for all choices of
i, can be stored in O(n(log3 log n)2 log log log n) bits: there are n choices of i,
O(log3 log n) lists, each of length at most O(log3 log n), and only O(log log log n)
bits are needed (as indices into the mini-block) to store the entries in the lists.
That is a total of o(n) words.

Then to answer an arbitrary query T [a..b], we first split into two queries
T [a..z] and T [b..z] with z the lowest common ancestor of a and b. We can find
the top k colors from a to its lowest marked ancestor within its mini-tree, and
from there to the root of the mini-tree, using the precomputed lists. From the
lowest marked ancestor of a in T to the highest marked ancestor of a below z,
we use Lemma 4; and from there to z we do an array range query in A. We do
the same with the query T [b..z]. All these queries can be performed, and their
results merged, in O(k) time. This completes the proof of Theorem 1.



References

1. D. Belazzougui, T. Gagie, and G. Navarro. Better space bounds for parameterized
range majority and minority. In Proc. WADS, 2013.

2. D. Belazzougui, G. Navarro, and D. Valenzuela. Improved compressed indexes for
full-text document retrieval. J. Discrete Algorithms, 18:3–13, 2013.

3. T. M. Chan, S. Durocher, K. G. Larsen, J. Morrison, and B. T. Wilkinson. Linear-
space data structures for range mode query in arrays. In Proc. STACS, volume 14,
pages 291–301, 2012.

4. T. M. Chan, S. Durocher, M. Skala, and B. T. Wilkinson. Linear-space data
structures for range minority query in arrays. In Proc. SWAT, volume 7357 of
LNCS, pages 295–306. Springer, 2012.

5. S. Durocher, M. He, J. I. Munro, P. K. Nicholson, and M. Skala. Range majority
in constant time and linear space. Inf. & Comp., 222:169–179, 2013.

6. S. Durocher, R. Shah, M. Skala, and S. V. Thankachan. Linear-space data struc-
tures for range frequency queries on arrays and trees. In Proc. MFCS, 2013.

7. M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

8. T. Gagie, M. He, J. I. Munro, and P. Nicholson. Finding frequent elements in
compressed 2D arrays and strings. In Proc. SPIRE, volume 7024 of LNCS, pages
295–300. Springer, 2011.

9. T. Gagie, J. Kärkkäinen, G. Navarro, and S. J. Puglisi. Colored range queries and
document retrieval. Theor. Comput. Sci., 483:36–50, 2013.

10. T. Gagie, S. J. Puglisi, and A. Turpin. Range quantile queries: Another virtue of
wavelet trees. In Proc. SPIRE, volume 5721 of LNCS, pages 1–6. Springer, 2009.

11. B. Gfeller and P. Sanders. Towards optimal range medians. In Proc. ICALP,
volume 5555 of LNCS, pages 475–486. Springer, 2009.

12. M. He, J. I. Munro, and G. Zhou. Path queries in weighted trees. In Proc. ISAAC,
pages 140–149, 2011.

13. M. He, J. I. Munro, and G. Zhou. Succinct data structures for path queries. In
Proc. ESA, pages 575–586, 2012.

14. W.-K. Hon, R. Shah, and J. S. Vitter. Space-efficient framework for top-k string
retrieval problems. In Proc. FOCS, pages 713–722, 2009.

15. M. Karpinski and Y. Nekrich. Top-k color queries for document retrieval. In Proc.
SODA, pages 401–411, 2011.

16. D. Krizanc, P. Morin, and M. Smid. Range mode and range median queries on
lists and trees. In Proc. ISAAC, volume 2906 of LNCS, pages 517–526. Springer,
2003.

17. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc.
SODA, pages 657–666, 2002.

18. G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and linear
space. In Proc. SODA, pages 1066–1077, 2012.

19. M. Patil, R. Shah, and S. V. Thankachan. Succinct representations of weighted
trees supporting path queries. J. Discrete Algorithms, 17:103–108, 2012.

20. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, 1983.


