
Untangled Monotonic Chains
and Adaptive Range Search

Diego Arroyuelo, Francisco Claude, Reza Dorrigiv, Stephane Durocher,

Meng He, Alejandro López-Ortiz, J. Ian Munro, Patrick K. Nicholson,

Alejandro Salinger, Matthew Skala*

December 16, 2009



Outline

� Orthogonal range search

� Previous work

� Adapting to good data

� Untangling

� Conclusions



Orthogonal range search

We want to preprocess the map and store it in some compact form so
that we can quickly retrieve the points in any orthogonal rectangle.



Previous work
Data structure Worst-case query Space

kd-trees [Bentley, 1975] O(
p
n+m) implicit [Munro, 1979]

Range trees [Lueker, 1978] O(logn+m) O(n logn)
R-trees [Guttman, 1984] O(n) O(n)
PR-trees [Arge et al., 2008] O(

p
n+m) O(n)

[Nekrich, 2009] O(logn+m log� n) O(n)
This paper O(logn+ k +m) O(n)
This paper O(k logn+m) implicit

In this table n is the size of the database, m is the size of the query

result, k = O(
p
n) is a hardness measure, and � is an adjustable small

constant.

Optimal structures require either O(
p
n+m) query or superlinear

space [Kanth and Singh, 1999]. Can we beat that with lucky data?



Adapting to good data

Q: On what kind of data would it be easy to do orthogonal range

queries?

A: A diagonal chain, where the ordering along one dimension was the

same as along the other. Then the query result would always be a

contiguous subrange and we could �nds its ends by binary search, with

O(logn+m) time to return the result.



A �rst attempt (the pitch)

Split the data into as few of those chains as possible and search each

one separately.

Gives O(k logn+m) query time; k is worst-case O(
p
n); and space not

just linear but implicit. Sounds good, right?



Actually building it (the catch)

�Given a set of points in the Euclidean plane, partition it into the

minimum number of chains such that the points in each chain are

ordered with one dimension monotonically increasing or decreasing

while the other dimension increases (directions of chains independent

of each other).�

That is an NP-hard problem, which must be solved in order to build

our data structure. It's preprocessing so we can pretend it doesn't

count, but NP-hard preprocessing is less than cool.

Fortunately: Fomin, Kratsch, and Novelli [2002] constant factor

approximate it in O(n3) time. Yang et al. [2007] achieve O(
p
n) chains,

and optimal chains on worst-case data, in O(n3=2) time�and they

think they come close to the FKN approximation in practice. A

constant factor is good enough for us.



Choosing the chains faster

We'd like to be able to do another binary search across the chains in

the other direction, to avoid looking at them all.

However, that requires the chains to be untangled; they cannot

intersect each other.



Untangling

We can always remove any one tangle.

Note this doesn't change the number of chains, so it might seem like we

could start with an optimal possibly-tangled chain decomposition and

just remove the tangles.

But each untangling step could create many new tangles! Will it ever

end? Will it end quickly?



More untangling

� The untangling process must end eventually, because every step

strictly decreases the total Euclidean length and that can only take

�nitely many di�erent values.

� Side e�ect: the minimal number of untangled chains is the same as

the minimal number of possibly-tangled chains.

� It must end after O(n3) untangling steps, using a tricky potential

function [van Leeuwen and Schoone, 1981].

� From that reference: we can �nd each tangle by brute force in

O(n2) time for overall untangling time O(n5). (Good enough for

vL&S because their application was postprocessing TSP solutions.)

� This paper: we do it in O(n logn+ kn) time.



A taste of the proof

An arbitrary set of chains could contain badly-behaved cases requiring
many passes of untangling:

We prove that if the chains came from Supowit's [1985] chain
decomposition algorithm, then the chains have special properties
limiting the number of passes.

After doing the untangling, we can apply fractional cascading to get
the bene�t of the faster chain-selection, bringing the query time to
O(logn+ k +m), though losing the implicit storage space.



Conclusions

� Putting together the building blocks: constant factor

approximation for chain decomposition, followed by examining

every chain, gives O(k logn+m) query time, with implicit space,

improving on optimal worst-case when k is smaller than

O(
p
n= logn).

� Preprocessing is O(n3), or O(n3=2) if we're willing to fake it with

the result of Yang et al.

� First known adaptive data structure for this problem.

� Do untangling (in O(n3=2) time worst case) and fractional

cascading, and get O(logn+ k +m) query time with linear space.

(Doesn't contradict optimality because k could be �(
p
n).)

� Untangling seems interesting for its own sake.


