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Abstract. Bit vectors provide a way to compute the existence of least upper
bounds in partial orders, which is a fundamental operation needed by any unification-
based parser. However, bit vectors have seen relatively little adoption because of
their length and associated speed disadvantages. We present a novel bit vector
technique based on allowing one-sided errors; the resulting approximate bit vec-
tors can be much shorter than the minimum lengths required by existing tech-
niques that would provide exact answers. We give experimental results showing
that our approximate vectors give accurate enough answers to be useful in prac-
tice.

1 Introduction

In unification-based grammar, the operation par excellence is unification, even in pars-
ing, where the sheer number of unifications outweighs any of the other basic operations
that a chart parser must perform, including the maintenance of the chart itself.

In Head-driven Phrase Structure Grammar [10], unification is conducted over typed
feature structures, and these unifications are driven primarily by the consistent combi-
nation of the types, which are drawn from a large partially ordered set. These types not
only have the ability to cause unification to fail (if, that is, they do not have any com-
mon subtypes), but they also uniquely determine the work that must take place for the
unification of the entire feature structure to suceed. This typically involves recursively
combining the feature values that the feature structures share, since a type determines
which features its feature structure has values for, as well as enforcing certain principles
of grammar, since a principle of grammar is often stated as an implicational constraint
in feature logic with an antecedent consisting of a type. To take advantage of the speed
that this kind of strong typing can afford, we must build a T × T table to index these
operations, and then look up the argument types in it during unification. Table lookup
is fast in principle, but even though these tables are fairly sparse, they are large enough,
and the operations involved are numerous enough, to lose an important property that
good compiled code should have, called locality of reference. Disorganized references
to this unification table cause memory pages to be swapped out of RAM, which can
consume a great deal of time.

Kiefer et al. [5] and Penn [9] were the first to suggest that unification could be op-
timized by empirically gathering statistics on which feature paths are likely to produce
type unification failures. The present paper is more related to the approach of Kiefer et



al., who used a vector of types gathered from the most common of these paths to filter
out unifications that are destined to fail before making reference to the unification table.
If the types in the corresponding dimensions of the vectors combine, then we must still
refer to the table. But if a failure is caught by the vectors (and very modular grammars
generally propose a large percentage of type-incompatible unifications), then we can
fail without referring to the table, and better preserve locality of reference.

This is all made possible by a compact representation of types that does not itself
require a table to answer the yes/no question of whether a finite set of types has a
common subtype (as opposed to our table, which also enumerates all of the necessary
operations incident to discovering that they do). This representation is based on a bit-
vector encoding scheme for partial orders first proposed by Aı̈t-Kaci et al. [1], in which
two types have a consistent common subtype iff the bitwise AND of their vectors is
not zero. The problem with this encoding is its size—there must be at least as many
types in this encoding as the number of meet-irreducible subtypes in the partial order of
types, which is always at least as large as the number of maximally specific subtypes.
The number of meet-irreducible types can run into the thousands, occupying 100 or
more machine words, and unlike our unification tables, the vector tables are not sparse,
since the positions of the zeros must be preserved. Managing these is so onerous that
Kiefer et al. resort to bit vectors only when they first encounter a pair of types that is
not present in a page-limited cache of recent or frequent unifications [5].

Even in their initial paper, Aı̈t-Kaci et al. [1] alluded to a modification of their
encoding scheme that works for certain shapes of partial orders, but for which the unifi-
cation operation is more complex than bitwise-AND and zero-checking. Fall [4] coined
a sparse logical term data structure that also has a more complex unification operation.
Skala et al. [11] used bit vectors with bitwise-AND, but generalized zero-checking to
checking for λ ≥ 0 or fewer 1 bits, and achieved a modest reduction in bit-vector size.

In this paper, we use bitwise-AND and λ-checking, but with the additional gener-
alization that our unification operation sometimes makes mistakes. It makes them in
only one direction, however: a “no” always means that two types are not unifiable, but
a “yes” may not be correct. This kind of encoding is related to the one-sided error prop-
erties of Bloom filters [2] that have been used for efficiently encoding language models
in statistical machine translation [12]. Since we need to ask the unification table what
operations to perform in case of a “yes” anyway, this particular direction of error never
affects the soundness of unification, and at worst only increases the time spent.

Once we accept that our filter may make mistakes, it is our choice how large to make
the bit vectors, with the understanding that the number of mistakes increases as size
decreases. Size for a given error rate, in turn, generally decreases as λ increases. Time
cost increases as λ increases also, unless the CPU instruction set supports a primitive
for checking for λ or fewer bits, which many now do.

To a great extent, it is also our choice as to where we make mistakes. We introduce a
stochastic local search technique for selecting optimal bit vectors, given the parameters
of the encoding scheme, which is capable of incorporating preference weights. These
weights can be measured by counting the number of calls to the unifier for every pair
of types over some sample of (possibly noisy) text, with the result that, if the sample is
representative, the encoding will perform best where the unifier will use it most often.



1.1 Notation and Definitions

Let 〈X,v〉 denote a partial order consisting of a set X and a reflexive, antisymmetric,
and transitive binary relation v. If u and v are elements of X such that u v v then
we say that u subsumes v. Let u t v denote the unique least upper bound or join of
u, v ∈ X , if one exists, and u u v the greatest lower bound or meet. If u and v are
distinct elements of X such that u v v and there is no w ∈ X with w 6= u,w 6= v, and
u v w v v, i.e., v follows u in X with no other elements in between, then we say that
v is a successor of u and u is a predecessor of v. A maximal element is one that has no
successor.

Figure 1 shows a small example partial order, drawn (as is customary) with the
maximal elements at the top. In this example, a subsumes itself, c, and d, whereas b
subsumes only itself and d. The element ⊥ (bottom) subsumes everything, but only a
and b are its successors. The maximal elements are c and d. The join of a and b is d.

c d

a b

Fig. 1. A small partial order

Given two partial orders 〈X,v〉 and 〈Y,�〉, a pair of functions f : X → Y and
g : (Y × Y ) → {0, 1} is called an embedding of X into Y . An embedding may have
some of the following properties for all u, v ∈ X:

u v v ⇒ f(u) � f(v) (1)
defined(u t v)⇒ g(f(u), f(v)) = 1 (2)
¬defined(u t v)⇒ g(f(u), f(v)) = 0 (3)

u t v = w ⇔ f(u)g f(v) = f(w) . (4)

If it has the properties (1), (2), (3), and (4), an embedding is said to preserve order,
success, failure, and joins, respectively.

In the present paper, we are interested in the case where desired properties hold for
many, but not necessarily all, pairs of u, v ∈ X . In particular, we examine the case of
embeddings that preserve order, success, and usually failure, but where (3) does not
hold unconditionally. We would prefer for it to hold as much as possible; so we define,



for some weight function w : (X ×X)→ R, the weight of an embedding 〈f, g〉 as∑
u,v

¬defined(utv)
g(f(u),f(v))=1

w(u, v) . (5)

The weight is the sum of w(u, v) for pairs on which the embedding violates (3).
If w(u, v) represents a measure of how undesirable it would be for our embedding to
give a false positive for the joinability of u and v, then minimizing the weight of the
embedding will give us the best possible embedding, the one closest to satisfying (3),
under the reasonable assumption that our desires about different pairs are independent
of each other. Note that the value of w is only relevant for pairs of u and v that do not
have a join; we insist on (2), so there are no false negatives.

For consistency with other work we talk about joins, which are by definition unique,
but our technique actually tests for the existence of least upper bounds, which are not
necessarily unique. The partial orders of most interest to us are meet semilattices, in
which it makes no difference. Meet semilattices are defined by the property that in a
meet semilattice, every pair of distinct elements has a unique greatest lower bound (the
meet). It is a well-known theorem that in a meet semilattice, every pair of elements
also either has one unique least upper bound (the join) or no least upper bound at all.
Nonetheless, our technique would also be applicable to more general partial orders,
in which case the property (2) would be modified to guarantee g(f(u), f(v)) = 1
whenever there is at least one least upper bound, not only a unique join, and for (3) we
would only consider pairs having no least upper bounds.

2 Bit-Vector Encoding

Two types in a type hierarchy have a least upper bound if and only if there is at least
one maximal type that they both subsume. For instance, in Fig. 1, d is a maximal type
subsumed by a and b; they have a least upper bound. But b and c do not both subsume
any maximal type; they do not have a least upper bound.

Since it suffices to look for such maximal types, we can compute existence of least
upper bounds by associating the types in the hierarchy with their sets of subsumed
maximal types, and computing the intersections of those sets. Unification fails if the
intersection is empty. Representing the sets as vectors of bits, and using bitwise AND to
compute the intersections, yields the classical bit vector technique of Aı̈t-Kaci et al. [1].
This embedding preserves order, success, and failure, and can be extended (by adding
bits for unary-branching types) to preserve joins; but it has the significant disadvantage
of using very long bit vectors—linear in the number of types in the worst case, and
frequently so in practice.

Skala et al. describe a class of embeddings in which each maximal type corresponds
to a vector with more than one nonzero bit; specifically λ + 1 bits for some parameter
λ [11]. The vector for a non-maximal type is the union (bitwise OR) of the vectors for
all types it subsumes. This technique reduces to the classical one when λ = 0. Instead
of counting only the all-zero vector as unification failure, they count any vector with λ



or fewer nonzero bits as failure. Success is preserved because any two types that both
subsume some maximal type must contain all its nonzero bits, which is more than λ.
Skala et al. show that they can design such encodings using constraint programming
over sets, to preserve failure as well success, and optionally joins.

The work of Skala et al. takes its inspiration from the well-known technique called
Bloom filtering [2, 11], which stores a sparse array of bits in reduced space by mapping
each index in the large array through a set of pseudorandom hash functions into several
indices in the small array, as shown in Fig. 2. To store a bit, they find all its hashed
locations and store bits in all of them. To check whether a bit was stored, they check all
its hashed locations and say “yes” only if they all contain bits. There is some chance
that looking up a bit could give a false positive—a “yes” answer even though that bit
was not stored in the filter. As the number of bits stored increases, the risk of these false
positives increases. But the Bloom filter will never give a false negative: if queried on a
bit that was in fact stored, it will always return a “yes” answer.

1 1 1 1 1

1 1 1

1

?

Fig. 2. A Bloom filter

Bloom filters can also be used for more elaborate operations on sets of bits; in partic-
ular, the operation of interest here, which consists of testing for non-empty intersection.
Given two Bloom filters in which each bit stored corresponds to λ+ 1 distinct indices,
if we take the bitwise AND of the two shortened vectors and find it contains λ or fewer
bits, we know that there can be no stored bits in common between the two filters. The
single-bit lookup is simply a special case of that operation where one of the sets is a
singleton. If we use the Bloom filtering technique to abbreviate the long vectors of Aı̈t-
Kaci et al. [1], then testing for the existence of a least upper bound is the more general
case.

Using several hashed locations per bit reduces false positives: even if there is a
collision at one index, there would have to be collisions at all of them in order for a false
positive to occur. Bloom discusses this issue in detail and derives formulas relating the
parameters of the data structure to its error probability [2]. The multiple-location feature
(λ > 0) allows significant reduction in vector length for our application. However,
the better-known feature of Bloom filters, not exploited in the previous work of Skala



et al. [11], is the one-sided error property: by allowing the least upper bound test to
sometimes violate failure preservation, we can reduce the vector lengths much further.

It might seem that losing failure preservation renders the least upper bound test use-
less, since any logic programming system should eventually produce correct answers.
However, even an approximate unification test has value if, like ours, it can give its an-
swers quickly. As Kiefer et al. describe [5], a fast test that quickly rejects many failed
unifications can be run first; if it fails (bearing in mind that success is preserved, so
failure results are always correct), then we can skip doing the more expensive test that
would give guaranteed correct results. In a parsing system we could even defer complete
rejection of failed unifications until after several unifications have been performed. This
usage of the cheap tests first combines well with existing techniques that look first, in
a complicated data structure, at the parts for which unification is most likely to fail. It
is also in line with traditional uses of the Bloom technique in things like programming
language compilers: if the Bloom filter can reject most failed symbol matches quickly,
it reduces the cost of a more expensive hash lookup that can verify the relatively few
matches passing the initial filter.

The most obvious way to apply Bloom filtering to our application would be to sim-
ply assign a randomly-selected choice of λ + 1 bits to each maximal type, and give
each non-maximal type the union (bitwise OR) of all the vectors for types it subsumes.
However, we can argue intuitively (and test by experiment) that that approach will not
produce optimal results. Any non-maximal type that subsumes a significant number of
maximal types will be expected to subsume at least one type containing a nonzero value
at each of the indices in the vector; then that non-maximal type will end up having all
its bits set. In a type hierarchy like that of the English Resource Grammar (ERG) [3],
there are clusters of hundreds or thousands of maximal types sharing a single predeces-
sor. That predecessor, and everything subsuming it, will end up with the all-ones vector;
then the unification test will rate it as unifying with everything, and the filter will be use-
less on that type. It seems that to expect good results, we should somehow optimize the
assignment of bits to encourage non-maximal types to have less dense vectors, even if
doing so causes more sharing of bits, and thus more collisions, among maximal types.

3 Stochastic Local Search

The problem of finding an assignment of vectors to types while satisfying the desired
embedding properties is essentially a constraint programming problem over the domain
of finite sets. Skala et al. [11] describe using a constraint propagation technique to op-
timize the number of bits while preserving order, success, failure, and optionally joins.
Our current problem is similar, but we fix the number of bits, allow some constraints
(those corresponding to preservation of failure) to be possibly violated, and optimize
on the total weight of violated constraints.

The constraint propagation solution technique is not well-suited to this version of
the problem, because it would require introducing a solver variable to represent each
of the millions of possibly-violated constraints. The resulting problem would be far
beyond the limits of the constraint propagation solver used by Skala et al. [11] for the
failure-preserving bit vector problem; the instances they solved were only within reach



because they used a bespoke “intersection not too large” constraint with much lower
time and memory overhead (in particular, without introducing a new solver variable per
type pair) than the obvious implementation based on solver primitive constraints. They
also proved mathematical properties of the exact problem that allowed them to factor
the instances and eliminate many constraints entirely. Such properties do not seem to
apply easily to the non-exact problem, where each constraint must be retained in order
to count the violated ones.

However, the constraint propagation solver’s main advantage of providing an exact
solution is not so important here, where the best possible solution is not expected to
be perfect anyway. We instead use a stochastic local search technique, which has the
advantage of being a simpler algorithm amenable to efficient implementation in C. The
key, as in the earlier work of Skala et al. [11], is to store and process as little data per
constraint as possible, because the number of constraints is quadratic in the number of
types, growing faster than anything else in the problem.

For some vector length and parameter λ (for which we will try different values
and see which one works best), we start with a random assignment of vectors to the
maximal types, giving each maximal type a vector with ones at λ + 1 distinct indices.
Non-maximal types always have vectors consisting of the bitwise OR of the vectors for
all the types they subsume. It is easy to show that all assignments of this kind must
be embeddings that preserve order and success; the question is how much failure an
embedding preserves, and we measure that using the weight defined earlier.

We evaluate the weight of the initial embedding, make a small random change (no-
tionally changing the vector for one type and making any necessary changes that result
from that) and evaluate the weight of the result. If it is an improvement (equal or lesser
weight) then we retain that change; otherwise we undo the change. Then we repeat this
process through some number of iterations, hoping to find an optimal or near-optimal
embedding. Note that we retain random moves that leave the total weight unchanged
(no strict improvement) in order to encourage the search to explore more of the search
space, reducing any tendency for it to get stuck in local minima. Such moves do seem
to be common in practice.

This kind of stochastic local search is very simple, but in our experiments it is shown
to work well on this problem when coupled with an appropriate heuristic for suggesting
the random changes to test. More elaborate local search algorithms, such as simulated
annealing, seem to provide little if any improvement in the final search result. Simulated
annealing trades off avoidance of local minima for slower convergence; our observation
is that although local minima exist, our heuristic renders them shallow: so many differ-
ent local moves are possible, and so many local moves are good, that the search will al-
most always escape the local minimum eventually. The fitness smoothly decreases over
the course of the optimization without seeming to become “stuck.” As a result, simply
trying the entire search a few times with different random starting points and taking the
best one at the end generally produces better results than a single slower-converging run
of simulated annealing, as well as being more easily amenable to parallelization.

The heuristic for choosing random moves is critical to the success of the technique.
For each random move, we choose a type uniformly from the collection of all types.
Depending on the type chosen and its current vector, we assign new vectors as follows.



– If we chose a maximal type, we assign it a completely new vector containing ones at
λ+1 distinct indices, chosen uniformly at random from the set of all such vectors.

– If we chose a non-maximal type which is currently assigned a vector containing
greater than λ + 1 ones, then we will “shrink” that vector: remove a bit and make
necessary changes to keep the other types consistent. We choose one of the selected
type’s one bits uniformly at random and set that bit to zero. Then for any maximal
types subsumed by our selected type, if they contain a one at the zeroed index, we
give them new values, choosing λ + 1 distinct indices uniformly at random from
those that contain one bits in the selected type’s new vector.

– If we chose a non-maximal type whose vector currently contains exactly λ+1 ones
(which implies all the types it subsumes must have the same vector), then we give
it a new value of λ + 1 bits chosen from all indices, just as if it were a maximal
type, and we set the vectors of all types it subsumes to that new value.

After any of those cases we then make all necessary changes to non-maximal type
vectors to ensure that every non-maximal type’s vector is equal to the bitwise OR of the
vectors of all types it subsumes.

This heuristic may seem unintuitive, but it is motivated by the issue with random as-
signments described in the previous section. A random assignment will tend to contain
many all-ones vectors on non-maximal types. If we change the value of just one max-
imal type, which is the obvious kind of random move to make, it is quite possible that
any bits we remove will still be covered by other maximal types: so that the random as-
signment plus this kind of move will still contain all-ones vectors in the same places. It
is difficult or impossible to remove an all-ones vector from the assignment by this kind
of move. Thus we would be faced with local minima from which the search cannot eas-
ily escape. In order to explore assignments with less dense vectors on the non-maximal
types, we must allow moves with a significant chance of removing all-ones (or mostly-
ones) vectors where they exist. The stated heuristic does that in a straightforward way.

One other issue is important to the practical implementation. Fully evaluating the
weight of an assignment requires testingO(n2) pairs of types and adding up the weights
for the pairs that are constraint violations. Rather than doing that on every iteration, we
use an incremental approach. In most cases only one or a few maximal types, plus
the non-maximal types that subsume them, are given new vectors by a random move.
We keep track of the vectors affected by a move and only recalculate the weights for
constraints involving those vectors. Incremental calculation results in a significant im-
provement in the time per iteration.

4 Evaluation

The goal of our evaluation was to test, first, the optimization process, with such ques-
tions as how well shortened bit vectors could approximate the joinability function; and
second, the effect on speed of using these vectors in an actual parsing situation. We
tested the technique on the type signatures of three unification-based grammars: the
ALE HPSG grammar, MERGE, and the ERG.

The ALE HPSG grammar is a simple grammar included with the Attribute Logic
Engine as a demonstration of the system [8]. It is a very literal encoding of Chapters 1–5



and 8 of Pollard and Sag’s HPSG text [10]. This grammar’s type signature contains 132
types, of which 87 are maximal; thus the classical bit vector technique would require
87-bit vectors to preserve order, success, and failure. We did not explicitly repeat the
constraint propagation experiments of Skala et al. [11] for this grammar, but it happens
that the grammar is so small and easy to represent that our optimizations produced
perfect (weight zero) results in some cases, allowing us to put an upper bound of 24
on the number of bits needed to preserve order, success, failure, and joins with their
techniques, using a λ value of 2.

ERG, the English Resource Grammar [3], is the largest grammar we tested, with 45
rules, 155 features, 1314 lexical entries, no lexical rules, and 3412 types, plus a most
general type, ⊥, a built-in type for strings, and 893 “completion” types to guarantee the
existence of unique most general unifiers. We used the same ALE port of this grammar
tested earlier by Skala et al. [11]. As they describe, the classical bit-vector embedding
would require 2788 bits, and the shortest vectors they found were 985 bits long, with
further improvements possible either by modularization or potentially by improving the
constraint propagation solver.

MERGE is a reimplementation [6] of the ERG that was designed to showcase the
features of the TRALE system [7]. Its type signature contains 1231 types, of which 502
are maximal, thus requiring 502 bits to preserve order, success, and failure with the
classical bit vector technique.

4.1 Optimization

We implemented the stochastic local search in C and ran it on a cluster of five computing
servers each containing eight AMD Opteron dual-core CPUs at 1GHz clock frequency,
for a total of 80 cores, with 64-bit Linux 2.6.18 operating system kernels. The optimizer
itself was not written as a parallel program, but the multiple CPUs meant we could run
multiple instances of it simultaneously. Each server had 32G of RAM, of which our
experiments only used a small fraction (up to a few hundred megabytes per optimization
instance in the largest case, which was the ERG).

In each case we did three optimization runs with different random number seeds for
each combination of parameters, and kept the best of the three. For the ALE HPSG and
MERGE, we did one million iterations of the local search for each run. For the ALE
HPSG each such run took less than a minute on one core. For MERGE, it was approx-
imately ten hours on one core per run. Optimizations for the ERG ran much slower,
apparently due both to its sheer size (recall that the number of constraints increases
with the square of the number of types) and differences in its design leading to a more
difficult optimization problem. We ran fewer iterations, only one hundred thousand per
run; ERG optimization run time varied significantly with the parameters chosen (much
more so than for the other grammars) but was typically two or three hours on one core.

We tested three different kinds of weight functions. First the uniformly-weighted
case, where each non-joinable pair of types is assigned weight 1. This corresponds to
simply minimizing the number of type pairs for which the vectors will give a false pos-
itive, without regard for the relative importance of different pairs. To provide a more re-
alistic weighting, we also parsed sentences from a corpus appropriate to each grammar
using an instrumented version of ALE that counted the number of unification attempts



for each pair. This instrumented ALE ran very slowly, especially on MERGE, but we
were able to parse 1724, 217, and 1043 sentences for the ALE HPSG, MERGE, and
the ERG respectively, in each case using the test corpus associated with the grammar.
We smoothed the counts by adding one to each, and used the resulting function to run
weighted optimizations.

Finally, we exploited ALE’s existing modularization. ALE splits each type signa-
ture into non-joining modules and will never attempt a unification of types in distinct
modules (which would always fail). As a result, it is not necessary for our bit vectors
to correctly handle unification between modules, and it might be possible to get better
results within modules by sacrificing some accuracy between modules. To test that pos-
sibility, we created a third weight function called the modular weight function, equal to
the smoothed-count function except with the weight set to zero for each pair of types
not in the same module.

Figure 3 shows the progress of a typical set of three optimization runs, in this case
for MERGE with uniform weights, a vector length b = 32, and λ = 2.
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Fig. 3. Typical optimization progress (MERGE, 32 bits, λ = 2).

Tables 1, 2, and 3 show results from the optimization, including for each weight
function the total weight (corresponding to a function that simply says “yes” in all
cases), the weight of the initially chosen random vectors, and the weight after optimiza-
tion. Both the random and optimized weights are, as described above, the best seen in
the three runs. Not all combinations of parameters were tested for all grammars, and
not all tested parameters are shown; because of resource limitations on the parsing ex-
periments described in the next section, we prioritized the optimizations that seemed to



provide the best parsing results, and did additional optimization runs to include shorter
vectors than originally planned.

Table 1. Optimization results for ALE HPSG.

uniform weighted modular
bits λ rand opt rand opt rand opt

4 0 3663 1901 3352404 2986 929 6
4 1 3945 1197 1138828 2489 86113 7
4 2 5132 1869 3245387 18952 96497 376
8 0 2242 815 157700 1367 928 0
8 1 1879 160 2164885 378 3 0
8 2 2123 87 961674 199 8 0
8 3 2701 92 962094 243 6 0
8 4 3100 114 3025163 436 409 1
8 5 3850 203 3112821 1188 412 6

16 0 1217 308 55063 550 0 0
16 1 894 20 894 24 0 0
16 2 960 6 960 9 0 0
16 3 1077 2 1157 2 1 0
16 4 1196 2 1308 2 2 0
16 5 1482 3 1664 4 2 0
24 0 825 173 1676 293
24 1 542 1 542 1
24 2 629 0 629 0
24 3 688 0 688 0
24 4 804 0 1760 0
24 5 909 0 931 0

total weight 8304 8014419 2012974

The most important observation from these results is that the optimized bit vectors
are very good even at short bit lengths. For the ALE HPSG type signature with modu-
larization, eight bits were sufficient to give zero weight, perfect results; that compares
favorably with the 87 bits required by the classical technique of Aı̈t-Kaci et al. [1]. On
the much larger ERG, where an exact solution (as described by Skala et al. [11]) would
require hundreds of bits, a single 32-bit machine word is a long enough vector to bring
the weight in the modular case down to 56477 out of 8831793 with λ = 1. In other
words, for the smoothed distribution of unifications actually performed during parsing,
99.36% of checks to the unification table are eliminated by the bit vector test on 32-bit
vectors.

4.2 Parsing

For each grammar, we parsed a held-out section of the relevant corpus using a version of
ALE 4.0 beta modified to support bit vectors for unification, and we measured the mean



Table 2. Optimization results for MERGE.

uniform weighted modular
bits λ rand opt rand opt rand opt

4 0 478264 171326 632923 217782 272771 74350
4 1 502991 140701 720863 203209 316784 72436
4 2 550343 217287 2050686 327957 348983 150810
8 0 387563 90037 472952 111694 180261 37073
8 1 392032 47398 478683 62555 205231 29693
8 2 413042 42728 537685 55432 222813 30943
8 3 438898 53143 582860 63317 219105 38584
8 4 470275 60685 636929 86620 247299 43690

16 0 305157 45041 358722 55106 135786 17519
16 1 302719 19605 346807 24010 146375 11851
16 2 318062 19752 348421 21940 155394 12617
16 3 334066 20090 388130 24059 156956 16503
16 4 351224 21097 401921 26265 165616 20191
24 0 260450 28904
24 1 255756 10342 287850 13521 126340 6590
24 2 274857 10996 302617 11845 132106 7176
24 3 286147 12570 323197 13180 136827 9373
24 4 306390 16199 337226 18480 145621 11280
32 0 235734 20897 110096 7893
32 1 232300 7584 263404 8435 107306 4209
32 2 246077 7331 274537 8882 120919 4436
32 3 262801 8064 290640 8917 128384 6056
32 4 276403 11036 303034 11000 131476 7843

total weight 695724 2378477 555131



Table 3. Optimization results for the ERG.

uniform weighted modular
bits λ rand opt rand opt rand opt

4 0 5242112 2265973 8721449 2588924 5673212 1040490
4 1 5383985 1494710 9301061 1915308 5646780 890570
4 2 6183247 2300090 11040021 3363294 6829783 1784741
4 3 14588111 14588111 8831793 8831793
8 0 3894775 1107982 6825571 1321100 4326082 532734
8 1 6761076 541630 4257009 301213
8 2 7148380 419644 4437374 267378
8 3 7861117 468618 4969842 274154

16 0 2929784 550199 5502479 663181 1397396 278070
16 1 4375163 209905 3410728 135560
16 2 5527272 203264 3318734 123529
16 3 5744620 238163 3688512 121298
32 0 2116009 272920 2590378 340666 962926 123846
32 1 2407795 138851 903752 56477
32 2 4201044 132072 2949600 84704
32 3 4506346 154472 3191455 59562

total weight 9105928 14588111 8831793

time in milliseconds per sentence. Parse times were measured using the walltime
clock in SICStus Prolog 3.12.10 on an Intel-based system with a 3.6 GHz Xeon proces-
sor and 3 GB of RAM running the Ubuntu 6.06.2 Linux operating system. The results
are shown in Table 4. As well as the times for our bit vector technique implemented in
Prolog, we list as a control the times obtained using SICStus Prolog’s native and heavily
optimized PJW hash function.

Adding instrumentation to a basic language primitive as we did resulted in very slow
parsing overall. Combining that with the limited availability of machines licensed to run
SICStus Prolog, ALE’s requirement for a no-longer-current version of the interpreter,
and memory and address space issues on the 32-bit parsing computers, it was very
difficult to collect parse timing data at all and we could run only a few of the most
interesting parameter combinations.

However, this data remains valuable as the most pessimistic possible test of our
technique: the fact that bit vectors can produce comparable times to the native hash
under such conditions at all, combined with the low weights described in the previous
sections, suggests that a parser designed from the beginning to use bit vectors and run-
ning on a CPU with a bit counting feature could see significant improvement in vector
size and overall speed by accepting a limited number of false positives; and that limited
number need not be very large. We emphasize that the approximate bit vector technique
is not specific to ALE or specific to Prolog, but a general technique applicable to any
system that performs unification in a partial order of types. A customized parser de-
signed specifically to use bit vectors would no doubt run faster, but would not provide



Table 4. Parse time results

grammar weights bits λ time (ms)
ALE HPSG PJW hash 26.6
ALE HPSG modular 4 0 27.3
ALE HPSG modular 8 0 27.3
ALE HPSG modular 8 1 28.6
ALE HPSG modular 8 2 30.0
ALE HPSG modular 32 1 33.7
MERGE PJW hash 28696
MERGE modular 4 0 29505
MERGE modular 8 0 29176
MERGE modular 8 1 29646
MERGE modular 16 0 29112
MERGE modular 16 1 30343
MERGE modular 32 1 33235
ERG PJW hash 1966
ERG Aı̈t-Kaci 2788 0 2507
ERG modular 32 1 2194
ERG modular 32 2 2377
ERG modular 64 1 2310
ERG uniform 32 1 2335
ERG weighted 32 1 2213

a well-controlled evaluation of the approximation technique being tested in the present
work.

When looking at the data it is clear that smaller values of λ resulted in faster parsing,
despite the results in the previous section suggesting that larger λ may allow for better-
optimized weights. That effect likely stems from the use of Intel Xeon processors for
the parsing test, which (although they may implement bit count in their superscalar
extensions at the assembly language level) do not have a bit count operation for the
main registers easily accessible from Prolog. The increased time for larger λ reflects
the cost of doing the bit count at the Prolog level by way of more expensive arithmetic
operations. It also suggests that as long as we operate in this environment without a fast
bit count, it is unnecessary to make heroic efforts on the vector optimization because
the effect of λ overwhelms the differences in weight among roughly-optimized vector
sets.

For the smaller grammars (ALE HPSG and MERGE), the most effective bit vector
lengths in this experiment are very short: only four or eight bits. Again, the advantages
of keeping the vectors short outweigh the increased error rates. For the ERG, we tested
longer vectors including the classical vectors of Aı̈t-Kaci et al. [1]. The advantage of
our short vectors over those much longer ones is evident. We also tested, at the 32-
bit vector length, the differences between vectors optimized with uniform weights, with
weights derived from test parsing, and with modularity taken into account. As expected,



the modular vectors give better times than the weighted vectors which give better times
than the uniform vectors.

Figure 4 presents a different view of the parsing times: it shows the time for each
individual sentence in the ERG test, sorted in decreasing order of the PJW hash time.
Figure 5 is a similar chart for MERGE. These comparisons show that the time differ-
ences associated with longer vectors or greater λ are generally consistent across the
corpus.
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Fig. 4. Per-sentence parsing times for the ERG.

5 Conclusion

We have described an approximate bit vector technique for fast unification, based on
hashing bits into multiple locations and permitting one-sided errors, as in Bloom fil-
tering. We have also described a stochastic local search algorithm with an appropriate
heuristic for optimizing the bit vector encodings; and we have presented experimental
results evaluating both the local search and the speed of the unification for a variety
of parameter values. Our technique allows the use of much shorter vectors than any
previously-known bit vector techniques, making bit vectors a practical option in appli-
cations where they might not otherwise be considered.



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

ti
m

e 
(s

)

sentences

modular 4-bit, lambda=0
modular 8-bit, lambda=0
modular 8-bit, lambda=1

modular 16-bit, lambda=0
modular 16-bit, lambda=1
modular 32-bit, lambda=1

PJW string hash

Fig. 5. Per-sentence parsing times for MERGE.

References

1. Aı̈t-Kaci, H., Boyer, R.S., Lincoln, P., Nasr, R.: Efficient implementation of lattice oper-
ations. ACM Transactions on Programming Languages and Systems 11(1), 115–146 (Jan
1989)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM 13(7), 422–426 (Jul 1970)

3. Copestake, A., Flickinger, D.: An open-source grammar development environment and
broad-coverage English grammar using HPSG. In: Proceedings of the Second Conference
on Language Resources and Evaluation (LREC 2000) (2000)

4. Fall, A.: Reasoning with Taxonomies. Ph.D. thesis, Simon Fraser University (1996)
5. Kiefer, B., Krieger, H.U., Carroll, J., Malouf, R.: A bag of useful techniques for efficient and

robust parsing. In: Proceedings of the 37th Annual Meeting of the Association for Computa-
tional Linguistics (ACL-ANNUAL’99). pp. 473–480. ACL (1999)

6. Meurers, D., De Kuthy, K., Metcalf, V.: Modularity of grammatical constraints in hpsg-based
grammar implementations. In: Proceedings of the ESSLLI Workshop on Ideas and strategies
for multilingual grammar Engineering (2003)

7. Meurers, D., Penn, G., Richter, F.: A web-based instructional platform for constraint-based
grammar formalisms and parsing. In: Proceedings of the ACL Workshop on Effective Tools
and Methodologies for Teaching NLP and CL (2002)

8. Penn, G.: A Utility for Feature-based Grammatical Theories. Master’s thesis, Carnegie Mel-
lon University (1993)

9. Penn, G.: Optimising don’t-care nondeterminism with statistical information. Tech. Rep.
140, SFB 340, Tübingen (1999)
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